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ABSTRACT

This paper deals with sparse coding for dictionary learning in
sparse representations. Because sparse coding involves an {;-
norm, most, if not all, existing solutions only provide an ap-
proximate solution. Instead, in this paper, a real £, optimiza-
tion is considered for the sparse coding problem providing a
global optimal solution. The proposed method reformulates
the optimization problem as a Mixed-Integer Quadratic Pro-
gram (MIQP), allowing then to obtain the global optimal solu-
tion by using an off-the-shelf solver. Because computing time
is the main disadvantage of this approach, two techniques are
proposed to improve its computational speed. One is to add
suitable constraints and the other to use an appropriate ini-
tialization. The results obtained on an image denoising task
demonstrate the feasibility of the MIQP approach for process-
ing well-known benchmark images while achieving good per-
formance compared with the most advanced methods.

Index Terms— Mixed-integer quadratic programming,
sparse representation, sparse coding, dictionary learning,
image denoising, K-SVD

1. INTRODUCTION

Learning sparse representations to model data, signals and
images have been widely investigated since introduced 20
years ago by Olshausen and Field in [1]. In recent years,
learning sparse representations have been successfully ap-
plied to signal and image processing, as well as computer
vision tasks, such as image denoising, image inpainting, ob-
ject recognition, face recognition and classification and many
classification tasks (see [2] and references therein).

A sparse representation describes a given signal by a lin-
ear decomposition of few elements of a dictionary. Beyond
predefined dictionaries, such as wavelets and many variants
[3], data-driven constructed dictionaries allow to have well-
adapted and more natural representations for the signals at
hand. In practice, the dictionary learning in sparse represen-
tation is generally conducted in two alternating steps: dictio-
nary updating and sparse coding. While the former can be
easily tackled, sparse coding is the hardest to address since it
involves an £y-norm.

K-SVD, the most known dictionary learning algorithm, is
a two-stage generalization of the k-means algorithm. The first
stage operates sparse coding with a greedy scheme, for ex-
ample matching pursuit (MP) or orthogonal matching pursuit
(OMP). The second stage is dictionary updating by a singu-
lar value decomposition (SVD) algorithm. K-SVD has solid
theoretical foundations, such as the projection theory [4], and
good performance on image reconstruction. From this base-
line, many variants of K-SVD have been developed in order
to address different tasks, such as discriminative K-SVD [5].

In this paper, the sparse coding in its exact £p-norm for-
mulation is recast as a mixed-integer quadratic programming
(MIQP), namely a mixed-integer programming (MIP) with a
quadratic objective function. Even if the use of MIP for pat-
tern recognition is not new [6], only very recently it has been
investigated with success to obtain the sparse approximation
of a signal [7]. However, due to its computation complexity,
this preliminary study was restricted to tiny toy data (120-
sample synthesized signals).

We demonstrate in this paper that dictionary learning with
K-SVD for image processing can be naturally achieved with
MIQP. To this end, we recast the sparse coding problem as
a MIQP. We investigate recent theoretical progress in linear
program and novel improvements of efficient implementation
[8]. To provide an efficient resolution of the resulting MIQP,
we propose two techniques to increase the convergence speed
by reducing the searching time and decreasing the boundary
as well: include appropriate constraints and initialize with the
proximal method. These improvements confirm the feasibil-
ity of applying the algorithm to image processing. The rele-
vance of these developments is demonstrated on well-known
benchmark images frequently used in image processing. Con-
ducted experiments on image denoising show the high toler-
ance to noise of the proposed MIQP algorithm, outperforming
algorithms based on OMP and proximal methods.

The rest of the paper is organized as follows. The sparse
representation problem is presented in Section 2. The pro-
posed MIQP-based dictionary learning algorithm and the the-
oretical analysis are described in Section 3. In Section 4, ex-
perimental results on image denoising show that the proposed
method can train the dictionary with high tolerance to noise.
The last section concludes this paper.



2. PROBLEM STATEMENT

Considering a matrix Y = [y1,...,yi,...,y¢] € R"*¢of £
signals of dimension n, a sparse representation of Y consists
in finding a matrix X = [x1,...,%/] € RP*! of decompo-
sition coefficients, which is sparse over a learned dictionary
D = [dy,...,d,] € R"*P. The columns of the latter, i.e.,
d; for j = 1,...,p, are called atoms. In image processing,
a given image (or a set of images) is fragmented into (often
overlapping) patches, where each patch is unfolded to define
a “signal” y;.

