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ONLINE NONNEGATIVE MATRIX FACTORIZATION BASED ON KERNEL MA CHINES
Fal Zhu, Paul Honeine

Institut Charles Delaunay (CNRS), Université de Techg®ale Troyes, France

ABSTRACT data with some nonlinear function from the input space to
a feature space, and perform the existing linear techniques
ingly investigated for data analysis and dimension-reidact N the transformed data. Unfortunately, the curse of the pre
To tackle large-scale data, several online techniquesfkaFN  IMage [2], inherent from kernel machines, remains the bot-
have been introduced recently. So far, the online NMF hall€neck in most kernel-based NM&g., [3,4]. That is, the
been limited to the linear model. This paper develops an orPtained bases lie in the feature space, and thus one cannot
line version of the nonlinear kernel-based NMF, where the de€Present POth low-rank matrices in the input space. Rh;cgr_n
composition is performed in the feature space. Taking the a®®™oPosed in[[6], the so-called KNMF overcomes this diffi-
vantage of the stochastic gradient descent and the minhbat €Uty Py minimizing an objective function, which is defined
scheme, the proposed method has a fixed, tractable compld®-the feature space, directly in the input space. Itis this f
ity independent of the increasing samples number. We deriy@ulation thatis investigated throughout this paper.

the multiplicative update rules of the general form, and de- 19 pandle large-scale and streaming dynamic data, a cou-
scribe in detail the case of the Gaussian kernel. The eﬁeﬁb‘le of NMF methods have been extended from batch mode
tiveness of the proposed method is validated on unmixing hyyy online mode. For instance. online methods/[i [6-9] all
perspectral images, compared with the state-of-the-#ren  jea| with the conventional linear NMF model. The projec-

Nonnegative matrix factorization (NMF) has been increas

NMF methods. tive online NMF (PONMF)[[10, 11] maintains the virtue of its
Index Terms— Nonnegative matrix factorization, online batch counterpart in guaranteeing a sparse, parts-baged re
learning, kernel machines, hyperspectral unmixing resentation. In[[12], the authors consider the online versi

of the NMF with Itakura-Saito divergence. Online NMF with
volume constraint is discussed [n_[13]. Roughly, due to the
continuously increasing computational complexity, thev@a
idea of conducting sequentially batch NMF (or its variants)
is far from efficient in online setting. To alleviate this com

1. INTRODUCTION

Nonnegative matrix factorization (NMF) consists in appfox
mating a given nonnegative matrix by the product of two IOW'putational overhead, the incremental online NMF (IONMF)

rank_onesﬂ]l], thg left Iow-.rank matrix IS often called baSISin [6] introduced first the fixity of encoding of the processed
matrix while the right one is the encoding one. Due to the

- " samples. Since, this assumption was widely adopted in on-
ability to extract parts-based features for the nonnegativ

line NMF algorith I few.
put data, the NMF provides a framework suitable to a host ofr?: other ?]gr?gt Srg;:zr:ﬁeﬂ;?ﬁ\ﬁ%lﬂﬂt:ngm& %] on
applications. In particular, applied to the hyperspeatral ’ ' P

L bl the NME iointly estimates the * . follow the spirit of the stochastic gradient descent (SGD),
mixing probiem, the Jointly estimates the "pure” Spec- ., j,,q complexity-reduction strategy for online learnifidl].
tra, namely endmembers (given in the basis matrix) and the

fractional abund t each pixel (aiven in th di hstead of considering all the available samples so far, SGD
t:&‘; lonal abundances at each pixel (given in the enco Elﬂgmstyle methods import merely a single or a small batch of sam-

M di he li NME model. wh é)les at each iteration, thereby reducing the complexityn-Si
O.St s_tu 1es CC_’”C‘?””at? onthe linear _model, wher arly, to prohibit processing the whole data, the methoet pr
the o_b1ectwe function IS defined by the I_:robemus norm In aye nteq in[[9] factorizes the matrix composed by the previous
Eucl!dgan spﬁceij,_f(;alledputbspace. Inhthl_s case, one sezki basis matrix and novel sample instead. To the best of our
to r3|n|m|zfe:] ed .erencfje etwee_lrjht_ el_lnput ma;mi an ftt efmowledge, current literatures of online NMF are limited to
pro uct of the e;pmate ones. 1NiS inear model IS Oen, inaar model, whereas no online method exists for nonlin-
improved by auxiliary regularization terms. Recently, @fe ..\ cal-based NME. By taking advantage of the aforemen-

kernel-based NMF have been proposed to extent the "ne%{)ned stochastic gradient and mini-batch modes, this pape

NMF model to the nonlinear scope. By exploiting the frame-. ...+« the batch KNME to an online mode by keeping a

work offered by the kernel machines, these methods map tkﬂaactable computational complexity. Moreover, we provide
This work was supported by the French ANR, grand HYPANEMA: _muItipIi_cative update rules of the general form, and déseri
ANR-12BS03-0033. in detail the case of the Gaussian kernel.




