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Abstract. Gear wear is hard to monitor in lifting cranes due to the
difficulties to provide appropriate models of such complex systems with
varying functioning modes. Statistical machine learning offers an elegant
framework to circumvent these difficulties. This work explores recent ad-
vances in statistical machine learning to provide a data-driven model-free
approach to monitor lifting cranes, by investigating a large number of in-
dicators extracted from vibration signals. The principal contributions of
this paper are twofold. Firstly, it explores the recently introduced Neigh-
bor Retrieval Visualizer (NeRV) method for nonlinear information re-
trieval. The extracted information allows to construct a low-dimensional
representation space that faithfully depicts the evolution of the system.
Secondly, it proposes a simple and efficient detection method to detect
abnormal evolution and abrupt changes of the system at hand, using the
distance measure with neighborhood retrieval in the same spirit as NeRV.
The relevance of the proposed methods, for visualizing the evolution and
detecting abnormality, is demonstrated with experiments conducted on
real data acquired on a lifting crane benchmark operating for almost two
years with more than fifty indicators extracted from vibration signals.

Keywords: nonlinear information retrieval, neighbor retrieval visual-
izer, dimensionality reduction, gear wear monitoring, monitoring lifting
cranes, detect abnormal evolution, abrupt change detection

1 Introduction

Early failure detection in machinery and industrial processes is essential to avoid
abrupt disastrous breakdown. Many industrial facilities with motor-driven equip-
ments are critical, and failures can harm equipments, environment, and person-
nel. This is the case in power plants, petrochemical industries, aerospace and
military equipments [4, 13]. To assess the running conditions of motor-driven
systems, non-invasive monitoring and diagnosis techniques have been increas-
ingly investigated by researchers in both academic and industrial domains [16].
Vibration, acoustic emission, and supply current signals have been heavily ex-
plored to monitor such machines [17].
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Crane winches are extensively used in most construction sites and many in-
dustrial applications, owing to the highly reliable electromechanical power [14,
2, 1]. Since early fault detection is essential to the safety of equipment and per-
sonnel, the assessment of the running conditions of a crane winch is crucial. Due
to the reduced vibrational energy of gear wear, its detection is difficult as op-
posed to tooth crack or other localized faults. This paper presents a case study
of a lifting crane winch, including an induction motor and a multistage epicyclic
gearbox, with a dynamic load where an accelerated life test is conducted [5]. To
this end, more than fifty “indicators” are extracted from the vibration signal,
computed in both “up” and “down” operational modes of each cycle.

This paper explores recent advances in statistical machine learning to pro-
vide a data-driven model-free approach to monitor gear wear, by investigating
multiple indicators extracted from several sensors installed on the lifting crane
under study. For this purpose, the information retrieval is first studied in order
to extract information that allows to represent, in a two-dimensional space, the
data living in the high-dimensional space of more than fifty “indicators”. While
conventional dimensionality reduction techniques, such as Principal Component
Analysis (PCA) [12] and Multidimensional Scaling (MDS) [3], are not appro-
priate for nonlinear information retrieval as depicted in many research papers,
this work explores the recently introduced Neighbor Retrieval Visualizer (NeRV)
method for nonlinear information retrieval [18]. The second contribution of this
paper is a novel unsupervised classification method to detect abnormal evolution
and abrupt changes of the system at hand. To this end, a simple and efficient
technique is proposed using the distance measure with neighborhood retrieval in
the same spirit as NeRV. Finally, the relevance of the proposed methods, for in-
formation retrieval and abnormality detection, is established with experiments
conducted on the aforementioned real data from the lifting crane benchmark.
Comparative analysis is conducted with the state-of-the-art novelty detection
with kernel principal component analysis (KPCA) [7].

The rest of the paper is organized as follows. The following section presents
the investigated information retrieval method. The proposed novelty detection
method is described in Section 3. Section 4 demonstrates the relevance of these
methods with experimental results on real data extracted from the lifting crane
winch under study. Section 5 concludes this paper.