The sparse representation can be obtained by solving the
following optimization problem:

£
1 )
win Z;(%”yz’ = Dxil[3 + 22(xy)). (1

The first term £||y; — Dx;||3 is the reconstruction error with
I - ||l2 being the Euclidean norm. The second one includes
the regularization term {2(x;) to enforce sparsity. The reg-
ularization parameter A > 0 controls the trade-off between
data fitting and sparsity of X. For the sake of clarity of this
paper, the reconstruction error is measured with the square
loss. Generally, the regularization function {2 is associated to
a norm that promotes sparsity and its formulation depends on
the task at hand [9, 10]. A natural definition of €) to promote
sparsity is the £ quasi-norm, i.e., Q(x) = ||x||o, which refers
to the number of non-zeros of x.

The problem of estimating simultaneously X and D is
non-convex and belongs to NP-hard problems. It is often
solved via an alternating strategy:

e Fixing D and finding sparse coefficients X, the proce-
dure is called sparse coding. For each column of X, this
problem can be written as the following constrained op-
timization problem:

. 1 2 .
min Sy - Dx|3  subjectto [xo <T, ()

where the sparsity parameter 7’ is related to \.

e Fixing X and finding the solution of D, this procedure
is called dictionary updating.

Once convergence is reached, the obtained dictionary can be
used in two different settings: in the “adapted dictionary” set-
ting, the dictionary is used to denoise the initial matrix Y of
signals, assumed noisy; in the “global” setting, it is used to
denoise any new matrix Y of noisy signals.

While the dictionary updating yields a convex optimiza-
tion problem, sparse coding is more difficult due to the spar-
sity constraint. For this reason, sparse coding has often been
approximated, such as by substituting the £y norm with the ¢,
norm, and greedy algorithms are often used (e.g. MP, OMP).
In this paper, we introduce a new algorithm for sparse coding
by solving the exact £; optimization problem (2) with MIQP.

3. OPTIMIZATION ALGORITHM

Sparse coding addresses intrinsically a bi-objective optimiza-
tion problem, where both sparsity and reconstruction error
need to be optimized. So far, sparse coding has been tackled
using approximate algorithms, such as a number of greedy al-
gorithms and descent-based iterative hard thresholding. How-
ever, when put aside the computational complexity and mem-
ory usage, approximate algorithms fail to obtain the exact so-
lution.

In the following, we cast the sparse coding as a MIQP
in order to address the exact ¢, optimization problem, as de-
fined in (2). To this end, we investigate recent theoretical and
technical developments in Linear Programming. Moreover,
modern hardware’s computational ability provide great speed
enhancement [11]. By taking advantage of all these improve-
ments, we demonstrate that applying MIQP to solve sparse
coding becomes feasible in the field of image processing.

3.1. Sparse coding as a MIQP

In the following, the sparse coding problem is addressed in
its formulation (2). We propose to rewrite this constrained
optimization problem, with all the entries of the sparse vector
x indicated by a binary variable z € {0, 1}?, which can be
explained by the logical relation:

z; =0, if
where z; and x; indicate the i-th entry of the vectors z and
x, 17 = 1,...,p. Since such logical relation cannot be easily
integrated into the objective function, we recast the sparsity
condition into a linear inequality by introducing a sufficient
big value M > 0 which should ensure that ||X|lo. < M for
any desirable solution X, where || - ||oo is the maximum norm.
A too big M will result in increased feasible region which
will make the problem less computational efficient. An ap-
propriate value of M improves the performance. The method
to provide a lower M to obtain tight bounds will be discussed
in the following.

Now the indicative function of z is ensured by satisfying
the constraints:

$17£0 ’

—zM <x; < z;M, Vie{l,...,p}. 3)

Then, the sparsity constraint ||x||o < 7 in formulation (2) can
be depicted by z as:

ij % <T. @)
=1

As a consequence, the fp-based sparse coding problem (2)
can have a ‘big-M’ reformulation, that is, for a given M large



enough:

. 1 2
slly = D
rerr o 2 ly — Dx||3
subject to —zM <x <zM &)
1gz <T,

where 1, is the column vector of size p with all elements
equal to one. In this formulation, the optimization variables
x and z are respectively continuous and integer. The problem
is a mixed-integer program (MIP). Moreover, the objective
function in (5) is quadratic, and all the constraints are linear.
Hence, sparse coding can be interpreted as a MIQP.

