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Université de Technologie de Troyes
UMR 6281, CNRS, Troyes, France

daniel.alshamaa@utt.fr, farah.chehade@utt.fr

Paul Honeine
LITIS lab

Université de Rouen
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Abstract—Localization is an essential issue in wireless sensor
networks to process the information retrieved by sensor nodes.
This paper presents an indoor zoning-based localization tech-
nique that works efficiently in real environments. The targeted
area is composed of several zones, the objective being to find the
zone where the mobile node is instantly located. The proposed
approach collects first strengths of received WiFi signals from
neighboring access points and builds a fingerprints database.
It then uses belief functions theory to combine all measured
data and define an evidence framework, to be used afterwards
for estimating the most probable node’s zone. Real experiments
demonstrate the effectiveness of this approach and its competence
compared to state-of-the-art methods.

Index Terms—Belief functions, indoor environment, radio fin-
gerprints, wireless sensor networks, zoning.

I. INTRODUCTION

Massive advances in wireless communications and electron-
ics have fomented the development of heavily distributed wire-
less sensor networks constituted of hundreds of sensor nodes.
These networks help in performing several tasks ranging
from medical and military applications, to monitoring homes,
hospitals and forests [1]. This paper considers in particular
the zoning-based localization problem in indoor environments,
that aims to find the zone where a sensor node resides, instead
of its exact position. This issue is important for health-care
applications for instance, where Alzheimer’s patients might
be lost in their nursing home [2] and where locating them in
a specific zone is completely sufficient.

A first solution for zoning-based localization is to find exact
locations of sensors and then determine their zones using their
estimated locations. Many existing works have considered the
exact localization problem. Indeed, the integration of a GPS-
GSM system into sensor nodes is widely used in outdoor
tracking systems [3]. However, it has limitations in indoor
environments [4]. Alternative solutions consist of using other
types of signals, that are available in closed environments,
like ultra wide band, WiFi, zigbee, bluetooth,etc [5], [6],
[7], [8]. One of the advantages of WiFi signals over the
others is that one can rely only on the Access Points (APs)
present inside the building, with no additional hardware. The
localization issue consists then on finding the location of a
sensor node according to the WiFi signals that it collects
from APs. Several localization algorithms using strengths of
WiFi signals were developed. Trilateration and connectivity-

based methods have been developped for localization using
the pathloss model, which is not efficient especially in indoor
environments [9], [10], [11], [12]. Alternatively, techniques
that employ fingerprinting are widely implemented. They
consist of collecting a database of exact reference locations,
coupled to their corresponding WiFi signals strengths, received
from the APs. The localization problem is then solved using
this database and the k-nearest neighbors scheme [13], neural
networks [14], [15] or kernel-based learning [16], [17].

The disadvantage of exact localization algorithms using
fingerprinting is their need to a database with exact locations,
whose construction is time-costly and complex. Some re-
searchers have tackled the zoning problem without computing
exact locations [18], [19]. In [18], the signal strengths are
periodically collected while the user is moving. When a
sharp change in the strength indicator is detected, the zone
is determined based on the user’s path. On the other hand,
the design of overlapping zone partitioning is implemented in
[19]. Alternatively, fingerprints of WiFi strengths and zones
numbers could be collected. Here the zoning problem could
be addressed as a multiclass classification issue, resolved
using for instance support vector machines [20] or the logistic
regression [21].

This paper proposes an original zoning-based localization
technique that makes use of belief functions to combine
evidence revealed at each sensor. At a preliminary phase,
the proposed method consists of constructing a fingerprinting
database that associates to each zone a set of WiFi signals
strengths collected from the APs. Each AP is then consid-
ered as a source of information and is used in the belief
functions framework to set a mass function over the zones.
Afterwards, once the mobile node is in an unknown zone, it
measures its signal strengths and use the constructed mass
functions to estimate the zone where it resides the most
probably. One advantage of this method is that it yields a
set of possible solutions, sorted in a descent order of priority.
Real experiments are conducted in the first floor of a three
floors building. Results show the effectiveness of the proposed
method, compared to other state-of-the-art algorithms.

The paper is organized as follows. Section II briefly in-
troduces the belief functions theory. Section III describes the
proposed method. Section IV presents the experimental setup
and results, while Section V concludes the paper.



II. BELIEF FUNCTIONS THEORY

The Belief Functions Theory (BFT) is also known as
Dempster-Shafer or evidence theory. It is a branch of math-
ematics that provides an original framework for data fusion
[22]. In the following, the basics of the BFT are introduced
first. The main concepts of data combination and decision
making are given next.

