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Machine learning techniques have been very popular in the past decade for their ability to detect hidden patterns in large volumes of data. Researchers have been developing online intrusion detection algorithms based on these techniques. In this paper, we propose an online one-class classification approach based on the Mahalanobis distance which takes into account the covariance in each feature direction and the different scaling of the coordinate axes. We define the one-class problem by two concentric hyperspheres enclosing the support vectors of the description. We update the classifier at each time step. The tests are conducted on real data.

Introduction

Machine learning techniques provide a powerful tool for estimating nonlinear relations from data [START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]. In many disciplines including industrial systems, the majority of the available data refer to a unique class, namely the normal behavior of the system, while the data related to the abnormal/malfunctioning modes are difficult to obtain. This is where comes the role of one-class classification algorithms, which define a decision boundary around the available data that accepts as many positive samples (target class) and rejects the outliers [START_REF] Khan | A survey of recent trends in one class classification[END_REF]. These algorithms have been successfully applied recently in offline intrusion detection applications [START_REF] Nader | Mahalanobis-based one-class classification[END_REF] [START_REF] Nader | lp-norms in one-class classification for intrusion detection in scada systems[END_REF]. Researchers are facing many challenges to elaborate relevant online intrusion detection algorithms, namely in minimizing the time consumption of the algorithm, in reducing the complexity of updating the classifier, in improving the detection accuracy and in minimizing the false alarm rates.

Several incremental and decremental SVM algorithms were proposed for online learning [START_REF] Li | The Relaxed Online Maximum Margin Algorithm[END_REF] [START_REF] Karasuyama | Multiple incremental decremental learning of support vector machines[END_REF], where the classifier is updated by adding/removing samples based on the new incoming observations. These multiclass approaches can not be extended for one-class classification problems. Desobry et al. proposed in [START_REF] Desobry | An online kernel change detection algorithm[END_REF] to train the classifier twice at each iteration, and the detection is performed by comparing the present sample set with the immediate past set. The repeated batch training leads to high computational costs. Zhang et al. used in [START_REF] Zhang | Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks[END_REF] a linear optimization of the quarter-sphere SVM to reduce the computational cost of [START_REF] Desobry | An online kernel change detection algorithm[END_REF]. This approach is faster than [START_REF] Desobry | An online kernel change detection algorithm[END_REF], but the repeated training results in a delay in the processing of new samples. Another attempt to overcome the quadratic programming problem is detailed in [START_REF] Davy | An online support vector machine for abnormal events detection[END_REF], where an iterative update of the coefficients is used at each time step. This online approach remains greedy in terms of computational cost. Gomez et al. introduced in [START_REF] Gomez-Verdejo | Adaptive one-class support vector machine[END_REF] an adaptive online one-class SVM that stores the new samples for many iterations before incorporating them into the training set, which is time consuming. A fast online one-class approach was proposed in [START_REF] Noumir | Online one-class machines based on the coherence criterion[END_REF], where the coherence criterion is used to select the support vectors among the training set and to update the classifier.

In this paper, we extend the offline Mahalanobis-based approach proposed in [START_REF] Nader | Mahalanobis-based one-class classification[END_REF]. The Mahalanobis distance takes into account the covariance in each feature direction and the different scaling of the coordinate axes [START_REF] Mahalanobis | On the generalised distance in statistics[END_REF]. We modify the decision function of the classifier to become suitable for online applications by defining two concentric hyperspheres enclosing the support vectors of the description. The main advantages of using two hyperspheres instead of one are the isolation of the outliers and the reduced number of support vectors, which makes the proposed algorithm robust to outliers and reduces its the computational costs. The remainder of this paper is organized as follows. Section 2 describes the proposed online approach. Section 3 discusses the results on the real datasets, and Section 4 provides conclusion and future works.

The proposed approach

Given a training dataset x i , for i = 1, 2, . . . , n, in a d -dimensional input space X . Let K be the n × n kernel matrix with entries k(x i , x j ) = φ(x i ) T φ(x j ) for x 1 , • • • , x n ∈ X , where φ(x) is the mapping function to the Reproducing Kernel Hilbert Space (RKHS) of some given reproducing kernel k(•, •). The mean of the mapped samples in the feature space, namely E[φ(x)], can be estimated with the empirical center in that space, namely c n = 1 n n i=1 φ(x i ). The proposed approach is divided into two phases: an offline training phase and an online detecting/updating phase. In the offline phase, we learn the normal functioning modes of the studied system. First, we compute the quadratic Mahalanobis distance in the feature space between each sample x j and c n :