2 Nonlinear Information Retrieval for Visualization

Consider N samples, x1,x2, . . . ,xN , living in an input space X ⊂ IRd. Informa-
tion retrieval consists of extracting from each sample xi ∈ X , for i = 1, 2, . . . N ,
some relevant information represented by yi in some lower-dimensional space

Y ⊂ IRd′ , also called output space, with d′ � d. When d′ = 2, the output space
can be viewed as a visualization of the data in a two-dimensional space, namely
representing x1,x2, . . . ,xN with y1,y2, . . . ,yN ∈ Y. Therefore, information re-
trieval is related to dimensionality reduction.
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Fig. 1. Illustration of error types in information retrieval for visualization

Many dimensionality reduction methods have been proposed in the litera-
ture, since several criteria have been put forward by preserving some measure in
both spaces. Conventional methods, such as MDS and PCA, rely on preserving
the similarity or dissimilarity between pairs of samples in the input and out-
put spaces, namely between (xi,xj) and (yi,yj) for all i, j = 1, 2, . . . , N . Many
research papers have demonstrated that these methods are not suitable for non-
linear information retrieval. See for instance [6, 18] and references therein. As
advocated in these references, the preservation of the neighborhood relationship
as a similarity measure provide an appropriate nonlinear information retrieval.
To this end, several methods have been recently introduced, the most known are
Stochastic Neighbor Embedding (SNE) [6], with all its variants such as t-SNE,
and Neighbor Retrieval Visualizer (NeRV) [18]. The latter is described in the
remainder of this section.

A conventional approach to define neighborhood is the binary definition
namely, for any xi ∈ X and its counterpart yi ∈ Y, it determines which sam-
ples are in its neighborhood in the input and output spaces, respectively. Let
Pi denote its neighborhood in the input space X , namely the set of samples
that are the closest to xi, and let |Pi| be its cardinality, namely the number of
neighboring samples. Analogously, let Qi be the neighborhood of the sample yi
in the output space Y, and |Qi| its cardinality.

In the following, the optimization problem is defined, the goal being that
y1,y2, . . . ,yN are determined such that the neighborhood of each yi is similar
to the one of its counterpart xi in the input space X . Let NTP,i be the number
of samples that are in both Pi and Qi (i.e., “true positives”), NFP,i be the
number of samples that are in Qi but not in Pi (i.e., “false positives”), and
Nmiss,i be the number of samples that are in Pi but not in Qi (i.e., “misses” or
“false negatives”). These numbers are interrelated, since it is easy to see from
Fig. 1 that NTP,i = |Pi| −Nmiss,i and NTP,i = |Qi| −NFP,i. In order to have a
relevant information retrieval, one needs to minimize jointly NFP,i and Nmiss,i

for all the samples. By considering the formalism from information retrieval
and pattern recognition, the concepts of precision and recall are used in the
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following. The precision (also called positive predictive value) is the proportion
of relevant samples to the number of the retrieved samples, namely NTP,i/|Qi|.
The recall (also called sensitivity) is the proportion of relevant retrieved samples
to the number of relevant samples, namely NTP,i/|Pi|. Finally, by averaging
these two measures over all the samples with the expectation operator E(·) over
i = 1, 2, . . . , N , one gets the mean precision and mean recall to be maximized
jointly.

The combination of the “binary” definition of the neighborhood with a hard
thresholding and the aforementioned objective functions has several drawback.
Indeed, the former does not take into account levels of neighborhood, and the
latter do not penalize the violation of the ordering of neighbors. Moreover, the
resolution of the two objective functions (mean precision and mean recall) is
difficult to carry out since such optimization problems are ill-posed with an
infinite number of solutions.

