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ABSTRACT
Social spam has been plaguing online social networks for years.
Being the sites where online users spend most of their time, the
battle to capitalize and monetize users’ attention is actively fought
by both spammers and legitimate sites operators. Social spam detec-
tion systems have been proposed as early as 2010. They commonly
exploit users’ content and behavioral characteristics to build super-
vised classifiers. Yet spam is an evolving concept, and developed
supervised classifiers often become obsolete with the spam commu-
nity continuously trying to evade detection. In this paper, we use
similarity between users to correct evasion-induced errors in the
predictions of spam filters. Specifically, we link similar accounts
based on their shared applications and build a Markov Random
Field model on top of the resulting similarity graph. We use this
graphical model in conjunction with traditional supervised clas-
sifiers and test the proposed model on a dataset that we recently
collected from Twitter. Results show that the proposed model im-
proves the accuracy of classical classifiers by increasing both the
precision and the recall of state-of-the-art systems.

KEYWORDS
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1 INTRODUCTION
In October 2016, both Disney and Salesforce backed off from an
awaited Twitter acquisition. Specialized press reported that the
move was partially attributed to Twitter’s long-lasting problem of
abusive content and trolls [23]. Since its early days, social media
has seen a striking proliferation of abusive behavior. The fact that
content is user-generated can be as much a curse as a blessing. With
500million tweets generated daily, monitoring and filtering abusive
content is a tedious task. Additionally, automation of content gener-
ation and account management via developed applications is very
pronounced on Twitter. And while some automated applications
adhere to Twitter terms of service, many studies demonstrated that
automation is now the main component in a myriad of abusive
behavior, including popularity inflation, bot-created opinion ma-
nipulation, advertisement, phishing, and malware dissemination.
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With the complex and ever-changing nature of abuse on social
media, the race to identify and characterize abusers and subse-
quently quarantine their effects is becoming both more intense and
more relevant. As hard a task as it may be, maintaining a virtual
environment that is safe, enjoyable and trustworthy is proving to be
critical to the image, growth and success of online social networks.

Early attempts at social spam detection were based on an assump-
tion of smoothness. Informally stated, this assumption implies that
users having similar characteristics are more likely to have similar
labels. Accordingly, early approaches used supervised classification
to characterize and detect social spammers. With the continuous
evolution of spammers, however, researchers have upped their
game by using additional assumptions about the nature and behav-
ior of spammers on social media. These assumptions are generally
related to the collective behavior of spammers and aim at exploiting
the interdependency introduced by the spam-as-a-service economy
[34], e.g. common tools and obfuscation techniques, and the fact
that spammers tend to work in groups or communities to ensure
coordinated efforts and reach a large audience [6].

Collective detection can be roughly categorized into two main
approaches: (1) supervised classification via community-based fea-
tures, and (2) graph-based detection. The first approach follows
the traditional supervised classification model, but uses features
defined over a community of similar users instead of using individ-
ual features of users [5]. The second form of collective spammers
detection follows a graph-based approach [2]. The graph used in
these models is usually based on the structure of the social network
[37, 38], and the leading assumption is that links between users
are based on a relationship of trust, an assumption that has been
shown to be questionable on real online social networks including
Twitter [17].

The model that we propose in this paper falls under a hybrid
methodology thatmarries the two previouslymentioned approaches.
The graph-based approach is coupled with machine learning classi-
fiers in a probabilistic graphical model framework. Specifically, we
investigate the used applications, a part of the user-content that
has been modestly explored in the literature to define similarity be-
tween users. We then construct a similarity-based graph over social
accounts to supplement local features of supervised classifiers and
allow structured prediction over social accounts. Unlike previous
hybrid models such as [16], we do not build the graph on the social
structure of the network, and thus avoid making assumptions on
the prevalence of attack links between a spammers region and a
legitimate region in the network. We equally avoid the pitfalls of
models based on collective features by preserving an individual
classification model over each account, thus maintaining the ability
to capture individual nuances of spammers.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The content and behavioral features we use in this work are
reproduced from state-of-the-art systems described in the literature
[3, 21, 24, 30]. To evaluate the performance of these features and
compare it to the performance of the system we propose, we collect
and label a dataset from Twitter. Results demonstrate the effective-
ness of our system in mitigating the effect of evasion techniques
on social spam classifiers. Quantitatively, our system improves pre-
diction accuracy and effectively increases the recall and precision
of state-of-the-art classifiers.