2. NMF AND KNMF 3. ONLINE KNMF

This section briefly reviews the NMF, with its conventional We extent the aforementioned KNMF from batch to an online

linear model, and the recent kernel-based variant (KNMF). version. In the online setting, the samples arrive suceelssi
Given a nonnegative data matX = [x; x2 --- xr] €  the method is expected to produce a sequence of factoriza-

REXT whereinz; € R* represents theth sample data, lin- tions based on all the samples received so far. An intuitive

ear NMF aims to factorize it into two low-rank nonnegativeidea is to iteratively conduct the batch KNMF. Unfortungtel

matrices. NamelyX ~ FE A, under the nonnegativity con- as the samples number continuously grows, this method suf-

straint on all the entries dE € RN andA € RV*T, Let  fers an increasing, untractable computational compleRByy

E = [e; es --- en]. An equivalent vector-wise model is investigating the stochastic gradient, we propose an enlin

given byx, ~ ij:l anten, fort = 1,...,T. The latter KNMF (KONMF) with fixed computational complexity.

model can be interpreted as to represent each sample:gdata

as a linear combination of vectoes, es, - - - , ey, called ba- 3.1. Problem formulation

sis vectors with scalars,; being the entries of the encoding

matrix A. DenoteX as the input space spanned by all the

vectorsx,, as well as the vectoks,. The optimization prob-

From [2), the objective function corresponding to the first
samples is rewritten as

lem of NMF consists in minimizing the following objective o 1" N2
function in X’ Jn(E,A) =5 Zl H‘I)(ﬂ?t) - Zlam ®(en) iy
1 T N N N = "=
J(E,A) = 5 Z lz: — Z ant €|’ whereE and A denote respectively the basis matrix and the
t=1 n=1 encoding matrix for current samples. We adopt the fol-

with the nonnegative constraints on the matriéeand A. lowing assumption, initially proposed inl[6] and employed i

In [B], a kernel-based NMF (KNME) is proposed by con- MOSt online NMF methods,g., [7/8/15]: fromk to k+ 1, the
sidering the following matrix factorization model encoding vectors for the firdt samples remain unchanged,

i.e,a; =a;, fort=1,... k.
X® ~ E‘I’A, As the new sample:, 1 is available, one needs to esti-
> » _  Mmate the new basis matrik, by updatingE, and the novel
where X = [&(z1) ®(z2) - | q)(TT_)], and E™ = qample's encoding vectar, ;. 1, to be appended tal. The
E)r(ne]l) ©(ez) -+~ ®(en)], or equivalently in its vector-wise e objective function is modified to
! N 1 k+1 N 9
B~ 3 o Blew), @ AeaBA)=53 | @@ - > ansblen)
forallt =1,...,T. Here,®(-) is a nonlinear function map- 1 N 2
ping the columns of the matriX, as well as the columns of ~3 > Hq)(“’t) =D an ®(en) )
t=1 n=1

the matrix E, from the input space&’ to some feature space
. . N

#H. lts associated norm is denotéd- |4, and the corre- g o 2

sponding inner product in the feature space is of the form + §H (@r41) = Z an(i+1) B(en) "
n=1

(®(x;), ®(x4 )2, which can be evaluated using the so-called - o
kernel functions(z¢, z/) in kernel machines. Considering It is noteworthy that the above objective function is expess

the vector-wise form modéIi1), the objective function istwr @S & sum of sub-loss functions over data samples. By ex-

ten as panding this expression and removing the constant term
T’ N i Zfill k(xt, ), the optimization problem becomes
1 2
JEA) =3 Y ||o@) =Y anee)] . @ ok
t=1 n=1 min l(xt, a4, E), 3)
Qk+1,

where the nonnegativity constraint is imposed on all the en- =t

tries ofe,, and A. where l(x¢, a¢, E), the sub-loss function over sampig,
As in the conventional NMF and its variants, althought@kes the form

the estimation of both unknown matrices jointly is a noncon- 1 XX N

vex problem, its subproblem with one matrix fixed is con- 5 SN anameri(en, em) = D aniti(en, ).

vex. Well-known NMF algorithms, including gradient de- n=1m=1 n=1

scent method and multiplicative update rules, basicathral In the following, we adopt a simple alternating technique

nate the optimization over two unknown matrices by keepingver the unknown basis matri& and encoding vectady,
the other one fixed[1]. to minimize the objective functiofl(3).