To overcome all these difficulties, a continuous definition of the neighborhood
is considered in the following, by defining probabilistic neighborhoods in both
input and output spaces. Given some xi ∈ X , its neighborhood in terms of any
xj is defined with the following probabilistic model of neighborhood:

pj|i =
exp

(
− 1
σi
‖xi − xj‖2X

)
∑
k 6=i exp

(
− 1
σi
‖xi − xk‖2X

) . (1)

Likewise for its counterpart yi ∈ Y, the probabilistic model of neighborhood in
the output space is defined as

qj|i =
exp

(
− 1
σi
‖yi − yj‖2Y

)
∑
k 6=i exp

(
− 1
σi
‖yi − yk‖2Y

) . (2)

In these expressions, ‖ · ‖X and ‖ · ‖Y denote the distances defined in the
input and output spaces, respectively (without loss of generality, the Euclidean
distance is considered in both spaces). The bandwidth parameter σi allows to
control the scale of neighborhood of the i-th sample, with the same value set for
both input and output spaces.

Since the neighborhoods in both input and output spaces are defined as
distributions with a probabilistic model, it is natural to consider the Kullback-
Leibler (KL) divergence, defined for the i-th sample by

D(pi, qi) =

N∑
j=1
j 6=i

pj|i log
pj|i

qj|i
and D(qi, pi) =

N∑
j=1
j 6=i

qj|i log
qj|i

pj|i
. (3)

The KL divergences D(pi, qi) and D(qi, pi) are called respectively smoothed pre-
cision and smoothed recall (see Appendix A in [18] for connections to the afore-
mentioned precision and recall definitions). Finally, averaging over all the sam-
ples, one gets the mean smoothed precision E(D(qi, pi)) and the mean smoothed
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recall E(D(pi, qi)). It turns out that these two terms are antagonist in general.
One elegant way to overcome this issue is the aggregated cost function using a
convex combination, namely λE(D(pi, qi)) + (1 − λ)E(D(pi, qi)), which is esti-
mated over the set of N samples, as

λ

N∑
i=1

N∑
j=1
j 6=i

pj|i log
pj|i

qj|i
+ (1− λ)

N∑
i=1

N∑
j=1
j 6=i

qj|i log
qj|i

pj|i
.

The parameter λ ∈ [ 0 ; 1 ] controls the tradeoff between mean smoothed precision
and mean smoothed recall When λ = 1, the SNE cost function is obtained
[6]. The above cost function is minimized using a standard conjugate gradient
algorithm.

3 Proposed Detection Method

This section introduces a novelty detection algorithm based on the distances and
neighborhoods, thus in the same spirit as the method described in Section 2. For
this purpose, the detection rule is applied on the extracted information. Since
the “up” and “down” operational modes are naturally different, a detector is
considered for each mode. For the sake of clarity and conciseness, one of the two
detectors is described next.

To learn the detector and its parameters, the first Ntr samples are considered
as training data, where Ntr is fixed by the experts under the condition that the
samples were acquired from the system in “faultless” normal operating state. In
our case, experts have determined that the system was in its normal operating
state prior to cycle #25000. With some abuse of notation, let y1,y2, . . . ,yNtr

be the training samples for the mode under scrutiny (i.e., “up” or “down” ).
The main idea of the proposed detection method is to compute the distance

of a given sample to the training samples, and compare it to a threshold in order
to determine if the sample is abnormal or not. The detection technique consists
of two stages. The first one is the training stage, where the parameters are
estimated, namely the detection threshold. Based on the set of training samples,
the threshold is set as follows

s = max
i=1,...,Ntr

min
j=1,...,Ntr

j 6=i

‖yi − yj‖Y . (4)

The second stage is the decision, namely detecting if a given sample is from an
abnormal event or the normal operating state. When dealing with some sample
yi, the decision rule consists in computing its distance to its nearest neighbor
from the training samples, and comparing it to the above threshold, namely

min
j=1,...,Ntr

‖yi − yj‖Y
abnormal

≷
normal

s. (5)