2 BACKGROUND AND RELATEDWORK
2.1 Spam on Twitter and Social Media
In 2009, Yardi et al. were the first to explore spam on Twitter [36].
They describe accounts posting unwanted URLs to a trending Twit-
ter topic (#robotpickuplines). The following year, several attempts
were made to formally address the rising problem of spam on Twit-
ter [3, 8, 21, 30]. These early approaches were generally based on
a supervised classification framework and used features extracted
from users profiles, content, behavior and social network to charac-
terize and identify spammers. As is expected of a situation where
the opponent is adversarial, the parameters of the problem kept
changing along the years. Subsequent research addressed new and
more complex aspects of abuse on Twitter including popularity
inflation, fake followers [9, 31], Sybil accounts, bot-created opinion
manipulation and political propaganda [32], trends poisoning [20],
advertisement [39], phishing and malware dissemination [1, 7], and
even random acts of sabotage. Evidence of spam evolution can be
traced back to the work of Yang et al. [35] and several recent studies
have independently reached the same result [11, 13].

Along with detection systems, there was therefore a need to
deeply understand themechanisms that controlled the underground
of malicious and abusive behavior on social media. The work of
Thomas et al. [33, 34] and Stringhini et al. [29, 31] on the spam
underground and communities are notable in this domain.

2.2 Collective Spam Detection on Social Media
The previously mentioned work lead the way to a new paradigm
of spam detection based on collective evidence. Two distinct ap-
proaches fall under the hood of this new trend.

• Community-based classification via supervised classifiers.
This approach follows the mainstream supervised classifica-
tion methodology but uses community-based features [5].

• Graph-based detection. This approach uses graph theoretical
techniques to detect communities on a social graph. The
graph can represent the social structure of the network [37,
38] or it can be alternatively based on a measure of similarity
or abnormally synchronous actions between users [4, 19].

There exists a third hybrid approach that generally uses a proba-
bilistic graphical model to incorporate information from both the
social graph and users labels or statistical features. SybilBelief [18]
is a system that propagates known labels of users over the social
structure using a Markov Random Field (MRF) model. The system
is tested on synthetic and real-world social graphs including the
social graph of Facebook. SybilFrame [16] is based on a similar idea

but uses weak local classifiers instead of known labels and is evalu-
ated on synthetic data and the social structure of Twitter. Our work
differs from these works in that it totally avoids using the social
structure of the network, and chooses instead to base the graph on
the similarity between users applications, thus avoiding the notion
of strong-trust that is assumed in structure-based contributions. Ad-
ditionally, by constructing the graph with content-based similarity,
our work is more easily reproducible than the one using proprietary
social graph information. Moreover, SybilBelief and SybilFrame are
compared to graph-based approaches and are reported to signif-
icantly improve the performance of these approaches in realistic
settings by allowing the propagation of local information. Unlike
these two systems, we compare our system to local classifiers that
have been shown their merit empirically. We specifically endeavor
to select and reproduce the most relevant features proposed in the
literature, and thus believe that the empirical evaluation of our
system offers unique evidence on the effectiveness of structured
classification as a paradigm for detecting evolved social spammers.

3 PROPOSED SYSTEM
3.1 General Overview
In classical classification problems, the goal is to find a model that
maps an input space, e.g. a set of features, to the set of possible
labels. The problem we define here is similar: we want to construct
a model that labels each social account as either a spammer or a
legitimate account. The system we propose has two phases:

(1) The learning phase where we learn the model parameters
over a groundtruth dataset of labeled users, and

(2) The deployment phase where the model is evaluated.
In both phases, we start by crawling content information of

Twitter accounts. We then use the profile information and the
crawled content in two separate ways:

(1) We extract a features vector f that codes the distinguishing
behavioral, social and content-based characteristics of the
account (e.g. age, number of followers, proportion of replies
in a user’s posts).

