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ONLINE NONNEGATIVE MATRIX FACTORIZATION BASED ON KERNEL MA CHINES

Fei Zhu, Paul Honeine

Institut Charles Delaunay (CNRS), Université de Technologie de Troyes, France

ABSTRACT

Nonnegative matrix factorization (NMF) has been increas-
ingly investigated for data analysis and dimension-reduction.
To tackle large-scale data, several online techniques for NMF
have been introduced recently. So far, the online NMF has
been limited to the linear model. This paper develops an on-
line version of the nonlinear kernel-based NMF, where the de-
composition is performed in the feature space. Taking the ad-
vantage of the stochastic gradient descent and the mini-batch
scheme, the proposed method has a fixed, tractable complex-
ity independent of the increasing samples number. We derive
the multiplicative update rules of the general form, and de-
scribe in detail the case of the Gaussian kernel. The effec-
tiveness of the proposed method is validated on unmixing hy-
perspectral images, compared with the state-of-the-art online
NMF methods.

Index Terms— Nonnegative matrix factorization, online
learning, kernel machines, hyperspectral unmixing

1. INTRODUCTION

Nonnegative matrix factorization (NMF) consists in approxi-
mating a given nonnegative matrix by the product of two low-
rank ones [1], the left low-rank matrix is often called basis
matrix while the right one is the encoding one. Due to the
ability to extract parts-based features for the nonnegative in-
put data, the NMF provides a framework suitable to a host of
applications. In particular, applied to the hyperspectralun-
mixing problem, the NMF jointly estimates the “pure” spec-
tra, namely endmembers (given in the basis matrix) and their
fractional abundances at each pixel (given in the encoding ma-
trix).

Most studies concentrate on the linear NMF model, where
the objective function is defined by the Frobenius norm in an
Euclidean space, calledinput space. In this case, one seeks
to minimize the difference between the input matrix and the
product of the estimated ones. This linear model is often
improved by auxiliary regularization terms. Recently, a few
kernel-based NMF have been proposed to extent the linear
NMF model to the nonlinear scope. By exploiting the frame-
work offered by the kernel machines, these methods map the
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data with some nonlinear function from the input space to
a feature space, and perform the existing linear techniques
on the transformed data. Unfortunately, the curse of the pre-
image [2], inherent from kernel machines, remains the bot-
tleneck in most kernel-based NMF,e.g., [3, 4]. That is, the
obtained bases lie in the feature space, and thus one cannot
represent both low-rank matrices in the input space. Recently
proposed in [5], the so-called KNMF overcomes this diffi-
cultly by minimizing an objective function, which is defined
in the feature space, directly in the input space. It is this for-
mulation that is investigated throughout this paper.

To handle large-scale and streaming dynamic data, a cou-
ple of NMF methods have been extended from batch mode
to online mode. For instance, online methods in [6–9] all
deal with the conventional linear NMF model. The projec-
tive online NMF (PONMF) [10,11] maintains the virtue of its
batch counterpart in guaranteeing a sparse, parts-based rep-
resentation. In [12], the authors consider the online version
of the NMF with Itakura-Saito divergence. Online NMF with
volume constraint is discussed in [13]. Roughly, due to the
continuously increasing computational complexity, the naive
idea of conducting sequentially batch NMF (or its variants)
is far from efficient in online setting. To alleviate this com-
putational overhead, the incremental online NMF (IONMF)
in [6] introduced first the fixity of encoding of the processed
samples. Since, this assumption was widely adopted in on-
line NMF algorithms, namely [7, 8, 13], to name a few. On
the other hand, some online NMF variants,e.g. [7, 8, 10],
follow the spirit of the stochastic gradient descent (SGD),a
prime complexity-reduction strategy for online learning [14].
Instead of considering all the available samples so far, SGD
style methods import merely a single or a small batch of sam-
ples at each iteration, thereby reducing the complexity. Sim-
ilarly, to prohibit processing the whole data, the method pre-
sented in [9] factorizes the matrix composed by the previous
basis matrix and novel sample instead. To the best of our
knowledge, current literatures of online NMF are limited to
a linear model, whereas no online method exists for nonlin-
ear kernel-based NMF. By taking advantage of the aforemen-
tioned stochastic gradient and mini-batch modes, this paper
extents the batch KNMF to an online mode by keeping a
tractable computational complexity. Moreover, we provide
multiplicative update rules of the general form, and describe
in detail the case of the Gaussian kernel.



2. NMF AND KNMF

This section briefly reviews the NMF, with its conventional
linear model, and the recent kernel-based variant (KNMF).