A. Basic definitions

Let θ be a discrete variable, taking values in Θ =
{θ1, . . . , θn} and let 2Θ be the set of all the subsets of Θ, i.e.
2Θ = {∅, {θ1}, . . . ,Θ}. One fundamental function of the BFT
is the mass function, also called the basic belief assignment.
A mass function mS(.) is a mapping from 2Θ to the interval
[0, 1], defined according to a certain information source S. It
satisfies: ∑

A∈2Θ

mS(A) = 1. (1)

The mass mS(A) given to A ∈ 2Θ stands for the proportion
of evidence, brought by the source S, saying that the observed
variable θ belongs to A.
Another important notion of the BFT is the belief function,
denoted by belS(.) and derived from the mass function. It is
defined from 2Θ into [0,1] as follows:

belS(A) =
∑
Ai⊆A
Ai 6=∅

mS(Ai). (2)

The plausibility function, plS : 2θ → [0,1], is also a notion of
the BFT, derived from the mass function as follows:

plS(A) =
∑

Ai∩A 6=∅

mS(Ai). (3)

The belief of A can be interpreted as the proportion of
available evidence given to A, while its plausibility is a
measure of the maximum support of evidence that could be
given to A [22]. The probability to have θ ∈ A falls within an
interval whose lower and higher bounds are given by the belief
and plausibility values respectively [23]. In general, there is no
unified framework for mass construction. Any algorithm that
tansforms observations into mass functions while satisfying
equation (1) can be adopted. Moreover, Shafer shows that,
given any one of m(.), bel(.), or pl(.), the others can be
derived [24].

B. Evidence combination and decision

Let S1 and S2 be two sources of information about the
variable θ. According to the sources’ information, two mass
functions could be defined mS1(.) and mS2(.), or simply
m1(.) and m2(.) respectively. Combining the evidence con-
sists of aggregating the information coming from the two
sources S1 and S2. Different combination rules exist in litera-
ture, such as the normalized conjunctive rule [22]. Also called
the Dempster’s combinational rule, the normalized conjunctive
rule leads to a more informative and specialized mass function.

According to this rule, the two mass functions m1(.) and m2(.)
are combined first into a unified one m1∩2(.) as follows,

m1∩2(A) =
∑

Ai∩Aj=A

m1(Ai)m2(Aj), (4)

for all the subsets A ∈ 2Θ. By applying equation (4), ∅
might have a certain mass m1∩2(∅) 6= 0, representing the
conflict of both sources. This computation is then followed
by a normalization phase leading to one final mass function
m1

⊕
2(.) given by,

m1
⊕

2(A) =
m1∩2(A)

1−m1∩2(∅)
, for A 6= ∅, (5)

with m1
⊕

2(∅) = 0. This combination rule could be easily
extended to a higher number of sources. Once m1

⊕
2(.) is

constructed, the decision rule consists of selecting the subset
A ∈ 2Θ having the highest mass. Alternatively, one can choose
the subset having the highest plausibility, the highest pignistic
probability, etc [24].

III. ZONING-BASED LOCALIZATION METHOD

This section presents the employed method targeting the
localization problem in indoor environments. Consider a
building is divided into NZ zones denoted by Zk, k =
1, 2, . . . , NZ . Having a mobile node moving within these
zones, the objective of the method is to find instantly the zone
where it is accurately. To this end, the node uses the WiFi
signals it collects from the Access Points (APs) neighboring
it, in the belief functions framework.

A. Description of the method
Let NAP be the number of APs in the area of interest,

denoted by APn, n = 1, 2 . . . , NAP . The APs broadcast
WiFi signals in the network. The mobile node, free to move
between the zones, collects instantly the APs signals and
measures the Received Signal Strength Indicators (RSSIs)
with respect to every APn, denoted by ρn(t), where t is
the time instant. The objective is to affiliate the mobile
node to its corresponding zone Ẑ(t) based on its online
RSSI measurements ρn(t), n = 1, 2, . . . , NAP . This is done
using the fingerprinting technique and the belief functions
theory through three phases: constructing radio-fingerprints,
computing the mass functions, and then estimating the zone
by decision fusion in a real time process. As for the database
construction, a mobile node, moves randomly in each zone
of the targeted area in a preliminary phase and measures
the RSSIs of WiFi signals from all APs. Suppose ρk,n,`
corresponds to the `-th RSSI measured inside zone Zk with
respect to APn. Let Nk be the number of RSSIs measurements
done in a zone Zk. This implies that for a certain zone and
a given AP, a set of Nk values is collected representing the
variations of the RSSI in this zone with respect to that AP.
Let ND =

∑NZ

k=1Nk be the total number of measurements.
Then a database of ND × NAP RSSIs labeled to the zones
is then obtained. This database is used in the belief functions
framework with the instant RSSIs ρn(t) of a mobile node to
select its zone, as is shown in the following.