(2) For each account, we extract the set of “applications” used
by the account to post its tweets (e.g. Twitter for iPhone,
TweetDeck). From the percentage of tweets posted by each
app, we then compute the similarity between pairs of ac-
counts. Finally, we use the resulting similarity measures to
construct a graph G(V ,E) over users.

In the learning phase, the features vectors along with the true
labels of users are used to train a supervised classification model.
The graph on the other hand, is used as a structure for the MRF
built over the accounts. MRF is a probabilistic graphical model
that we use to tie labels of similar accounts. Its parameters are
estimated by maximizing the likelihood of obtaining the labels of
the groundtruth dataset. In the deployment phase, we link the two
parts of the system together. We use the supervised classifier to
output beliefs about an account’s class based on its features. These
beliefs are subsequently used as node priors in the MRF. We apply
joint optimization using Loopy Belief Propagation over the MRF to
get the most probable configuration of labels. Figure 1 summarizes
the data flow and general architecture of the proposed system.
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Figure 1: General architecture of the proposed system.

3.2 Supervised Classification
The social spam detection problem is often defined as a supervised
classification problem. The goal is therefore to find a function д :
X → Y that maps the input space X (defined by features vectors)
to the output space Y (set of possible labels of an account: either
legitimate or spammer).

For each user u, with features vector denoted xu , the classifier
predicts a label y with a probability p(y |xu ) These probabilities
quantify the classifier confidence of its prediction and we consider
them our prior belief of a user class.

To define and build a supervised classifier over our groundtruth
dataset, we have to make two choices regarding the design of the
classifier: selecting the set of features that will represent each user,
and choosing the statistical model that will be used to represent
and learn the classification function (a mapping from the features
space to the space of labels).

3.2.1 Choosing a suitable set of statistical features. The goal of
this work is not to propose a new set of features that is adapted
to the task of detecting contemporary social spammers. Rather,
we would like to simulate a set of relevant features and show that
their performance on current Twitter’s spammers population can
be improved using our proposed model. For that, we opt for two
strategies:

(1) First, we reproduce the work in [3] and [30] (denoted here-
after as Benevenuto and Stringhini respectively). Namely, we
extract the sets of features proposed in these two works, and
use them to train and evaluate classifiers over the groundtruth
dataset. A list of these features along with their description
is presented in Table 1. Note that we have chosen these two
models based on self-reported performance, wide acceptance
in the community, and reproducibility. The latter is defined
by the possibility of reproducing the model with accessi-
ble account information and without the need for internal
information such as IP addresses or the social graph1.

1While it is theoretically possible to use Twitter’s Rest API to obtain a user’s social
graph, the imposed API rate limit makes it prohibitive and impractical to require this
information in a large-scale model. Models using such information (e.g. [35]) are hard
to reproduce with a normal-level data access.

(2) Second, we carefully select 28 features from different pre-
vious works [3, 21, 24, 30] and compute their values for
accounts in our dataset. Table 1 shows the list of selected fea-
tures. This set captures a wide range of information including
aspects related to the accounts behavior, social network, con-
tent and age. As will be shown in the results section, the
extensiveness and domain relevance of this set of features
results in a classification performance that is better than
either sets of Stringhini or Benevenuto.

3.2.2 Choosing a suitable classification model. To choose a suit-
able classification model, we are constrained by two criteria:

• The model should be able to output not only a label yi
for each configuration of features xi , but also a probability
p(yi |xi ) for each predicted label. These prediction probabili-
ties are used as priors in our MRF model.

• In order to get a representative dataset, we include a variety
of social profiles for both legitimate users and spammers.
The methods used to collect labeled instances introduce a
selection bias that represents a common problem across the
literature [14]. To account for this characteristic of the col-
lected dataset and to avoid bogus results, we are not to use
generative learning models (e.g. Naive Bayes). These meth-
ods learn a joint distribution p(x ,y) over the input and out-
put spaces and are therefore unsuitable for our purposes.
Alternatively, since any groundtruth dataset does not offer a
true distribution p(x) over the input space, we only want to
learn the conditional probability p(y |x), and a discriminative
learning model is more adapted to the task.