Given a nonnegative data matrixX = [x1 x2 · · · xT ] ∈
ℜL×T , whereinxt ∈ ℜL represents thet-th sample data, lin-
ear NMF aims to factorize it into two low-rank nonnegative
matrices. NamelyX ≈ EA, under the nonnegativity con-
straint on all the entries ofE ∈ ℜL×N andA ∈ ℜN×T . Let
E = [e1 e2 · · · eN ]. An equivalent vector-wise model is
given byxt ≈

∑N

n=1 ant en, for t = 1, . . . , T . The latter
model can be interpreted as to represent each sample dataxt

as a linear combination of vectorse1, e2, · · · , eN , called ba-
sis vectors with scalarsant being the entries of the encoding
matrix A. DenoteX as the input space spanned by all the
vectorsxt, as well as the vectorsen. The optimization prob-
lem of NMF consists in minimizing the following objective
function inX

J(E,A) =
1

2

T∑

t=1

‖xt −

N∑

n=1

ant en‖
2,

with the nonnegative constraints on the matricesE andA.
In [5], a kernel-based NMF (KNMF) is proposed by con-

sidering the following matrix factorization model

X
Φ ≈ E

Φ
A,

where X
Φ = [Φ(x1) Φ(x2) · · · Φ(xT )] and E

Φ =
[Φ(e1) Φ(e2) · · · Φ(eN )], or equivalently in its vector-wise
form,

Φ(xt) ≈

N∑

n=1

ant Φ(en), (1)

for all t = 1, . . . , T . Here,Φ(·) is a nonlinear function map-
ping the columns of the matrixX, as well as the columns of
the matrixE, from the input spaceX to some feature space
H. Its associated norm is denoted‖ · ‖H, and the corre-
sponding inner product in the feature space is of the form
〈Φ(xt),Φ(xt′)〉H, which can be evaluated using the so-called
kernel functionκ(xt,xt′) in kernel machines. Considering
the vector-wise form model (1), the objective function is writ-
ten as

J(E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H
, (2)

where the nonnegativity constraint is imposed on all the en-
tries ofen andA.

As in the conventional NMF and its variants, although
the estimation of both unknown matrices jointly is a noncon-
vex problem, its subproblem with one matrix fixed is con-
vex. Well-known NMF algorithms, including gradient de-
scent method and multiplicative update rules, basically alter-
nate the optimization over two unknown matrices by keeping
the other one fixed [1].

3. ONLINE KNMF

We extent the aforementioned KNMF from batch to an online
version. In the online setting, the samples arrive successively;
the method is expected to produce a sequence of factoriza-
tions based on all the samples received so far. An intuitive
idea is to iteratively conduct the batch KNMF. Unfortunately,
as the samples number continuously grows, this method suf-
fers an increasing, untractable computational complexity. By
investigating the stochastic gradient, we propose an online
KNMF (KONMF) with fixed computational complexity.

3.1. Problem formulation

From (2), the objective function corresponding to the firstk

samples is rewritten as

Jk(Ẽ, Ã) =
1

2

k∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ãnt Φ(ẽn)
∥∥∥
2

H
,

whereẼ andÃ denote respectively the basis matrix and the
encoding matrix for currentk samples. We adopt the fol-
lowing assumption, initially proposed in [6] and employed in
most online NMF methods,e.g., [7,8,15]: fromk to k+1, the
encoding vectors for the firstk samples remain unchanged,
i.e., at = ãt, for t = 1, . . . , k.

As the new samplexk+1 is available, one needs to esti-
mate the new basis matrixE, by updatingẼ, and the novel
sample’s encoding vectorak+1, to be appended tõA. The
above objective function is modified to

Jk+1(E,A) =
1

2

k+1∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H

=
1

2

k∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ãnt Φ(en)
∥∥∥
2

H

+
1

2

∥∥∥Φ(xk+1)−

N∑

n=1

an(k+1) Φ(en)
∥∥∥
2

H
.

It is noteworthy that the above objective function is expressed
as a sum of sub-loss functions over data samples. By ex-
panding this expression and removing the constant term
1
2

∑k+1
t=1 κ(xt,xt), the optimization problem becomes

min
ak+1,E

k+1∑

t=1

l(xt,at,E), (3)

where l(xt,at,E), the sub-loss function over samplext,
takes the form

1

2

N∑

n=1

N∑

m=1

antamtκ(en, em)−

N∑

n=1

antκ(en,xt).

In the following, we adopt a simple alternating technique
over the unknown basis matrixE and encoding vectorak+1

to minimize the objective function (3).



