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Abstract

Although it has been experimentally reported that speed variations is the optimal way

of optimizing his pace for achieving a given distance in a minimal time, we still do not

know what the optimal speed variations (i.e accelerations) are. At first, we have to check

the hypothesis that human is able to accurately self-pacing its acceleration and this even

in a state of fatigue during exhaustive self-pacing ramp runs. For that purpose, 3 males

and 2 females middle-aged, recreational runners ran, in random order, three exhaustive

acceleration trials. We instructed the five runners to perform three self-paced acceleration

trials based on three acceleration intensity levels: "soft", "medium" and "hard". We chose a

descriptive modeling approach to analyse the behaviour of the runners. Once we knew that

the runners were able to perceive three acceleration intensity levels, we proposed a mean-

reverting process (Ornstein-Uhlenbeck) to describe those accelerations: dat = −θ(at −a)dt+

σdWt where a is the mean acceleration, at is the measured acceleration at each time interval
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t, θ the ability of the runner to correct the variations around a mean acceleration and σ the

human induced variations. The goodness-of-fit of the Ornstein-Uhlenbeck process highlights

the fact that humans are able to maintain a constant acceleration and are able to precisely

regulate their acceleration (regardless of its intensity) in a run leading to exhaustion in the

range from 1 minutes 36 seconds to 20 minutes.
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1 Introduction

Endurance running is considered to have played a major role in human evolution. Humans

have developed the ability to fine-tune their running speed in order to run for several days and

still catch their fastest prey [1]. Indeed, it has been reported that speed variation is the ideal

way of optimizing its pace for achieving a given distance in a minimal time [2, 3, 4, 5, 6, 7,

8, 9]. Hence, the rate at which the velocity of a body changes with time requires positive and

negative accelerations and then strength variations according to Newton’s second law of motion.

However, there is a direct relationship between force impulse and running acceleration [10] and the

minimum-jerk model [11] predicts that to save energy and optimize performance, running must

be as smooth as possible and variations in acceleration must be close to 0 m.s−3. Furthermore,

there is a clearly non-random speed fluctuation during self-paced exercise [12, 13, 14, 15]. It has

been suggested that speed variability operates through a feed forward mechanism [16] and we

know that most of the races are stochastic when the velocity is not imposed [17]. Despite the

large published body of work on pacing strategy and speed control, this is the first study to have

examined acceleration control during running. We know that the fastest runners on middle and

long-distance run with light speed variations [18, 19, 20]. Now that sensors make the recording

of acceleration data easy, we would like to check if humans are able to integrate instructions in

acceleration. The purpose is to take part in a runner’s training and race in future studies. Given

the fact that we are looking for a stochastic process to describe the ability for humans to maintain

a constant acceleration and the hypothesis that self-paced accelerations lightly fluctuate around a

constant value, we thought about the Ornstein-Uhlenbeck process [21]. Such process is described

as a stochastic process with a mean-reverting property. The use of Ornstein-Uhlenbeck process
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is present in fields such as mathematical finance [22] (volatilities of asset prices and dynamics of

interest rates) and biological processes [23]. Before going deeper in the effective mechanism of

speed variation control during exhaustive exercise, we have to verify human’s ability to maintain

constant acceleration in a conscious way until exhaustion. The present study tests the hypothesis

whereby humans are able to maintain a constant acceleration in a self-paced trial with no external

cues regardless of the speed and the magnitude of acceleration and fatigue. For that purpose,

we study more specifically the following two points:

(1) The ability for humans to maintain three different intensity levels of constant acceleration

when so instructed. Those three intensities are described as "soft", "medium" and "hard" which

are the instructions we gave to the runners for respectively a slow, a medium and a hard constant

acceleration.

(2) The characterization of the acceleration data by introducing a new interpretation using a

mean-reversing process (Ornstein-Uhlenbeck).

The paper is organized as follows. Section 2 describes the experimental protocol and presents

the mathematical model. Section 3 compares the three acceleration intensities for each runner to

see if we notice a genuine difference and gives an estimation of the parameters of the Ornstein-

Uhlenbeck model for characterizing human accelerations. Finally, section 4 and 5 conclude the

paper.

