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ABSTRACT 
Abstract — Hyperspectral images are characterized by their 
large contiguous set of wavelengths. Therefore, it is possible 
to benefit from this ‘hyper’ spectral information in order to 
reduce the classification and unmixing errors. For this 
reason, we propose new classification and unmixing 
techniques that take into account the correlation between 
successive spectral bands, by dividing the spectrum into 
non-overlapping subsets of correlated bands. Afterwards, 
classification and unmixing are performed on each subset 
separately, such as to yield several labels per pixel in the 
classification case, or abundances in the unmixing case. 
Then, several fusion techniques are proposed to obtain the 
final decision. Results show that spectral partitioning and 
appropriate fusion allow a significant gain in performance 
compared to previous classification and unmixing 
techniques. 

Index Terms— Hyperspectral imaging, spectral pre-
processing, classification, unmixing, fusion. 
 

1. INTRODUCTION 
Hyperspectral imaging is based on the acquisition of a 

scene in a large number of wavelengths, resulting in a data 
cube with two spatial dimensions and a spectral one. The 
large amount of information in these images makes them a 
powerful tool for surface materials’ detection in remote 
sensing. This detection can be performed either by 
classifying each pixel to a specific class, or by decomposing 
a pixel into a mixture of several pure classes [3][4]. One of 
the standard tools for classification is Support Vector 
Machines (SVMs), and a study of their effectiveness for 
hyperspectral data was proved in [1]. In this paper, we use 
the One Least Square Machine ‘One LSM’ [2], a variant of 
SVM with less computational complexity. On the other 
hand, several techniques were proposed for the 
identification of pure classes (also known as ‘endmembers’), 
like the well-known NFINDR [5] and SGA (Simplex 
Growing Algorithm) [6] techniques. After this 
identification, the abundances of endmembers are computed 
using unconstrained, equality constrained, or fully 
constrained approaches [7], [8]. Other techniques allow a 
joint estimation of endmembers and abundances, such as the 
Barycentric approach introduced in [9].  

In both classification and unmixing contexts, 

performance can be enhanced using spatial, spectral, or joint 
spatial-spectral pre-processing. Spatial pre-processing aims 
at exploiting the strong correlation between neighboring 
pixels through, for example, mathematical morphology 
operators, as was done in [10]. On the other hand, spectral 
pre-processing allows taking advantage of the correlation 
between neighboring spectral bands, as was done in [11] to 
perform clustering. 

In this paper, we propose to divide the original 
wavelength interval into a set of correlated intervals. We 
refer to this process as sub-band partitioning. Afterwards, 
we perform the classification or the unmixing on each sub-
interval and use this supplementary information in order to 
enhance the original result. However, the fusion of the 
obtained results is a challenging problem that we address 
through several fusion techniques. The rest of the paper is 
organized as follows: Section 2 discusses the characteristics 
of the spectral correlation matrix. In Section 3, we show 
how sub-band partitioning can be applied using the One 
LSM classifier, and we propose a distance-based fusion 
technique for this classifier. Then, sub-band partitioning is 
applied for spectral unmixing, along with several proposed 
metrics for the weighted fusion. Experimental results are 
provided and analyzed in Section 4. Finally, Section 5 
concludes our work. 
 

2. SPECTRAL CORRELATION AND SUB-BAND 
PARTITIONING 

The hyperspectral image is modeled by a matrix 

 1 nX x x  of size p n , a set of n observations (one for 

each pixel) with p spectral components each. The inter-band 
correlation matrix Cx = XXT estimates the pairwise 
normalized correlation coefficients between each pair of 
columns in the matrix XT. Cx is a square symmetric matrix, 
with size (p  p) and diagonal elements equal to 1. The off-
diagonal elements cij express the correlation between the 
spectral pair (i,j). Large (resp. small) elements of Cx denote a 
high (resp. low) correlation between the two bands. Fig. 1 
shows the inter-band correlation matrix obtained with the 
Pavia University, with size (103×103). Light pixels, close to 
1, denote a high correlation, whereas dark ones indicate little 
correlation between the two corresponding bands. From Fig. 
1, we see that the inter-band correlation matrix generally 
exhibits clusters. In this example, it underlies two white 



squares, which implies that the bands from 1 to 70 are highly 
correlated, and the same goes for the bands from 71 to 103. 
Similar results were observed with the Indian Pines’, and 
Cuprite’s correlation matrices. 
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Figure 1: Inter-band correlation matrix of 

the Pavia University 
3. FUSION TECHNIQUES FOR CLASSIFICATION 

AND UNMIXING 
Given that the spectral bands can be divided into a set of 

correlated intervals, we propose to add new stages for the 
classification and unmixing procedures. Instead of only 
performing the classification, respectively the unmixing, on 
the whole spectral interval, we suggest to additionally 
perform the classification on each sub-band interval. These 
so called sub-classifications can be used to correct the 
potential mistakes of the original classifier. 