B. Computation of mass functions
The zoning-based localization problem is solved using the

belief functions theory. To this end, before moving to online
computations, mass functions should be constructed, in a way
to transform the APs information, ie. RSSIs, into masses. One
of many ways to do that is to represent each set of RSSI values
of the database as a Gaussian distribution per zone per AP. In
this way, one obtains NZ×NAP Gaussian functions. Let µk,n
and σk,n be the respective average and standard deviation of
the RSSIs of zone Zk with respect to APn, that is,

µk,n =
1

Nk

Nk∑
`=1

ρk,n,` and σk,n =

√√√√ 1

Nk

Nk∑
`=1

ρ2k,n,` − µ2
k,n, (6)

with k = 1, 2, . . . , NZ and n = 1, 2, . . . , NAP . Having now
the online RSSI measurement ρn(t) of the considered mobile
node with respect to APn, n = 1, 2, . . . , NAP , the probability
of the node to be in zone Zk according to APn is computed by
applying the corresponding Gaussian function to ρn(t), i.e.,

Pk,n(ρn(t)) =
1

σk,n
√

2π
exp

(
− (ρn(t)− µk,n)2

2σ2
k,n

)
. (7)

The amount of belief that the mobile node, measuring ρn(t),
belongs to zone Zk, according to the information source APn
is given by:

mn,t(Zk) =
Pk,n(ρn(t))∑NZ

v=1 Pv,n(ρn(t))
. (8)

Due to this definition, one obtains a normalized mass function
that attributes the highest mass to the zone whose collected
RSSIs are the closest to the online RSSI ρn(t) of the node.

C. Zone estimation
The NAP mass functions (8) are combined into one unified

mass function using the conjunctive rule of combination,

m∩,t(Zk) =

NAP∏
n=1

mn(Zk). (9)

This unified mass function undergoes a normalization phase
to acquire one final mass function, as follows,

m⊕
,t(Zk) =

m∩,t(Zk)

1−m∩,t(∅)
. (10)

The fusion of evidence allows to associate the mobile node
with a certain amount of belief to each zone. The decision
rule to be adopted consists then of selecting the zone Ẑ(t)
that has the highest mass,

Ẑ(t) = arg max
k=1...NZ

m⊕
,t(Zk). (11)

One advantage of the proposed method remains in the way
that estimation stays possible even if one AP is not detected
by the node. Indeed, in this case, its mass is not considered
in the computation of the conjunctive mass in equation (9).
Another advantage is that several zones are obtained with a
certain amount of belief, which makes possible to select a
second-choice zone, having the second highest mass, in case
the first one is incorrect.

Fig. 1: A sector of the first floor of the statistical and opera-
tional research department of the University of Technology of
Troyes

IV. EXPERIMENTS

To evaluate the performance of the proposed method, real
experiments are conducted in a sector of the University of
Technology of Troyes, France. In the following, experimental
setups are first introduced. The illustration of the proposed
method and its comparison to state-of-the-art methods are
shown afterwards.

A. Experimental setups

This paper considers real experiments that are realized in
a WLAN environment at the first floor of the statistical and
operational research department of the University of Technol-
ogy of Troyes, France. As shown in Fig. 1, the considered
sector of approximated area of 190 m2 is partitioned into six
offices, from both sides of a corridor, that we divided into
two zones, according to its architecture. This leads to eight
zones in the considered area. A personal computer, with a
WiFi scanner software1, can distinguish APs of the network
throughout their MAC addresses. It measures then the RSSIs
of their transmitted signals. Note that several APs could be
detected at the considered area. Only the APs located in the
ground, first and second floors of the building to which belongs
the studied area are considered. This leads to six of the total
APs installed in the network. A set of 30 measures are taken
in each zone, of which some are randomly used to construct
the databases, and the others are kept for test and validation.
The measures are taken in random positions and orientation
of the personal computer.