In order to reduce the false alarm, the temporal information is considered by
setting a sliding window as follows: an abnormal event is detected if three con-
secutive samples have distances that exceed the fixed threshold.
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4.  The Benchmark 
 
4.1 Test bench 
 
Figure 3a shows a global view of the lifting crane used in the accelerated lifetime 
test. Several types of signals are acquired from this benchmark. Figure 3b shows 
the instrumentation details used for acquiring vibration signals. The electric signal 
of the lifting crane are acquired (see Figure 3c) using three clamps for motor 
supply current measurements (Figure 3c - Left) and three differential probes for 
motor voltage measurements (Figure 3c - Right). 
Concerning the winch operation, a cycle lifts the load for 65 or 70 seconds. When 
the load reaches the top, the winch stops for the duration of a “high stop   time”. 
The load is then lowered, after which the winch stops for a “low stop   time”.  
Figure 4 shows the operation theory of the winch with a maximum load. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3: Benchmark  of  the  lifting  crane  ‘Accelerated  Lifetime  Test’:  (a) General view; (b) 

Accelerometer Tri-axe (Gear side); (c) (Left) The clamps for motor supply currents 
measurement, (Right) The differential probes for motor voltages measurements 

 
Figure 4: Winch operation scheme with a maximum load 

(a) 

Winch drum Motor Break 
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8events/cycle 
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(c) 

Tri-axe Accelerometer (Gear side) 
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descent rest

period period period period

From Sept.’08
1515 3600 65 27 3600 65 60

to April’10
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6125 1526 70 35 1965 72 60

to April’15

Fig. 2. Left: Overview of the lifting crane winch. Top-right: Winch operation scheme,
with an “up” mode and a “down” mode interlaced with rest periods. Bottom-right:
The two settings considered in the accelerated life test, with the load (in kg), the speed
(in rpm) and the living and rest periods (in seconds) for both modes.

4 Experiments on the Lifting Crane Winch

This section provides experimental results to assess the relevance of the proposed
methods. But before, it presents the benchmark of the lifting crane winch, its
operational modes, and the extracted indicators/signals.

4.1 The benchmark

An overview of the crane winch is shown in Fig. 2(left), where the mechanical
system is outlined with the most distinguished components, including the mo-
tor, the break system, the wrench drum. The motor is a three-phase induction
motor. The motor is analyzed with vibration signals acquired with a tri-axial
accelerometer positioned on the bearing housing at the gear side to monitor
the transmission gearbox. In addition, a key phasor (8 events per cycle) is also
installed on the motor shaft to get the motor rotor rotation speed.

The winch operation with its “up” and “down” modes is illustrated in
Fig. 2(top-right). In order to acquire reliability information quickly, an accel-
erated life test is operated [5]. Two settings are used, a moderate load and a
high speed applied to the winch for the first 20 months of operation, followed by
a high load operation and a reduced speed, applied till the end of the test. See
Fig. 2(bottom-right) for more details.

The signals and indicators are extracted as follows. From all the cycles, a
large number of signals were discarded due to technical issues in the acquisition
and low signal to noise ratio. The retained signals yielded 1141 samples for the
“up” mode and 1138 for the “down” mode. For each sample, a set of 54 in-
dicators were extracted, including indicators from the time domain (e.g. RMS,
skewness, kurtosis and crest factor), from the frequency domain (i.e., from ap-
propriate frequency bands associated to the rotating parts), and from amplitude
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Fig. 3. Visualization in a two-dimensional space of the samples with the subset of
relevant indicators (left panel), and the evolution in time of the first (top-right) and
second (bottom-right) coordinates. Samples are shown from the “up” (in red ·) and
“down” (in blue ·) modes, and the phases denoted by “1”, “2” and “3” for each mode.

and frequency modulation functions (investigates further the structure of the
system under scrutiny). See [2] for more details. The indicators were computed
from the stationary part given by the interval [3, 35] seconds for the “up” mode
and [28, 50] seconds for the “down” mode. In the following, two different settings
are confronted, one using all 54 indicators and one using a subset of “pertinent”
indicators as recommended in [2].