2 Methods

2.1 Subjects

The study population is composed of three males and two females recreational runners (aged

38 ± 3 yrs., total running distance per week: 36.1 ± 4.3 km; body weight: 66.9 ± 12.4 kg and

height 171.1 ± 6.7 cm). All subjects were first informed of the risks and constraints associated

with the protocol and gave their written, informed consent to participation. The present study

conformed to the precepts of the Declaration of Helsinki and all procedures were approved by

the local investigational review board (Saint Louis Hospital, Paris, France). On a physiological

aspect, we cannot compare openly males and females. Given this fact plus the sample size of the

study, we choose to focus on a descriptive modeling approach to analyse the runner behaviours.

No statistical tests will be applied.
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2.2 Experimental Design

Subjects ran alone and performed three types of track sessions until exhaustion, in random order

and with a one-hour interval between sessions: the first, second and third track tests were self-

paced acceleration trials at respectively slow, medium and high accelerations. We characterize

those accelerations as "soft", "medium" and "hard". Velocity and acceleration were measured

with a GPS-enabled accelerometer of 10 and 100 Hz the Minimax from Catapult Sports (Pty

Ltd, Victoria, Australia). The GPS and accelerometer signals were sampled at 5 and 50 Hz,

respectively, and averaged per second. The difference between the real distance (track) and the

recorded distance (GPS) was less than 1% and 0.92% over 800 m and 1500 m, respectively. This

result agrees with previous GPS studies for maximal efforts run by humans or horses [24, 25].

2.3 Acceleration trials

In the self-paced acceleration trial protocol, the runners performed three freely paced acceleration

sets in which they were asked to maintain constant acceleration by progressively increasing their

speed until exhaustion. The trials were run at three constant acceleration values, based on ratings

of perceived acceleration ("soft", "medium" and "hard"), in random order. In all of the the self-

paced acceleration trials, the runners started at an initial velocity between 2.2 and 3.05 m.s−1

and then increased their velocity at three different, constant accelerations ("soft", "medium" and

"hard" intensities). There was a one-hour interval between acceleration trials. In the self-paced

acceleration trials set, the runners were not provided with any external information other than

the distance covered. All tests were performed between 3pm and 6pm on wind-free, spring days

(< 2 m.s−1 according to an anemometer, the Windwatch from Alba, Silva, Sweden) with a

temperature of 20◦C, as in a previous study of the energetics of middle-distance running [26].

2.4 Mathematical Model

We know that most of the races are stochastic when the velocity is not imposed [17]. Our hypoth-

esis analyzing the measured data was that humans can maintain a constant acceleration with

little variations around a mean value. Therefore, we are characterizing the human acceleration

on self-paced exercises with three different instruction intensities ("soft", "medium" and "hard")

with a Ornstein-Uhlenbeck process. From the model to the simulation, this subsection explains

the method used for characterizing the runners self-paced acceleration when so instructed.
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2.4.1 The Ornstein-Uhlenbeck process

To assess the subjects’ ability to maintain self-paced, constant acceleration, we check that the

equation for constant-acceleration motion is satisfied. If the acceleration of the runner (a) is

constant then the runner’s speed at time t, denoted v(t), is a linear function of time v(t) =

v(0) + at, where v(0) = v0 is the initial speed. Here, v0 is within the range of 2.2 to 3.05

m.s−1. As a consequence, the distance d(t) covered at time t has a closed form obtained directly

by integration as d(t) = 0.5at2 + v0.t if we consider that d(0) = 0. Hence, the theoretical

relationship between distance and time is a polynomial of second order. As mentioned in the

introduction, in order to save energy and optimize performance, running must be as smooth as

possible (variation in acceleration must be close to 0 m.s−3) during self-paced exercise. In this

study, we want to see if the following analogy is possible: self-paced acceleration is as smooth as

possible during self-paced exercise. Let us denote a(t) the acceleration at time t. The objective

of the paper is to propose a reasonable stochastic model for a(t). Assuming that each runner

has an internal variability and an autocorrect ability, we define a(t) as the solution of:

da(t) = −θ[a(t)− a]dt+ σdW (t) (1)

The above equation is the definition of a mean-reverting process also called Ornstein Uhlenbeck

process. a(t) (m.s−2) is the acceleration of the runner at time t (s). a (m.s−2) is the mean

acceleration. We distinguish two human factors, θ depicting the autocorrect ability of the runner

(that is also the speed reversion parameter) and σ the human variability (that is also the short

term standard deviation). The stochastic nature of the model is brought by the Brownian motion

W (t).