The proposed scheme (Fig. 2) consists of four phases. 
The first step is the estimation of the inter–band correlation. 
Afterwards, we divide the bands into correlated subsets, each 
subset containing the same pixels but with a different band 
margin. Then, classification is performed using the original 
cube, as well as each subset separately. Finally, via an 
adequate fusion function, we fuse all obtained results.  

 
Figure 1: Classification with sub-band partitioning 

Note that this scheme can be applied for both 
classification and unmixing, i.e., the input of the fusion 
function can be either the class of a pixel in the case of 
classification, or the abundances in the case of unmixing. 
However, the main challenge in this scheme is to find the 
optimal fusion function with regards to the material detection 

approach in use. In Section 3.1, we will provide an 
application of this scheme using the One LSM classifier, and, 
in Section 3.2, we investigate four unmixing algorithms. In 
each section, we will propose adequate fusion techniques to 
deduce the final decision. 

3.1. The classification case 
The One LSM algorithm, recently proposed in [2], is 

used to solve a supervised learning classification problem. 
Most importantly, the complexity of the algorithm in the 
multiclass mode is lower than other algorithms reported in 
the literature such as SVM. The basic setting of a binary 
supervised learning classification problem is as follows. 

Given a training set       
1 1 2 2
, , , , , ,

n n
S x y x y x y 

constituted by n observations xi with their respective classes 
yi = 1, the algorithm should be able to find a decision 
function f such that: 

 ( ) 0, 1

( ) 0, 1

f x y

f x y

 
  

 

Once the decision function f has been determined based on 

the training set, it is used to estimate the class membership 
of any new observation. Equivalently, for any observation x, 

we can write: 1arg max ( )yy yf x         (1) 

Note that (1) is given here in its binary context, with a 
number of classes m=2, but could be easily extended to the 
multiclass case where ‘y’ takes ‘m’ possible values. 
On the other hand, when using the One LSM classifier in the 
proposed scheme, as shown in Fig.2, we will have r+1 
classes for every pixel prior to the fusion step: r decisions 
from the r sub-cubes’ classification and 1 decision from the 
original cube’s classification. For the fusion of these results, 
we tested two voting techniques. 

1- Absolute Sub-Vote (ASV): In this voting scheme, when 
we have an absolute majority among the sub-votes (from the 
sub-classifiers), the winning class is the one agreed on by 
the sub-classifiers. Otherwise, the class proposed by the 
original classifier remains unchanged. 

2- Distance-Based Vote (DBV): In this voting strategy, a 
soft decision is taken, i.e., the value of the maximum 
product in (1) is taken into account, rather than only 
considering its argument. While collecting the votes, the 
sub-classifiers’ and main classifier’s votes are multiplied by 
their corresponding weight dres that allows taking into 
account the confidence of the classifier’s decision:  

dres = yres  f(x), with 1arg max ( ).yresy yf x   

3.2. The unmixing case 
In the unmixing context, the pixel’s spectrum is a mixture of 
pure material’s spectra, known as endmembers. The first 
step in unmixing is to identify the endmembers present in 
the scene, followed by the abundances' calculation, i.e. 
determining the contribution of each endmember in a pixel. 
The abundances should be positive, with a sum equal to one. 
Let x be a pixel’s spectrum, xe an endmember’s spectrum, 

 40 50 60 70 80 90 100302010



and  its corresponding abundance in the pixel’s spectrum. 
Assuming that the data has a linear mixture model, and 
considering q endmembers in the scene, we can write a 

pixel’s spectrum as: ,

1

q

i e i

i

x x


  , with 
1

1
q

i

i




  and 

0, 1, ,
i

i q    .   