We can reformulate our problem as a standard formulation
of MIQP by combining the vectors x and z, that is, let

v=(x1,2")7T,

then
Hi/in %VTQV +clv
subjectto  A;,v < by, (6)
v; € {0,1} VjeZ,

where () is a matrix of size 2p x 2p made up of four sub-

matrices
Q= ( DTD o0,, ),

OPJ) Opap

with 0,, 4 is the zero matrix of size p x ¢, c is a column vector
of size 2p with
_ DTy
c= .
0p,1

The (2p + 1) x 2p matrix

~I, —MI,
Am=| 1, M|,
0, 1

with I, the identity matrix of size p X p, and the (2p+1) x 1
column vector by, = (03, ), are both obtained according
to the inequality of formulation (5). Finally, the set Z in (6)
indicates the integer components in the MIQP, namely

T={p+1p+2...,2}

In practice, the variable’s type is indicated as continuous or
binary in the input for the solver at hand.

To solve this MIQP problem, various optimization soft-
ware packages can be explored, for example CPLEX and
Gurobi Optimizer. The developed tools make it possible
to apply MIQP into image processing, but by considering
its computational complexity, some effort can be done to
improve it as described next.

3.2. Additive constraints

The developments of the MIQP solvers have been following
the progress in Linear Programming theory. The advanced-
start capabilities of simplex algorithms in the branch-and-
bound [12] (or now more correctly, branch-and-cut [13])
search tree are well exploited by MIQP solvers. No mat-
ter which optimization technique is used, the search process
remains the main time consumption factor. The searching
time heavily relies on the feasible region determined by the
constraints. Hence, the effort on getting a good formulation
of the constraints do help to accelerate the resolution of the
optimization problem.

Hoffman and Ralphs have proven in [14] that, if a feasible
solution is obtained by a relaxation, then it must also be opti-
mal solution to the original problem. Especially, in the ideal
case, if the convex envelop is found, a mixed integer program-
ming will be transformed to the classical linear programming.
However, it is an NP-hard problem to find constraints defining
the convex envelop. The viable strategy is to create a convex
envelop of the continuous variables

p
C— {xeRP |z€{0,1}7, Y 2 < T, x| < ij,},
j=1

by adding the constraint about ¢1-norm and £.,-norm of x:

SO fa| < TM
{ lz;| < M Vi=1,...,p.
However, the absolute value is difficult to be formulated as
linear programs. To overcome this difficulty, we replace each
unrestricted variable x;, for ¢ = 1, ..., p, with the difference
of two restricted variables z; = 1:;" —x,; , with 1:;.", z; 20
Then the absolute value of x; in the above constraints can be
represented in the linear program as |z;| = x; + x; . Thus,
the constraints for MIQP can be summarized as:

Poaf+a; < TM
—zM < xT—x- < zM 7
0< xj, z; < M )
lgz < T

With the new constraints, MIQP can be reformulated as the
standard formulation by introducing as updated optimization
variable v = (x*T, ’T, z™)T and updated model compo-

nents @, ¢, A, bin, 1 and u, correspondingly.

X

3.3. Initialization by the proximal method

MIQP solvers are based on the search tree theory [13]. The
MIQP problem, represented by the root of the tree, is parti-
tioned into subproblems. And the feasible region is also di-
vided into subregions. The objective value of any feasible so-
lution to a subproblem provides an upper bound on the global
optimal value. The optimal solution is produced when the



global lower bound and global upper bound are equal. Usu-
ally, a global bound is needed to make the algorithm more ef-
ficient. Hence, a good initialization or tight bounds can both
help to improve the performance. In the following, the prox-
imal method will be applied to give a good initialization and
an optimized value for M which forms the global bound of
the problem.

The proximal method is based on the first order approx-
imation method. It produces a reasonable approximate solu-
tion by minimization a succession of upper bound of the ob-
jective function. It is a powerful tool to tackle non-smooth,
constrained, large-scale, and distributed optimization prob-
lems. The proximal operator is expressed as

t
prox”(u) = arg min(h(u) + §||x - uHQ),

where h defines a proper and lower semi-continuous function,
and ¢ > 0 is a step size parameter. See [15] for more details.

For our problem, let H (x) denote the quadratic objective
function in the optimization problem (6), and h(x) the func-
tion that makes sure that the feasible region is in the space S
of T-sparsity, that is

e ={ 0

The proximal operator boils down to the projection onto the
sparse space S:

if [x[lo <T
otherwise.