3.2. Basis matrix update Table 1: Commonly-used kernels and their gradients with re-

) _ _ spect toe,,.
Keep always in mind that; = a; holds fort = 1,... k.
The gradient of{{B) with respect to the vectoris: Kernel K(en, z) Ve, k(€n, z)
. Linear z' e, z
Polynomial z' e, +0)? d(zTe, +c)d Dz
Ven JkJrl = Z venl(mt; Qg, E)v (4) Gazssian expEQ;—lz llen JZHQ) 7;1{(67“ z)ien — z)
t=1 Sigmoid tanh(yz " e, +¢) ysech?(vz " e, +C)z

where

N rules, the resulting methods lead to nonnegative factioiza
Ve, l(z1, ar, E) = ant( > tmt Ve, k(€n; €m)=Ve, k(en, wt))~ with neither the projection to the nonnegative constragt s
m=1 nor the pain of choosing the step-size parameter. To this end
This expression is explicit, since,, «(e,,-), which is the We split the gradient corresponding to some samplas the
gradient of the kernel with respect to its argumeptcan be ~ subtraction of two nonnegative terms,,
determined for most valid kernels. We listin Table 1 the sase

with some commonly-used kernels. Ve, (@1, a1, E) = Ve, " (21, a1, E) — Ve, 1™ (x4, a1, E).
A batch gradient descent update rule takes the form ) ) (8)
Setting the step-size parameter as
k1
€n = €n —Mn venl(mt;atvE)a (5) n — Cn
t:zl K Zq;tel' ven,l+($t7at;E)
forn =1,..., N, where the step-size parametgrmay de- yields the following multiplicative update rule of the geake

pend onn. Unfortunately, this rule cannot be considered inform
online learning, since it deals with all tihe} 1 received sam-
ples up to each iteration and has a computational cost propor > w,ez Ve T (Ti,ar, E) ’
tional to the number of samples. o L
. . . where the multiplicatior® and the division are component-
A stochastic gradient descent (SGD) update alleviates this. P o b

computational burden, by approximating the above gradienvt\"se' Analogous to the aforementioned additive casesethre

based on a single, randomly chosepat each iteration, and Mmultiplicative update rule_s can_be dlstmgwshgd de_peg?dm
is of the form the numbep of samples investigated at each iteration:

e If p = k+1, all the samples are proceed and (9) is reduced
en = e, — Ve, l(x,a;, E), (6) to the multiplicative update rule for batch KNMF;

ZthI Venli(mtv Qag, E)

9)

e, =€,

e If p = 1, the multiplicative update rul€](9) corresponds to
the stochastic gradient cagé (6);

If 1 < p < k+ 1, then [9) has the mini-batch gradient
case[(V) as its additive counterpart, with the mini-batch
size equals t@.

forn = 1,2,...,N. Despite a drastically simplified proce-

dure, the SGD asymptotically converges much slower than its
batch mode counterpaft[14]. A compromise between thes@
two is the mini-batch mode, which aggregates the gradients
corresponding to a randomly picked set of samples. For no-
tational simplicity, denot& as the sample set therein contain

the randomly picked samples employed for updating at eacB.3. Encoding vector update

iteration. The mini-batch mode takes the following form . , ,
To estimate the encoding vectog_, for the newly available

en = €n — Z Ve, l(z:, ar, E), (7)  Trr1, WE determine the partial derivative df,.; with re-
spect toa,, (,41), namely

x €L
forn = 1,2,..., N, where the mini-batch size, pre-fixed, is N
denoted in the following by with p=card(Z). Varioiny Tt = —h(€n, Tht1) + > Gmir) (€n, €m),
In the above gradient descent update rules frbm (5) to m=1

(@), the step-size parameters should be appropriately set. o, — 1 9 . N. Applying the gradient descent scheme, a
Moreover, a rectification functiom = max(a, 0) should fol- simple additive update rule is constructed as

low after each update in order to guarantee the nonnegativit
To overcome these difficulties, we present below the multi-
plicative update rules, which are originated by Lee and Se-
ung [1] and have been the baseline for most existing NMForn = 1,2, ..., N, where the step-size parametgfscan be
variants. Compared with additive gradient descent updatset differently depending on. Additionally, a rectification

An(kt1) = Cn(kt1) — M Vay ) Jht1s (10)



functiona,,; = max(a,¢,0) is necessary after each iteration, 5. EXPERIMENTAL RESULTS
in order to guarantee the nonnegativity of the entriag;ip; .