The problem of abundances' calculation has been addressed 
using different algorithms in the literature [7], [8], [9], like 
the unconstrained, equality constrained, fully constrained, 
and barycentric approaches, that mainly differ by the 
constraints they consider for this calculation. The 
endmembers' abundances constitute the inputs to the fusion 
function of Fig.2, in the unmixing case. We propose the 
following fusion function consisting of two steps: 

1. Fuse the r results of the r sub-cubes. 

2. Choose between the abundances obtained from the 
original data (input r +1) and those obtained from step 1. 

In step 1, the fusion consists of a weighted average of the 
estimated sub-abundances, with a weight proportional or 
inversely proportional to a certain metric. Let 

1
T

q

i i i
a      , 1i r  , be the vectors of 

estimated sub-abundances, and di, i = 1, …, r, the metric 

values. Let 1
T

p

i i i
x x x    be the original pixel’s 

spectrum and ˆ ix its reconstructed version using the 

estimated abundances. The final abundances from step 1 are 
taken as:  

1 1

1 1r r

i
i ii i

a a
d d 


 
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 

                         (2) 

We proposed and studied four different distance metrics for 
this fusion: 
1- Simple averaging (AVG): In this case, all sub-results are 
given the same weight 1,id i  . 

2- Averaging based on the reconstruction angle (ANG), 
i.e., the angle difference between the reconstructed and 

original pixels’ spectra:   1
cos ˆ ˆ, .i i i i id x x x x . 

3- Averaging based on the Mean Square Error (MSE): 

2

1

1
ˆ( )

i

p
j j

i i
j

d x x
p 
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4- Averaging based on the Mean Absolute Difference 

(MAD): 
1

1
ˆ

i

p
j j

i i
j

d x x
p 

  . 

In step 2, we need to evaluate the accuracy of the 
abundances obtained from step 1 and those given by the 
original hyperspectral cube, in order to choose the best 
candidate. For this purpose, we compute the spectral angle 
of the reconstructed pixel, for each one of the two results, 
and choose the positive abundances with the smallest 

spectral angle:    1
cosˆ ˆ ˆ, , .x x x x x x


 .       (3) 

4. EXPERIMENTAL RESULTS 
4.1. Classification  
The proposed spectral pre-processing techniques are applied 
to the Pavia University data set, which has a total of 103 
bands and 9 classes of materials. We compare the 
performance of the proposed scheme with respect to the 
simple classification in terms of the overall error percentage. 
In the aim of generalizing the results, we use the 5-fold 
cross validation approach [12]. According to the study in 
Section 2, the spectral band is partitioned into 2 intervals: [1 
70] and [71 103], which accounts for two sub-classifiers 
(r=2). Moreover, at the classification level, in Fig. 2, we 
apply two dimensionality reduction techniques, PCA 
(Principal Component Analysis) and Gaussian KPCA 
(Kernel PCA), for which we respectively consider 150 and 
50 pixels per class. The number of retained bands L tested 
with each technique is taken in the set {3, 10, 30}. Table 1 
shows the overall error percentage obtained with the 
classical classification (with no partitioning), and with the 
proposed scheme, using the two proposed fusion techniques 
ASV and DBV. Since our scheme introduces additional 
stages compared to the classical classification, we also show 
the execution time of each method, i.e., the time 
consumption necessary to evaluate the classes for the whole 
data set (for the case without partitioning), or for the r+1 
evaluations as well as their fusion (with partitioning). In 
general, sub-band partitioning and fusion allow reducing the 
the error percentage, especially with applied with PCA and 
the DBV technique, with a slight increase in the execution 
time. With Gaussian KPCA, ASV has better performance. 
However, in both cases, when the number of retained bands 
is relatively high (L=30), the performance gain is minor.  

Table 1: Overall error percentage (%) and time consumption 
(s) for the One LSM classifier, obtained with the Pavia Unversity. 