1Wi-Fi Scanner by Lizard Systems



TABLE I: Number of incorrect estimated zones with
30% test points

Zone number 1st choice 2nd choice
1 0 –
2 1 0
3 1 0
4 0 –
5 0 –
6 1 –
7 1 0
8 0 –

Total 4 0

B. Illustration of the proposed method

In order to illustrate the proposed method, 70% of the
collected RSSIs are first randomly selected at each zone
for the database, that is 21 measures, keeping 9 for testing
per zone. Then, the RSSIs database is used to compute,
Gaussian density functions, which leads to six graphs, each
corresponding to an AP. Within each graph, eight Gaussian
functions represent the variations of RSSIs in the eight zones.
Fig. 2 displays these variations with respect to the first AP. As
clearly indicates this figure, the partial overlapping between
the Gaussian functions is wide and hence, the zones’ masses
can be easily miscalculated considering one AP. However,
when considering all the APs and applying the belief functions
to combine evidence, we acquire interesting results, which is
shown in the following.

Having 70% of the collected RSSIs in the database, we
test our method localizing the 30% remaining measurements,
that is 9 test points per zone. Table I shows the numbers of
incorrect estimated zones if only the zone having the highest
mass (1st choice) is considered and also in case the zone
having the second highest mass (2nd choice) is considered
as well. The table shows also the total number of erroneous
estimations over the 72 total test points in both cases. The
results show clearly that the proposed method performs well,
with only 5.55% of errors if the first choice is only considered,
which is totally corrected if the second choice zone is also
selected. Moreover, in order to measure the performance
of the method under low data availability, the ratio of the
measurements used to construct the database is reduced to
60% then to 50%, while testing over the other 40% and
50% respectively. The total numbers of erroneous estimated
zones are shown in Table II. As expected, the percentage
of erroneous estimations increases with the 1st choice zone
when the constructed database is reduced to 60% then to 50%.
However, it is yet considered to be low with 7.29% in the first
case and 8.33% in the second. It is noticed that 1 out of the
120 measurements was not recovered by the second choice,
rather by the third one. This erroneous point, located in zone
7, was estimated to be in zone 5 then in zone 2. This is due
to the insufficient built database which made zone 7 incapable
of representing its variations in front of the neighboring zones
in the best possible way.

Fig. 2: Gaussian functions of the eight zones with respect to
the first AP

TABLE II: Number of incorrect estimated zones with low
data availability, for three different ratios of database-test

Number of errors / total test points

70%-30%
1st choice 4 / 72

2nd choice 0 / 72

60%-40%
1st choice 7 / 96

2nd choice 0 / 96

50%-50%
1st choice 10 / 120

2nd choice 1 / 120

C. Comparison to state-of-the-art methods

In this section, the proposed method is compared to both the
Multinominal Logistic Regression (MLR) and Support Vector
Machines (SVM) methods. MLR is a natural extension of
binary logistic regression to multiclass classification problems
[21], [25]. It uses maximum likelihood estimation to evaluate
the probability of the node being in each zone. MLR leads then
to a first choice and a second choice zones, as well. As for
SVM, it is among the best supervised learning algorithms. It is
based on statistical learning theory to determine the location of
decision boundaries that produces the optimal separation of the
classes [26]. The one against one strategy of SVM is adopted
in this paper, especially that the the number of classes is not
too big, and it is suitable with kernel algorithms. Only one
estimated zone is then obtained using SVM. Table III shows
the percentage of errors over the test points obtained with our
proposed method (BFT) compared to both MLR and SVM
for the three sizes of the databases 70%, 60% and 50% of
the available data. The results show that our proposed method
outperforms the other methods, even with less computations.



TABLE III: Comparison of BFT method to MLR and SVM
methods, in terms of percentage of error

Ratio of database-test

70%-30% 60%-40% 50%-50%

BFT
1st choice 5.55 7.29 8.33

2nd choice 0 0 0.83

MLR
1st choice 16.66 19.79 20.83

2nd choice 5.55 5.21 7.5

SVM 13.89 16.66 17.5

V. CONCLUSION

This paper presented a zoning-based localization technique
for indoor environments using belief functions theory. The
proposed method constructs a RSSI database using Access
Points WiFi signals in an offline phase. It then computes
mass functions that associate to each zone certain amounts of
evidence. Combining these masses, together with the mobile
node online RSSIs, using the belief functions theory, allows
to determine the correct zone where it is located. Real ex-
perimental results showed the effectiveness of the proposed
method, outperforming the multinominal logistic regression
and support vector machines techniques. Future works will
deal with multi-floor buildings and Access Points failure
problems. The mobility of sensor nodes would also be used
to improve the first choice zone estimation.
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