The Support Vector Machines (SVM) model performs classifica-
tion by establishing a boundary of selected input points known as
support vectors. Since it offers both required characteristics, we will
use it in the remaining analysis as our baseline supervised classifier,
without any loss of generality.

3.3 Constructing the Similarity Graph
We construct a graph where nodes are users and links represent
similarity between users. We base our definition of similarity on
the observation that accounts that use the same applications tend
to belong to the same class. Specifically, spammers belonging to the
same or similar spam campaigns tend to have similar applications
usage profiles.

There are two prominent characteristics of applications on Twit-
ter: The number of applications on Twitter is high (we counted
71k unique applications in our dataset) and the association be-
tween users and applications is dynamic. Encoding applications as
a features vector results in a static, sparse, and high-dimensional
representation that is not adapted to supervised classifiers. Instead,
the concept of similarity offers an elegant and compact way to
represent and exploit this vital characteristic of a user’s profile.

To construct the similarity graph, we first crawl the most recent
tweets posted by each user in the dataset and extract the appli-
cations used to post each of these tweets (e.g. Twitter for iPhone,
TweetDeck). We then compute the proportion of tweets posted
by each app. For example, if a user u has 5 tweets posted by the
following respective applications (a1,a2,a3,a2,a1), the normalized
form of this user’s applications profile is {a1 : 2/5,a2 : 2/5,a3 : 1/5}.
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Table 1: Description of features used in this work

Feature Description Our features Benevenuto Stringhini

Pr
ofi

le age of the account time since the account was created ✓ ✓
statuses count Total umber of tweets posted by the account ✓ ✓

S.
N
et
w
or
k followers count Number of users following the account ✓ ✓

friends count Number of users followed by the account ✓ ✓ ✓
followers per followees Ratio of followers to followees (friends) ✓ ✓
followees per squared followers Ratio of friends per the squared number of followers ✓

Co
nt
en
t

replicates Number of identical posts in the account timeline ✓
similarity Average similarity between the account’s posts ✓ ✓
fraction of tweets with urls Fraction of tweets containing a link ✓ ✓ ✓
fraction of tweets with hashtags Fraction of tweets containing a hashtag ✓
fraction of replies Fraction of replies in the user’s posts ✓ ✓
fraction of retweets Fraction of retweets in the user’s posts ✓
mean nb hashtags per tweet Average number of hashtags in a tweet ✓ ✓
mean nb urls per tweet Average number of links in a tweet ✓ ✓
urls used on average Average number of times a single link is used ✓

Be
ha
vi
or
al

avg intertweet interval Average time interval between consecutive tweets ✓

std intertweet interval Standard deviation of time intervals
between consecutive tweets ✓

min intertweet interval Minimum time interval between two consecutive tweets ✓
nb followees per day Average number of followees the account follows in a day ✓
nb followers per day Average number of users following the account in a day ✓

active tweeting frequency per day Average number of tweets posted by the account on
a daily basis (computed based on the 200 most recent tweets) ✓

distribution of tweets in temporal bins 8 features corresponding to the proportion of the account’s
tweets contained in temporal bins of 3 hours each. ✓

For n unique applications, the normalized vector notation repre-
senting the applications profile of the previous example is a n × 1
sparse vector of the form:

Au =
[
0.4, 0.4, 0.2, 0, . . . , 0︸  ︷︷  ︸

(n-3) zeros

]T
. (1)

To obtain the similarity between two usersu andv with normalized
applications vectors Au and Av , we compute the cosine similar-
ity measure (normalized inner product of the two vectors) which
outputs a value between 0 and 1:

Sim(u,v) = cos(Au ,Av ) =
ATuAv

∥Au ∥ ∥Av ∥
(2)

Figure 2 illustrates the computation of similarity on a toy example.