4.2 Information retrieval and visualization results

The algorithm described in Section 2 was applied on the training samples ac-
quired up to cycle #25000, where the estimated parameters set to λ = 0.1 and
σ = 40 obtained from a grid search over a set of candidate values {10, 20, 30, ...}.
Fig. 4(left panel) shows the obtained representation in two-dimensions. In order
to understand the dynamics of the evolution of the samples, Fig. 4(top- and
bottom-right) presents separately the first and second coordinates as a function
of the cycle number. As depicted in the figure, one can recognize three phases
of evolution of the system, in both “up” and “down” modes (represented with
red and blue dots, respectively), associated to the state of the training data
(phase “1”), a transitional phase (phase “2”) and the last phase related to the
second setting of high-load/low-speed (phase “3”).

4.3 Detection results

This section studies the relevance of the proposed method for detecting abnormal
evolution, essentially from phase “1” to “2” and within each phase. As described
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“up” mode “down” mode

Fig. 4. Results of the detection method on the pertinent indicators, for the “up” (left
panel) and “down” (right panel) modes, where s denotes the threshold and distance is
the measured minimum distance of each sample to the training samples.

in Section 3, the “up” and “down” modes are considered separately, each having
a detector with its threshold. Investigating the subset of pertinent indicators,
Fig. 4 shows the threshold s (in red) and the evolution of the distance rule
for each sample (in blue), as given in (5). This rule allows to detect changes in
regime between cycles #31139 and #31263 in the “up” mode, and between cycles
#25375 and #31128 in the “down” mode. By using a sliding window to smooth
the decision on three consecutive samples, one gets the range [#31126, #31128]
for both modes. Fig. 4.3 shows the results obtained when all the indicators are
used, showing larger variations at the last phase.

Finally, the performance of the proposed detection method is studied and
compared to the state of the art. To this end, the well-known novelty detec-
tion with KPCA [7] is investigated. This method consists in defining a relevant
subspace using the KPCA algorithm (a nonlinear variant of the PCA) and the
novelty detection rule is based on the distance of the samples to this subspace.
It is worth noting that this detection method has similar performance as one-
class support vector machines and support vector data description [15]. To be
comparable, a sliding window is used to smooth the decision as in the proposed
method. Table 1 gives the range of first detected cycles for each method. It is
easy to see that the proposed method detects the same cycles as KPCA, without
the cumbersome computational complexity required for KCPA.

5 Conclusion and Future Work

This paper proposed the use of a nonlinear information retrieval method to
represent data in a two-dimensional space, as well as representing the evolu-
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“up” mode “down” mode

Fig. 5. Results of the detection method on all the indicators. Same legend as Fig. 4.

Table 1. Detection performance in terms of range for first detection cycles, when deal-
ing with all indicators or only pertinent ones. The proposed detection method provides
results that are comparable to the kernel principal component analysis (KPCA).

Proposed method Detection with KPCA

Pertinent indicators [#31126,#31128] [#31126,#31128]

All indicators [#27375,#27750] [#27375,#27625]

tion in time. Based on the extracted information, it described a novel detection
method using distance and neighborhood information in order to monitor ab-
normal events. With its low computational complexity, the proposed method
provided relevant results compared to the state-of-the-art detection method.

For future work, we will examine the relevance of these methods on supply
current signals. We also want to revisit them in an online setting, namely having
a new sample at each instant. To this end, two issues need to be addressed. On
one hand, we will use the pre-image framework to overcome the out-of-sample
issue in dimensionality reduction [11], as described in [10] for the conservation
of similarity measures in both input and output spaces. On the other hand, an
online sparsification criterion will be used to control the model order [9], in order
to provide an online detection algorithm in the same spirit as [8].
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