3.2. Basis matrix update

Keep always in mind thatat = ãt holds fort = 1, . . . , k.
The gradient of (3) with respect to the vectoren is:

∇en
Jk+1 =

k+1∑

t=1

∇en
l(xt,at,E), (4)

where

∇en
l(xt,at,E) = ant

(

N
∑

m=1

amt ∇en
κ(en,em)−∇en

κ(en,xt)
)

.

This expression is explicit, since∇en
κ(en, ·), which is the

gradient of the kernel with respect to its argumenten, can be
determined for most valid kernels. We list in Table 1 the cases
with some commonly-used kernels.

A batch gradient descent update rule takes the form

en = en − ηn

k+1∑

t=1

∇en
l(xt,at,E), (5)

for n = 1, . . . , N , where the step-size parameterηn may de-
pend onn. Unfortunately, this rule cannot be considered in
online learning, since it deals with all thek+1 received sam-
ples up to each iteration and has a computational cost propor-
tional to the number of samples.

A stochastic gradient descent (SGD) update alleviates this
computational burden, by approximating the above gradient
based on a single, randomly chosen,xt at each iteration, and
is of the form

en = en − ηn∇en
l(xt,at,E), (6)

for n = 1, 2, ..., N . Despite a drastically simplified proce-
dure, the SGD asymptotically converges much slower than its
batch mode counterpart [14]. A compromise between these
two is the mini-batch mode, which aggregates the gradients
corresponding to a randomly picked set of samples. For no-
tational simplicity, denoteI as the sample set therein contain
the randomly picked samples employed for updating at each
iteration. The mini-batch mode takes the following form

en = en − ηn
∑

xt∈I

∇en
l(xt,at,E), (7)

for n = 1, 2, ..., N , where the mini-batch size, pre-fixed, is
denoted in the following byp with p=card(I).

In the above gradient descent update rules from (5) to
(7), the step-size parametersηn should be appropriately set.
Moreover, a rectification functiona = max(a, 0) should fol-
low after each update in order to guarantee the nonnegativity.
To overcome these difficulties, we present below the multi-
plicative update rules, which are originated by Lee and Se-
ung [1] and have been the baseline for most existing NMF
variants. Compared with additive gradient descent update

Table 1: Commonly-used kernels and their gradients with re-
spect toen.

Kernel κ(en, z) ∇en
κ(en, z)

Linear z
⊤
en z

Polynomial (z⊤
en + c)d d (z⊤

en + c)(d−1)
z

Gaussian exp( −1

2σ2 ‖en − z‖2) − 1
σ2 κ(en, z)(en − z)

Sigmoid tanh(γz⊤
en + c) γsech2(γz⊤

en + c)z

rules, the resulting methods lead to nonnegative factorization
with neither the projection to the nonnegative constraint set,
nor the pain of choosing the step-size parameter. To this end,
we split the gradient corresponding to some samplext as the
subtraction of two nonnegative terms,i.e.,

∇en
l(xt,at,E) = ∇en

l+(xt,at,E)−∇en
l−(xt,at,E).

(8)
Setting the step-size parameter as

ηn =
en∑

xt∈I ∇en
l+(xt,at,E)

yields the following multiplicative update rule of the general
form

en = en ⊗

∑
xt∈I ∇en

l−(xt,at,E)∑
xt∈I ∇en

l+(xt,at,E)
, (9)

where the multiplication⊗ and the division are component-
wise. Analogous to the aforementioned additive cases, three
multiplicative update rules can be distinguished depending on
the numberp of samples investigated at each iteration:

• If p = k+1, all the samples are proceed and (9) is reduced
to the multiplicative update rule for batch KNMF;

• If p = 1, the multiplicative update rule (9) corresponds to
the stochastic gradient case (6);

• If 1 < p < k + 1, then (9) has the mini-batch gradient
case (7) as its additive counterpart, with the mini-batch
size equals top.

3.3. Encoding vector update

To estimate the encoding vectorak+1 for the newly available
xk+1, we determine the partial derivative ofJk+1 with re-
spect toan(k+1), namely

∇an(k+1)
Jk+1 = −κ(en,xk+1) +

N∑

m=1

am(k+1) κ(en, em),

for n = 1, 2, ..., N . Applying the gradient descent scheme, a
simple additive update rule is constructed as

an(k+1) = an(k+1) − ηn ∇an(k+1)
Jk+1, (10)

for n = 1, 2, ..., N , where the step-size parametersηn can be
set differently depending onn. Additionally, a rectification



functionant = max(ant, 0) is necessary after each iteration,
in order to guarantee the nonnegativity of the entries inak+1.
Replacing the step-size parametersηn in (10) by

ηn =
1

∑N

m=1 am(k+1) κ(en, em)
,

the multiplicative update rule foran(k+1) can be expressed as

an(k+1) = an(k+1) ×
κ(en,xk+1)∑N

m=1 am(k+1) κ(en, em)
, (11)

for n = 1, 2, ..., N .