®

Ps(u) := arg min(|x — u|?).
x€S

The solution to this problem can be easily obtained by keep-
ing 7" biggest absolute value components of u and setting the
rest to zeros:

_ Uj lfje {(1)77(T)}
Ps(u) = { 0  otherwise
where j is the index of the sequences that |u(y)| = |u)| >
- 2 |u(y)|. By applying a proximal algorithm, the sparse
representation problem can be solved through a serial update
process [9]:

x" ¢ P (xk — tVH(xk))7 )

where VH(x) = DT Dx — DTy. After a finite number of
iterations n;er, the x™iter will be much approximate to the
optimal solution of the MIQP problem. By considering the
definition of ‘big-M’, the constraints in the problem (7) re-
lated to M can be well determined by an approximation of
the optimal solution. A simple method to determine an ap-
propriate value for M can be:

M = ILL”Xniter

o (10)

4. EXPERIMENTAL RESULTS

Experiments on image denoising are conducted in this section
to evaluate the proposed sparse coding algorithm relying on
MIQP, and compare it with OMP and the proximal method
for sparse coding. The dictionary updating method is always
SVD.

4.1. Design of experiments

We choose well-known images in the USC-SIPI Image
Database' for experiments. The dataset contains five fre-
quently used images in image processing, as presented in
the Figure 1. The images, of size 512 x 512, 256 x 256 or
580 x 720, are corrupted with an additive zero-mean white
Gaussian noise of standard deviation o = 50, which corre-
sponds to the highest noise level in denoising benchmarks
[16].

Gurobi Optimizer v7.0.2 is chosen to solve the MIQP op-
timization problem. We run the software in the Matlab envi-
ronment on a server with 4 Intel® Xeon® processors with a
CPU clocked at 2.4 GHz. The parameters settings of Gurobi
are: TimeLimit 50 and IterationLimit 200. For initialization
by the proximal method, the number of iterations is also set
to 200. The coefficient to decrease M is set to p = 2.5.
For comparative purpose, the popular dictionary learning al-
gorithms K-SVD with OMP [16], its proximal version [9],
and the proposed method are executed under the same condi-
tions, namely the total number of iterations in K-SVD is set
to 30.

The experiments are conducted using two different set-
tings: large-scale (global) dictionary learning and adapted
dictionary learning, as detailed below. For denoising some
given Y, two reconstruction models are investigated for this
purpose, the direct one uses the conventional direct recon-
struction model R

Y = DX, (11)

and the one proposed by Elad and Aharon in [16] with
~ -1, -
V= (AI+ZRiTjRij) ()\Y+ZRiTijij), (12)
ij ij

where the matrix R;; is the matrix extracting the (i, j)-th
block from the image, and ) is set to 30 /0 as recommended in
[16]. To assess the quality of the denoising, the peak signal-
to-noise ratio (PSNR) is considered.

4.2. Large-scale (global) dictionary learning

In this setting, a single global dictionary is learned for all the
original images. More than ¢ ~ 3.5 x 10* overlapping patches
of size n = 8 x 8 from all the images are extracted to get a
single training dataset which forms the signals matrix Y. The

"http://sipi.usc.edu/database/database.php?volume=misc



(a) Barbara

(b) Cameraman

(c) Elaine

(d) Lena

Fig. 1: Images under study from the USC-SIPI Image Database

number of the atoms is set to p = 100 and the sparsity level
is T' = 20 (these parameters are determined by preliminary
experiments). We do not take any assumption on the noise
level. To assess the relevance of the obtained dictionary, tests
are conducted on noisy images Y.

4.3. Adapted dictionary learning

In this setting, the dictionary is trained on the corrupted im-
age under scrutiny. By considering the time consumption, a
segment of size 121 x 121 in the images is selected. As in
the first experiments, the signal matrix is created in the same
way using overlapping patches. For each corrupted image, an
adapted dictionary is trained and used for denoising it.