φ(x j ) -c n 2 Σ = (φ(x j ) -c n ) T Σ -1 (φ(x j ) -c n ), ( 1 
)
where Σ is the covariance matrix of the samples in the feature space given by: 1) is computed in the RKHS as detailed in [START_REF] Nader | Mahalanobis-based one-class classification[END_REF]:

Σ = 1 n n i=1 (φ(x i ) -c n )(φ(x i ) -c n ) T . The Mahalanobis distance in equation (
n k=1 λ -1 k ( n i=1 α k i k(x i , x)) 2
, where nλ k and α k are the eigenvalues and eigenvectors of the centered version of K, with entries 1 k(x i , x j ). Secondly, since we are dealing with large volumes of data in the online mode and in order to minimize the computational complexity, we approximate c n with a sparse center c I . The center c I depends only on the furthest samples to c n , known as the support vectors, and only these samples are included in the computation of the Mahalanobis distance. The set of support 1 The kernel function k(x i , x j ) = k ij is the centered version of k ij = k(x i , x j ), and it is computed as follows:

k ij = k ij -1 n n r=1 k ir -1 n n r=1 k rj + 1 n 2 n r,s=1 krs.
vectors I is given by: I = {i, φ(x i )c n Σ > R sparse }, where R sparse is the threshold based on the number of these samples. The sparse center is a linear combination of the support vectors, namely c I = i∈I β i φ(x i ). The coefficients β i are computed by minimizing the error of approximating c n with c I , namely β = K -1 I k, where the entries of the kernel matrix K I are k(x i , x j ) for i, j ∈ I, and k is the column vector with entries 1 n k∈I k(x i , x k ). The quadratic Mahalanobis distance in the feature space between each sample and c I , namely φ(x)c I 2 Σ , is computed as follows:

m k=1 1 λ k n i=1 α k i k(xi, x)- n i=1 j∈I α k i βjk(xi, xj )- n i=1 α k i n n j=1 k(xj, x)+ n i=1 α k i n n j=1 l∈I β l k(xj , x l ) 2 .
We modify the one-class problem by defining two concentric hyperspheres enclosing the support vectors of the description as illustrated in Fig 1 . We fix two thresholds, R detection and R sparse . The first threshold is fixed based on the predefined number of outliers, and R sparse depends on the remaining support vectors. This new definition of the one-class problem allows to separate the outliers from the support vectors, and it has many advantages. The first one is the isolation of the outliers outside the decision boundary without including these samples in the classifier, which makes the proposed algorithm robust to outliers. The second advantage is the small number of support vectors which leads to reducing the computational costs of the algorithm. In the online phase, we have a new sample at each time step. The classifier tests each new sample by computing its Mahalanobis distance to c I , namely φ(x t )c I Σ for any t > n, and we can encounter three possible cases depending on this distance:

1. First case: φ(x t ) -c I Σ > R detection
In this case, the new sample is considered as an outlier and an alarm is activated. The classifier must not be updated and this sample must not be included in the learning process; this prevents it from affecting the decision function of the classifier and may lead to inaccurate results.

2. Second case: R sparse < φ(x t )c I Σ ≤ R detection In this case, the new sample x t is considered as a support vector, and it is included into the set I. The number of support vectors is incremented, and the new kernel matrix is updated from K I as follows:

K I b b T k(x t , x t ) ,
where b is the column vector with entries k(x i , x t ) for all i ∈ I. Also, k is updated to:

1 t (t -1)k + b k ′ t , having k ′ t = t i=1 k(x i , x t ).
After updating K I and k, the new coefficients β t are given by: β t = K -1 I k, where we apply the Woodbury matrix identity to obtain the inverse of the new Gram matrix from the inverse of the old one as follows:

φ(x 1 ) φ(x 2 ) φ(x 3 ) φ(x 4 ) φ(x 5 ) φ(x 6 ) φ(x 7 ) R sparse R detection c I Outliers Support Vectors
K -1 I 0 0 T 0 + -K -1 I b I (I -b T K -1 I b) -1 -b T K -1 I I ,
having 0 a column vector of zeros, and I the identity matrix.

3. Third case: φ(x t )c I Σ ≤ R sparse In this case, φ(x t ) is not a support vector, and it is not included into the set I. The number of support vectors remains unchanged, as well as the K I , and k is updated to 1 t ((t -1)k + b), where b is the column vector with entries k(x i , x t ) for all i ∈ I. The new coefficients are given by:

t -1 t β + 1 t K -1 I b.