  No partitioning ASV DBV 

P
C

A
 

L =3 
48.370 % 
(0.333 s) 

42.148 % 
(0.887 s) 

41.556 % 
(0.890 s) 

L=10 
2.593 % 
(0.360 s) 

2.519 % 
(1.013 s) 

2.074 % 
(1.022 s) 

L=30 
0.741 % 
(0.360 s) 

0.519 % 
(1.045 s) 

0.519 % 
(1.040 s) 

G
au

ss
ia

n
 

K
P

C
A

 

L=3 
18.889 % 
(0.430 s) 

17.778 % 
(0.678 s) 

23.333 % 
(0.681 s) 

L=10 
1.556 % 
(0.511 s) 

1.111 % 
(0.787 s) 

1.333 % 
(0.787 s) 

L=30 
0.667 % 
(0.535 s) 

0.222 % 
(0.802 s) 

0.222 % 
(0.805 s) 

 
4.2. Unmixing 
For the unmixing experiments, we use the Cuprite scene 1 
which, after removing the water absorption bands, has 188 
bands and a total of 47750 pixels. The proposed fusion 
schemes are tested with the following spectral interval 



partitions: [1 101], [102  135], and [132  188]. In addition to 
the time consumption, the following metrics are used to 
evaluate the performance of the proposed unmixing 
techniques:  
- Negativity Percentage (NP): The percentage of pixels 
having at least one negative abundance value. 
- No Equality Percentage (NEP): The percentage of pixels 
whose abundances’ sum is different than one. 
- Average Spectral Angle (ASA): Average angle difference 
between the reconstructed and original images, obtained by 
averaging the pixels' reconstruction angles, estimated by (3). 

Table 2 compares the performance of the Basic unmixing 
scheme (without partitioning) towards the three proposed 
fusion techniques, using four algorithms for the abundances’ 
estimation: unconstrained, equality constrained, fully 
constrained, and barycentric. In general, the proposed 
scheme yields better results compared to the basic 
unmixing. In particular, when applied with the 
unconstrained algorithm, our fusion techniques were able to 
reduce the Negativity Percentage (NP) from 90% to as low 
as 3.89% with the AVG fusion. Similarly, with the equality 
constrained approach, the NP was reduced from 29% down 
to 0.791% with AVG. On the other hand, no important 
improvement was achieved with the fully constrained 
approach since it already has an NP of 0%.  

Table 2: NP, NEP, ASA, and T for unmixing, obtained with the 
Cuprite scene 1. 

  NP (%) NEP (%) ASA (%) T(s) 

U
n-

co
ns

tr
ai

ne
d Basic 90.18 99.99 0.0497 0.0780 

AVG 3.89 99.69 0.0962 1.2010 
ANGLE 25.60 99.88 0.0777 2.6360 
MSE 39.44 99.90 0.0745 2.2620 
MAD 31.86 99.91 0.0762 2.2150 

E
qu

al
it

y 
co

ns
tr

ai
ne

d Basic 29.31 0 0.0841 0.0780 
AVG 0.791 0 0.0975 1.9340 
ANGLE 0.896 0 0.0969 2.8860 
MSE 1.038 0 0.0958 2.4800 
MAD 0.902 0 0.0965 2.4810 

F
ul

ly
 

co
ns

tr
ai

ne
d Basic 0 0 0.0867 6.2090 

AVG 0 0 0.0867 29.593 
ANGLE 0 0 0.0867 31.294 
MSE 0 0 0.0866 31.310 
MAD 0 0 0.0867 30.826 

B
ar

yc
en

tr
ic

 

Basic 30.54 0 0.0849 1.3120 
AVG 1.327 0 0.1000 5.9800 
ANGLE 0.938 0 0.0994 7.0630 
MSE 1.149 0 0.0978 6.4960 
MAD 0.963  0 0.0989 6.5800 

However, what is important to note is that the proposed 
schemes, used with the unconstrained and equality 
constrained techniques, were able to nearly reach the fully 
constrained performance, with less execution time. For 

instance, the equality constrained algorithm tested with 
AVG only requires 1.93 s to reach a similar result to the 
basic fully constrained, which needs 6.2 s. Finally, with the 
barycentric approach, the proposed fusion techniques, in 
particular MAD and ANGLE, were able to reduce the NP 
from 30.54% to less than 1%. 

5. CONCLUSION 
In this paper, we proposed a new scheme for spectral pre-

processing in which we take advantage of the correlation 
between adjacent bands and divide the spectral interval into 
correlated sub-intervals. We showed how classification and 
unmixing can be performed on each sub-interval in addition 
to the original spectrum. Using adequate fusion techniques, 
we were able to combine the results such as to correct the 
errors of the original classifier and improve performance, at 
the expense of a slight increase in the system complexity.  
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