3.4 Markov Random Field
A MRF is a probabilistic graphical model that allows joint inference
over dependent random variables. It consists of a graph G(V ,E)
where nodes are random variables and edges denote a dependency
between two random variables. The Markov assumption in a MRF
states that a node is independent from its non-neighboring nodes
given its neighbors. Formally, given two variables yi and yj and
the neighboring nodes Nyi of yi , the following equation holds:

p(yi |yj ,Nyi ) = p(yi |Nyi ) (3)

A set Ψ of potential functions govern the relationships between
random variables. Potentials are factors defined over cliques of

Figure 2: A toy example showing the computation of simi-
larity between two users based on their applications profile.

nodes. In this work, we propose to use the pairwise MRF model
(p-MRF), and define two types of potentials over nodes: edge (or
pairwise) potentials defined over two connected nodes and node
(or unary) potentials defined over individual nodes. Together, these
potentials ensure that themodel responds to the smoothness criteria
between connected labels y (pairwise potentials) while penalizing
discrepancy between the observations x and their corresponding
labels in y (unary potentials). They are constructed as follows:
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(1) A unary potential ϕu quantifies how favorable a label yi is
for node Yi . We define it as a function that for each user u ∈ U and
label y ∈ LU associates a probability p(yi ):

ϕu : LU → [0, 1].
These probabilities are fixed priors, inferred from the previously
built supervised classification model, and so the features informa-
tion is indirectly incorporated into these priors as follows:

ϕu (yu ) =
{
pu if yu = 0
1 − pu if yu = 1

where pu ∈ [0, 1] (4)

(2) An edge connects two nodes, Yu and Yv , if the corresponding
usersu andv are similar, and is associated with a pairwise potential
ϕu,v (Yu ,Yv ). In the current context, an edge potential defines corre-
lation between labels, i.e., the relative likelihood that two nodes are
labeled similarly. Formally, edge potentials are defined as functions
that for every realization of a tuple of labels (in LU ) associates a
real-valued factor quantifying its likelihood:

ϕu,v : LU × LU → R+.
Specifically, we define the edge potentials as follows:

ϕu,v (yu ,yv ) = exp(f (yu ,yv )) (5)

f (yu ,yv ) =


w0 if yu = yv = 0
w1 if yu = yv = 1
0 otherwise

where w0,w1 ∈ R+ (6)

Optimization Goal: The goal is to maximize the probability of
a joint configuration of labels P(Y |Θ) by optimizing the product of
potentials defined over all nodes v ∈ V and all edges (u,v) ∈ E:

P(Y |Θ) = 1
Z
P̃(Y |Θ), (7)

where Z =
∑
Y P̃(Y |Θ) is the partition function and

P̃(Y |Θ) =
∏
v ∈V

ϕv (Yv )
∏

(u,v)∈E
ϕ(u,v)(Yu ,Yv ). (8)

This problem is usually solved as a non-convex multivariate opti-
mization problem. The goal is to minimize the negative log likeli-
hood value of the above equation over several iterations using e.g. a
quasi-Newton method. We use the Loopy Belief Propagation (LBP)
algorithm to estimate beliefs and infer the most likely configuration
at each iteration. LBP is essentially an iterative message-passing al-
gorithmwith a time complexity that is linear in the number of edges.
In graphs that contain loops, LBP is an approximate algorithm and
is not guaranteed to converge. In practice, however, convergence is
often reached after few iterations.

4 DATA COLLECTION AND LABELING
We collected data from Twitter, the well-known Online Social Net-
work during the period between 5 and 21 October 2017. We used the
Developer Streaming API2 to get a random sample of 20M tweets
from 12M active users, and the Rest API2 to crawl tweets of selected
users in the sample.