This setting is exactly the one proposed in [16], namely
the knowledge about the noise level o is used for restrict-
ing the reconstruction error in the dictionary training, as pre-
sented with the constraint in

min [xlo  subjectto iy = x|} <.

where € = ¢no? with ¢ = 1.15 for OMP, as recommended
in [16]. These values, initially optimized for OMP, are used
here for proximal method and MIQP, thus putting our method
in a non favorable situation. Indeed, it is easy to make OMP
satisfies the constraint by measuring the reconstruction er-
ror each time after adding a non-zero entry; The proximal
method searches for the Pareto optimal when the sparsity
level varies [17]; MIQP keeps all the signals in the constraint
based on the decided sparsity of initialization obtained by
the proximal method. As in the first setting, 7" is set during
training to 20 for the proximal and MIQP methods. The
number of atoms is chosen from a set of 14 candidate val-
ues {50, 55, ...,110, 150, 200, 256, 300}, enclosing the most
used values in the literature, obtaining 256 for OMP as sug-
gested in [16] where extensive experiments were conducted.

4.4. Results

The reconstruction accuracy is given in Table 1. These re-
sults show that the proposed method outperforms OMP and

proximal methods in a high noise level. For the large-scale
(global) dictionary learning setting, MIQP provides important
enhancements, with an average improvement of 1.79 with re-
gard to the proximal method and 3.73 with regard to the OMP
algorithm. For the adapted dictionary learning setting, the av-
erage improvement is 0.44 with regard to OMP, which is im-
portant in the logarithmic-scale PSNR (e.g. it is greater than
the refinement of (12) compared with (11)). It is worth not-
ing that the enhancement is significant since, the parameters
were optimized for OMP. According to the experiments, we
can conclude that MIQP can reconstruct the signal more ac-
curately with a high tolerance to noise.

In despite of its performance, the proposed MIQP method
has a high computational complexity in implementation.
Since we have different sizes of the training data in each set-
ting (global or adapted), training time is not comparable. In
the following, we focus on the average time of reconstruction
of a single image. Comparing with a couple of minutes for the
reconstruction of an image by OMP or the proximal method,
MIQP needs about one hour. However, recent advances in
MIQP solvers allow to reduce this gap, as explained in next
section.

5. CONCLUSION AND FUTURE WORK

In this paper, the K-SVD algorithm was revisited by propos-
ing the exact optimization method MIQP for sparse coding.
Thanks to recent advances in linear programming techniques,
as well as more powerful hardware, the speed of computa-
tion of MIQP has been greatly improved. Furthermore, by
introducing additive constraints and an appropriate initializa-
tion, it was proved that it is feasible to use MIQP for sparse
coding to redefine the K-SVD algorithm, and apply it in im-
age processing. Though, the MIQP method had much more
computational cost compared with the approximate methods,
the feasibility of the method was proved on well-known im-
ages. Moreover, the image denoising experiments showed the
advantage of the proposed MIQP method. Furthermore, the
high noise-tolerance of our method was demonstrated on both
the large-scale global and the adapted dictionary learning set-
tings.



Table 1: Accuracy of the reconstruction in terms of the PSNR (the higher, the better)

Image Barbara Cameraman Elaine Lena Man Average over the five images

Method OMP Prox MIQP OMP Prox MIQP OMP Prox MIQP OMP Prox MIQP OMP Prox MIQP OMP Prox MIQP

Large-scale dictionary learning, 19.71 20.71 2273 19.46 2111 22.30 19.73 22.87 24.20 19.79 22.12 24.20 19.68 21.26 23.59 19.67 21.61 23.40
reconstruction with (11)

Large-scale dictionary learning, 20.03 21.03 23.05 19.78 2143 22.62 20.05 23.19 24.52 20.11 22.44 24.52 20.00 21.58 2391 19.99 21.93 23.72
reconstruction with (12)

Adapted dictionary learning 22.04 22.54 22.59 22.54 22.49 22.58 23.00 23.29 23.39 2248 23.08 23.09 21.23 21.70 21.86 2225 22.62 22.70
(e optimized for OMP)

The major contribution of this paper is demonstrating that
one can solve the exact £y optimization problem in dictionary
learning for real images. While the computational complex-
ity remains its Achilles heel, great improvements are being
carried out these days on MIQP solvers; the new Gurobi Op-
timizer v8.0, released a couple of days prior to the submission
of this paper, is more than 220% faster’ on MIQP problems
than the one used in this paper. Moreover, an implementation
on GPU, currently unavailable in off-the-shelf solvers (e.g.
Gurobi, CPLEX), will certainly provide great improvements.

As for future work, we will address the problem of com-
putational complexity by using recently proposed convex re-
formulation [18]. Furthermore, we will extend this work be-
yond K-SVD to deal with classification and segmentation.
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