Replacing the step-size parametgrsn (I0) by This section studies the performance of the proposed method
on unmixing two well-known hyperspectralimages. We study
o = 1 two sub-images withh0 x 50 pixels, taken respectively from

the well-known Moffett and Urban image. According to the

literature [16[17],L = 186 clean bands are of interest for

the multiplicative update rule far,, , 1, can be expressed as Moffett, and = 162 for Urban, while the endmember num-
berisN = 3 for the former, andV = 4 for the latter.

To provide a comprehensive comparison, we consider
¥ , (11)  five state-of-the-art online NMF algorithms: online NMF
2 m=1m(k+1) K(€n; €m) using Hessian matrix (HONMF)[7], incremental online

NMF (IONMF) [6], online NMF based on full-rank de-

composition theorem (ONMF)_[9], projective online NMF

(PONMF) [10] and online NMF with robust stochastic ap-
4. CASE WITH THE GAUSSIAN KERNEL proximation (RSA)[[8]. The unmixing performance is evalu-
ated with two metrics described in detail [n[16]: the recon-
struction error in the input space (RE), defined by

Zzzl am(k+1) ’i(en; em)

K(en, Tpi1)

Ap(k+1) = On(k+1) X

forn=1,2,...,N.

The multiplicative update rules with a given kernel (belong
ing to but not restricted to Tablé 1) can be derived, by appro-
priately replacing the expressiorée,,, z) and Ve, x(e,, z) 1 <& a )
in (@), and splitting the gradient as [@ (8). It is noteworthgt RE=\|77 Z e — Z antenl|?,
the trivial case with the linear kernel corresponds to thedr =t n=l
NMF in batch mode, and to the IONME][6] in online mode.
Without losing generality, we detail below the derivation
of the multiplicative update rules for the Gaussian kerirel.
this case, the matrix factorization is performed in the feat

and the reconstruction error in the feature space’(R&hich
is defined by

T N
. . . 1 2
space induced by the GaUSSJ?n kerneI.QThe Gaussian kernel  gg? _ | 3 Hq)(xt) =3 andlen)
is defined byk(e,, 2) = exp(52x |len — z||?), whereo is the TL — ot H
tunable bandwidth parameter. Its gradient with respeet,to
is Ve, k(en,2) = —25r(en, z)(e, — 2), foranyz € X.  The experiments are conducted using the Gaussian kernel. By
Splitting the gradient of the loss functidh,, I(x:, a:, E),as  conducting a preliminary analysis with the batch KNMF on
given in [8), yields the following two nonnegative terms: a small-size dataset, we choose the bandwidth in kernel as
o = 3.3 for Moffett ando = 3.0 for Urban. Regarding the
Ve, IT = 2 (k(en, e + fo:l Amth(€n, €m)em): par.ameter-.setting, the mkini-batch size is empiri.callysﬂm
Vo, l™ = G (k(en, )2, + 2221 i (€ny €m)en)- as in [8], withp = min{[{51],30}. To ensure a fair compar-

ison, the iteration number is equally set to be- 100 in all
the algorithms.

Setting the step-size parameter as As shown in Figurgll and Figuré 2, the proposed KONMF

o2 with the Gaussian kernel outperforms ONMF and INMF in
M = "N terms of the reconstruction error in the input space, and
Z s (K(em z)en + Z ameki(en, em)em) surpasses all the §tate-of—the—art methods in terms ofethe r
= — construction error in the feature space.

leads to the multiplicative update rule fey,
6. CONCLUSION

N
Z i (“’t r(en, ) + Z Amt €n K(en, em)) This paper presented a novel online nonnegative matrix fac-
en = en @ 2L mN_l , torization based on kernel machines. Exploiting SGD and
Z ( mini-batch strategies, we derived the general form of multi
ant | €n k(en, Tt) + Z Qmt €m K(€n, Em) o S )
oy = plicative update rules that maintain a tractable com porati

(12)  complexity. The effectiveness of the method was demon-
where the multiplicatior® and the division are component- strated for unmixing hyperspectral images. Future works in
wise. For the encoding vector update, the multiplicative upclude mini-batch size determination, step-size choicelihi-a
dating rule remains unchanged. tive update rules, as well as speedup strategies.
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Fig. 1. Evolution of the reconstruction errors in the input andFig. 2: Evolution of the reconstruction errors in the input and
feature spaces on the Moffett image.
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