We also built a groundtruth dataset of labeled Twitter users. This
dataset contained 767 users divided over four categories of users:
verified accounts, normal users, hashtag hijackers and promoters.
2Twitter developers API https://developer.twitter.com/en/docs

Table 2: Characteristics of the groundtruth dataset

Group Designation Class Users Tweets

Verified Users Legitimate 500 100 108
Human Users Legitimate 134 59 277
Trends Hijackers Spammer 47 19 972
Promotional Spambots Spammer 86 31 404
Total 767 210 761

The first two categories were legitimate accounts and formed 83%
of the dataset while the other two categories formed the remaining
17% and exhibited an abusive behavior that violates Twitter terms
of service3. Table 2 summarizes the general characteristics of the
groundtruth dataset. For each of these users, we extracted profile
information and we used Twitter’s Rest API in order to crawl at
least the most recent 200 tweets of each user (or all the tweets if
the user’s timeline contains less than 200 tweets). Users profiles
and tweets were subsequently used to extract relevant content and
behavioral features.

4.1 Verified Accounts
Given the complex nature of accounts automation on Twitter, we
found it important that the dataset comprised automated users on
both ends of the spectrum, that is, automated profiles from both
legitimate and abusive users. Unlike some recent work such as
[25], we did not exclude verified users from the dataset. Verified
users often belonged to companies, celebrities or public figures, and
were often operated by dedicated or generic content management
applications4. These accounts may also exhibit a mixed human-bot
behavior where real persons use the verified account to interact
with its followers. This type of behavior is typical of what has
come to be known in the literature as a “cyborg” account. We
acknowledge therefore that the characteristics of verified accounts
are very different from those of normal human-based accounts.
We chose to include these accounts in the dataset to prevent the
classifier from learning that every automated behavior is abusive.

Note that these users are easy to identify (their profiles are
marked with a blue tick mark and their crawled profiles include a
“verified” flag). We randomly selected 500 users among 43k verified
users appearing in the dataset and we included these 500 users in
the groundtruth dataset.

4.2 Human users
The remaining 134 legitimate users in the groundtruth dataset were
normal human-operated accounts. These users were identified by
manually investigating a sample of active accounts from our initial
dataset. Manual investigation required a careful examination of the
account in question, its tweets, profile and behavioral characteris-
tics, and has therefore a small throughput. We elaborated on the
pitfalls and advantages of manual labeling in the next paragraphs.

3Twitter terms of service https://twitter.com/en/tos
4Examples of generic content management applications include TweetDeck and dlvr.

https://developer.twitter.com/en/docs
https://twitter.com/en/tos
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Figure 3: A screenshot of a compromised verified account
posting a tweet containing a phishing link.

4.3 Promoters
The blacklisted links heuristic is a well-known heuristic that is
commonly used to identify spammers in email and social media
[1, 22]. It consists of identifying users that posted links to malicious
webpages by verifying links appearing on social media against
a continuously updated database of malicious webpages such as
Google Safe Browsing5 and Phishtank6.

We tried to directly apply this heuristic to our crawled dataset.
For this, we first started by extracting all 3.8M links in the crawled
tweets. We subsequently wrote a program that follows the redirec-
tion chain of each link and returns the final landing webpage. We
then used Google Safe Browsing API to identify suspicious URLs.
Only 156 URLs were identified as being phishing or malware URLs.
We extracted all users IDs in our dataset that posted any of these
malicious URLs and then proceeded to the manual verification of
the resulting accounts. Surprisingly, a significant number of these
accounts were actually legitimate accounts that were temporarily
compromised7 by a malicious posting mechanism8. Consequently,
we could not rely on this labeling heuristic alone to obtain malicious
accounts as it yielded a high false negative rate. Alternatively, for
the users that were found to be genuinely malicious, we extracted
the text associated with the blacklisted URLs. We then searched
Twitter for users that posted the same text, and were able to identify
several communities of spammers. We obtained 86 users in total,
most of them engaged in promotional and site referral activity.