4. CASE WITH THE GAUSSIAN KERNEL

The multiplicative update rules with a given kernel (belong-
ing to but not restricted to Table 1) can be derived, by appro-
priately replacing the expressionsκ(en, z) and∇en

κ(en, z)
in (4), and splitting the gradient as in (8). It is noteworthythat
the trivial case with the linear kernel corresponds to the linear
NMF in batch mode, and to the IONMF [6] in online mode.

Without losing generality, we detail below the derivation
of the multiplicative update rules for the Gaussian kernel.In
this case, the matrix factorization is performed in the feature
space induced by the Gaussian kernel. The Gaussian kernel
is defined byκ(en, z) = exp( −1

2σ2 ‖en − z‖2), whereσ is the
tunable bandwidth parameter. Its gradient with respect toen

is ∇en
κ(en, z) = − 1

σ2 κ(en, z)(en − z), for anyz ∈ X .
Splitting the gradient of the loss function∇en

l(xt,at,E), as
given in (8), yields the following two nonnegative terms:

{
∇en

l+ = ant

σ2 (κ(en,xt)en +
∑N

m=1 amtκ(en, em)em);

∇en
l− = ant

σ2 (κ(en,xt)xt +
∑N

m=1 amtκ(en, em)en).

Setting the step-size parameter as

ηn =
σ2

en

∑

xt∈I

ant

(
κ(en,xt)en +

N∑

m=1

amtκ(en, em)em

)

leads to the multiplicative update rule foren

en = en ⊗

∑

xt∈I

ant

(

xt κ(en,xt) +
N
∑

m=1

amt en κ(en, em)
)

∑

xt∈I

ant

(

en κ(en,xt) +
N
∑

m=1

amt em κ(en,em)
)

,

(12)
where the multiplication⊗ and the division are component-
wise. For the encoding vector update, the multiplicative up-
dating rule remains unchanged.

5. EXPERIMENTAL RESULTS

This section studies the performance of the proposed method
on unmixing two well-known hyperspectral images. We study
two sub-images with50 × 50 pixels, taken respectively from
the well-known Moffett and Urban image. According to the
literature [16, 17],L = 186 clean bands are of interest for
Moffett, andL = 162 for Urban, while the endmember num-
ber isN = 3 for the former, andN = 4 for the latter.

To provide a comprehensive comparison, we consider
five state-of-the-art online NMF algorithms: online NMF
using Hessian matrix (HONMF) [7], incremental online
NMF (IONMF) [6], online NMF based on full-rank de-
composition theorem (ONMF) [9], projective online NMF
(PONMF) [10] and online NMF with robust stochastic ap-
proximation (RSA) [8]. The unmixing performance is evalu-
ated with two metrics described in detail in [16]: the recon-
struction error in the input space (RE), defined by

RE=

√√√√ 1

TL

T∑

t=1

‖xt −
N∑

n=1

anten‖2,

and the reconstruction error in the feature space (REΦ), which
is defined by

REΦ =

√√√√ 1

TL

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

antΦ(en)
∥∥∥
2

H
.

The experiments are conducted using the Gaussian kernel. By
conducting a preliminary analysis with the batch KNMF on
a small-size dataset, we choose the bandwidth in kernel as
σ = 3.3 for Moffett andσ = 3.0 for Urban. Regarding the
parameter-setting, the mini-batch size is empirically chosen
as in [8], withp = min{⌈ k

10⌉, 30}. To ensure a fair compar-
ison, the iteration number is equally set to beI = 100 in all
the algorithms.

As shown in Figure 1 and Figure 2, the proposed KONMF
with the Gaussian kernel outperforms ONMF and INMF in
terms of the reconstruction error in the input space, and
surpasses all the state-of-the-art methods in terms of the re-
construction error in the feature space.

6. CONCLUSION

This paper presented a novel online nonnegative matrix fac-
torization based on kernel machines. Exploiting SGD and
mini-batch strategies, we derived the general form of multi-
plicative update rules that maintain a tractable computational
complexity. The effectiveness of the method was demon-
strated for unmixing hyperspectral images. Future works in-
clude mini-batch size determination, step-size choice in addi-
tive update rules, as well as speedup strategies.
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Fig. 1: Evolution of the reconstruction errors in the input and
feature spaces on the Moffett image.
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