Experimental results

We tested the proposed online algorithm on two real datasets from the Mississipi State University SCADA Laboratory, the gas pipeline and the water storage tank testbeds [START_REF] Morris | A control system testbed to validate critical infrastructure protection concepts[END_REF]. The gas pipeline is used to move petroleum products to market, and the water storage tank is similar to the oil storage tanks found in the petrochemical industry. We have a new input sample every two seconds, and it consists of 27 attributes for the gas pipeline and 24 attributes for the water storage tank, i.e., gas pressure, water level, pump state, target gas pressure/water level, PID's parameters, time interval, length of the packets, and command functions. In addition, 28 types of attacks are injected into the network traffic of the system in order to hide its real functioning state and to disrupt the communication. These attacks are arranged into ), where x i and x j are two input samples, and • 2 represents the l 2 -norm in the input space. The bandwidth parameter σ is computed as proposed in [START_REF] Nader | lp-norms in one-class classification for intrusion detection in scada systems[END_REF], namely σ = dmax √ 2M , where d max refers to the maximal distance between any two samples in the input space, and M represents the upper bound on the number of outliers among the training dataset.

The proposed online approach is compared with two other approaches, the online quarter-sphere SVM [START_REF] Zhang | Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks[END_REF] and the online coherence-based one-class [START_REF] Noumir | Online one-class machines based on the coherence criterion[END_REF]. The first important criterion for online intrusion detection algorithms is the time for testing new samples. The proposed approach needs 0.0019 second for each new sample, which is faster than the quarter-sphere SVM with 0.0027 second and the coherence approach with 0.0022 second. On the other hand, the quarter-sphere SVM spends less time (0.16 second) to update the classifier than the proposed approach (0.23 second) and the coherence approach (0.21 second). Another important criterion for online intrusion detection algorithms is the error detection accuracy. We tested these algorithms on nearly 100 000 samples related to the aforementioned attacks, and the detection rates are given in Table 1. The results show that the proposed online approach gives better detection rates and outperforms the other approaches for all the studied attacks. In some cases, we have important gaps between the detection rates of the approaches, which can be explained by the strong properties of the Mahalanobis distance, and the advantages of the modified one-class formulation. Finally, the quarter-sphere SVM has a false alarm rate equal to 11% in average, the coherence-based has 4%, while the proposed online approach misclassified only 1% of the normal samples. These results are very interesting for online intrusion detection in realworld applications, where the proposed approach needs less than 0.002 second to detect the intrusion, it has high detection rates and low false alarm rates.

Conclusion

In this paper, we proposed an online one-class classification approach based on the Mahalanobis distance in the feature space. In this approach, we defined the one-class problem by two concentric hyperspheres enclosing the support vectors, and we updated the classifier after each iteration. The properties of the Mahalanobis distance and the modified one-class formulation made our algorithm robust to outliers. We tested our algorithm on real datasets containing several types of attacks, and we compared the results with other approaches. The results showed that the proposed approach is the fastest in detecting the outliers, and it has the highest detection rates and the lowest false alarm rates. For future works, the implementation of this approach should be optimized to decrease the time consumption of the update step. This approach can be extended to include other sparsification rules, and multiclass classification can be investigated to identify the detected attack's type. 
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 1 Fig. 1: A representation of the two concentric hyperspheres in the feature space.

  7 groups: Naive Malicious Response Injection (NMRI), Complex Malicious Response Injection (CMRI), Malicious State Command Injection (MSCI), Malicious Parameter Command Injection (MPCI), Malicious Function Command Injection (MFCI), Denial of Service (DOS) andReconnaissance Attacks (RA). The Gaussian kernel used in this paper has the following expression k(x i , x j ) = exp(-

Table 1 :

 1 Detection rates on the real datasets.

			Gas pipeline			Water storage
		quarter	online	proposed quarter	online	proposed
		SVM	coherence approach	SVM	coherence approach
	NMRI	92.04	86.17	99.28	92.71	87.91	98.44
	CMRI	98.45	92.41	99.83	70.12	74.31	80.81
	MSCI	71.13	63.53	81.35	96.23	86.72	98.36
	MPCI	98.05	92.38	99.11	99.11	90.32	99.64
	MFCI	76.27	68.61	83.34	98.26	85.62	99.83
	DOS	81.23	84.77	95.56	71.76	73.67	82.11
	RA	99.80	91.76	99.80	94.17	88.37	99.71
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