4.4 Trends hijackers
Trend hijacking is a type of spam that is particularly ubiquitous on
social media. Trending topics and hashtags offer a high visibility
and attract a large audience. Spam that targets trending topics is
known as collective-attention spamming [20] because it tries to
gain a higher visibility for abusive content by targeting topics and
accounts that are popular on the attacked social network. This type
of spam consists of poisoning the trending topic with unrelated
posts, often to promote a particular product or service (see Figure 4
for an example). And while this particular instance of behavior is
easy to spot, even for the untrained observer, there exist other types
of trend poisoning that are difficult to identify. This occurs when

5Google Safe Browsing API: https://developers.google.com/safe-browsing/
6The Phishtank database https://www.phishtank.com/
7Compromise is fairly common on social media. Compa [12] is a system that builds
statistical profiles for users and identifies compromise by comparing recent posts
with the previous profile. We roughly used the system description as a guideline for
identifying and excluding compromised accounts from our dataset.
8In one instance of these compromise campaigns, the “Rayban sale” scam, one verified
account was found to retweet the same malicious URL dozens of times before the
malicious behavior stops and the accounts restarts its normal behavior (see Figure 3).

Figure 4: An example of trend-hijacking spam on Twitter.

the posts content is semantically aligned with the attacked topic,
which is often the case when the goal is not direct promotion, but
opinion manipulation and political propaganda [27, 32].

We used a dataset of trends hijackers that we presented in a pre-
vious work [13]. This dataset was obtained by reading the tweets of
a trending sport-related hashtag and manually identifying suspect
tweets. This was followed by a manual investigation consisting of
reading the recent tweets of suspect profiles and cross-examining
different profiles for similar patterns and content. This process is
similar to what Cresci et al. describe in their paper [10]. Manual la-
beling is different frommainstream labeling techniques described in
the literature in that it is time consuming and requires an annotator
that is familiar with current spam techniques and tricks9.

Since trends hijackers are particularly aggressive in their spam-
ming activity, a substantial percentage of malicious accounts in
the original dataset was suspended by the time we conducted the
current analysis. Since we needed up-to-date evidence on spam for
our results to be credible, we could not rely on information crawled
from the suspended accounts two years ago. Hence, we used here
the recently collected tweets from the remaining 47 accounts.

5 EXPERIMENTAL EVALUATION
5.1 Experimental setup and evaluation
We split the dataset into a training and a test datasets with a 70/30
ratio. We used the sickit-learn library [26] in Python to learn the
parameters of the SVM classifier. The SVM classifier used the RBF
kernel, and its parametersC andγ were obtained using a grid search.
All features were normalized before training.

We chose a similarity threshold of 0.9 to construct the similarity
graph and dropped links with lower similarity levels. This resulted
in a graph with 32k edges, or about 5% of the number of edges in a
fully connected graph with 767 nodes. We implemented the MRF
using the UGM library [28] in Matlab. For inference and parameters
estimation, we used the library’s implementation of LBP and the
multivariate functions optimization method minfunc, respectively.

We compared our model with the SVM classifier over the three
previously discussed sets of features, namely our selected set of
state-of-the-art features and the sets of features proposed in Ben-
evenuto and Stringhini. We used information retrieval metrics to
assess the performance of compared classifiers.
9Previous work that used manual labeling such as [3] rely on crowdsourced annotation
of individual hashtag tweets. While we think that this method could have yielded
trustworthy annotation back when spam was less complicated and more straightfor-
ward, recent empirical evidence [11, 15] suggests that non-initiated human annotators
fail to identify the new generation of spam on social media.

https://developers.google.com/safe-browsing/
https://www.phishtank.com/
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Table 3: Classification results of SVM and our model on three different sets of features

Our features Benevenuto features Stringhini features

Legitimate Sybil Legitimate Sybil Legitimate Sybil

SVM

Precision 0.947 0.795 0.902 0.703 0.843 0.733
Recall 0.952 0.778 0.941 0.578 0.978 0.244

F-measure 0.949 0.787 0.921 0.634 0.905 0.367
Accuracy 0.918 0.87 0.835

SVM + MRF
(this paper)

Precision 0.968 0.878 0.91 0.774 0.877 0.8
Recall 0.974 0.857 0.963 0.571 0.979 0.381

F-measure 0.971 0.867 0.936 0.658 0.925 0.516
Accuracy 0.952 0.892 0.87

Results presented in Table 3 show a general improvement in
the precision of classification for all sets of features considered for
evaluation. There is also a strong tendency toward improving the
recall of supervised classifiers.

5.2 Discussion
Results show that the prediction accuracy of traditional classifiers
has indeed deteriorated (compared to the performance reported on
datasets used in the original articles). This can arguably be explained
by the detrimental effect of spam evolution on the predictive power
of proposed features. In particular, the specific sets of features used
by Benevenuto [3] and Stringhini [30] seem to be insufficient to
effectively identify contemporary spammers (even with the SVM
classifier being trained over recently collected data). The set of
selected state-of-the-art features, on the other hand, yields an ac-
ceptable performance, a fact that encourages further contributions
that incorporates this set of features as an active building block.

A notable observation that concerns the characteristics of the
resulting similarity graph is that the graphical inference phase only
alters beliefs on connected nodes. In the case of singleton nodes,
that is nodes that are not connected to any other nodes, the system
is equivalent to an SVM classifier. In the setting of our experimental
setup, 75 nodes (or 10% of users) are singleton. While isolation is
expected for profiles that use dedicated apps (such as some profiles
that represent celebrities or companies), singleton spammers are
perhaps an artifact of the limited sample size. Since spammers often
follow a botnet-like model with a central entity controlling them, a
similar application profile is to be expected and groups of connected
spammers should be the norm. Further empirical evaluation on our
large dataset is needed to confirm these assumptions.

A practical assumption of structured classification is that nodes
degrees generally have the same order of magnitude. This turns
out not to be the case on our Twitter-based similarity graph, where
a small set of applications capitalizes most of the users. These are
applications that are mostly used by human users (such as Twitter
for Android and the web interface). This means that these appli-
cations figure in the profile of a sizable portion of users, resulting
in the creation of similarity links between many of them. While
the effect of this are manageable on a small-scale experiment, the
number of connections grows exponentially with the number of
users which can slow down LBP execution.

Additionally, most of the legitimate activity bundles together in
a single cluster spanning various types of human-based activity
profiles. This makes it easy for spammers to infiltrate the legiti-
mate cluster by creating similarity links with users on the edges
(e.g. imitating the profiles of legitimate cyborgs and using legiti-
mate generic content management applications). A solution would
be to pre-process users to filter out those that, by solely using
human-based applications are likely to be human. For these users,
a one-phase supervised classifier is more effective since MRF belief
updating will inevitably mark them as legitimate.

Finally, results confirm that similarity can be used to improve
the performance of a weak local classifier. The local information
synthesized as a belief can be propagated throughout the graph
to correct misclassified instances and mitigate the effect of spam
evolution. Compared to local classifiers, our model consistently
improves precision over several sets of features, and generally im-
proves recall as well. The notion of a weak local classifier, however,
is certainly a good candidate for exploration. Notably, the local
classifier based on features from Stringhini, which seems to hold
little classification power, was significantly improved by the intro-
duction of joint prediction. Interestingly, the joint prediction based
on Benevenuto features has a mixed result (a better precision and
a slightly worse recall for spammers detection) which comes at
odds with the apparently better performance of the local classifier
(compared to that based on Stringhini’s features). This suggests that
the performance of a local classifier, measured in terms of precision
and recall, is not enough to judge its effectiveness as a local belief
estimator, and that the particular structure of the similarity graph
may have an equally important role.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a structured classification approach for
spammers detection on online social networks. The proposed sys-
tem leverages similarity between users to propagate beliefs about
their labels. We initiated beliefs using supervised classifiers trained
with selected state-of-the-art features. We showed that optimiz-
ing the prediction over a Markov Random Field permits to correct
misclassified labels, thus improving the performance of baseline
supervised classifiers. This not only allows the detection system
to be more sustainable but it could also be used to design adaptive
classifiers.



MISNC 2018, July 2018, Saint-Etienne, France N. El-Mawass et al.

The promising results of this study show that similarity can
be leveraged for increased detection accuracy. And future work is
likely to extend the evaluation by tackling aspects of similarity and
design choices not discussed in this work. We especially plan to
explore the effect of the local classifiers and the graph structure on
successful belief propagation and to evaluate the system with other
classification models (e.g. logistic regression).
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