A solution in terms of integral of a mean-reverting process can be written as the following

equation [27]:

a(t) = a(0)e−θt + a(1− e−θt) + σe−θt
∫ t

0
eθs dW (s) (2)

The three parameters a, θ and σ are unknown. The objective is to estimate them from the

data and to validate a posteriori the fit obtained with model (1). From equation (2), we would

like to highlight the fact that unlike the beginning of the current subsection (2.4.1), a(t) is not

consistent anymore. In addition a(t) and v(t) are not linear in time. The next subsection focuses

on the estimation of the parameters a, θ and σ from the data.
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2.4.2 Parameter estimation

Parameter estimation from discrete observation a(i∆) for i = 0, .., n can be performed by opti-

mizing a least square criteria. Indeed, we have

a(t) = e−θ∆ta(t−∆t) + (1− e−θ∆t)a+ σ

√
1− e−2θ∆t

2θ (W (t)−W (t−∆t)) (3)

Let us introduce a new parametrization: α = (1− e−θ∆t)a, β = e−θ∆t and γ = σ
√

1−e−2θ∆t
2θ

The least square criteria is then defined as (α̂, β̂) = argmin
(α,β)

n∑
i=1

(a(i∆)− βa((i− 1)∆)− α)2 and

γ̂2 = 1
n

n∑
i=1

(a(i∆) − β̂a((i − 1)∆) − α̂)2. The estimators correspond to the maximum likelihood

estimators. They are consistent, unbiased and asymptotically normal. The solution of α̂ and β̂

are explicit. The Fisher information matrix can be computed explicitly, that corresponds to the

asymptotic variance denoted
∑̂

.

To obtain the estimation of the original parameters, we use the following transformation: φ(α, β, γ) =

( α
1−β ,

−ln(β)
∆ , γ

√
( −2ln(β)

∆(1−β2) )). The estimator of (a, θ, σ) are then defined as (â, θ̂, σ̂) = φ(α̂, β̂, γ̂).

By the delta method, we can prove that their are asymptotically normal: (â, θ̂, σ̂) L→ N ((a∗, θ∗, σ∗),Jφ
∑̂
J ′φ)

where (a∗, θ∗, σ∗) are the true (unknown) parameters and Jφ is the Jacobian of φ. This allows

to compute confidence interval for (a, θ, σ).

3 Results

3.1 Comparison of the three different acceleration exercises

In order to know if humans are able to perceive different intensity levels of acceleration, we

instructed the five runners to perform three self-paced constant acceleration trials (see subsection

2.3). The result of the three trials for the first male runner is shown in Figure 1.

On each plot, the velocity corresponding to "hard" intensity has the highest slope, the "medium"

intensity has the medium slope and the "soft" intensity acceleration trial has the smallest one.

Results of the four other runners can be found in the appendix A, Figures 4, 5, 6, 7. Table 1

presents the distance and time at exhaustion for each runner and each trial.

The three different intensity levels are distinct for each runner. The times to exhaustion

are in the range 96 s (1 minute and 36 seconds) to 1 204 s (approximately 20 minutes). The

average time to exhaustion for "soft" intensities is 677.6 seconds (approximately 11 minutes and

6 seconds), for "medium" intensities is 368.6 seconds (6 minutes and 26 seconds) and for "hard"

intensities is 169.8 seconds (2 minutes and 49 seconds).
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Trial Final Distance (m) Final Time (s)

Soft Male 1 1120 409

Male 2 4403 1204

Male 3 1718 602

Female 1 1931 603

Female 2 1605 570

Average "Soft" 2155.4 677.6

Medium Male 1 888 296

Male 2 2359 595

Male 3 923 282

Female 1 1139 333

Female 2 1029 337

Average "Medium" 1267.6 368.6

Hard Male 1 491 143

Male 2 762 166

Male 3 436 96

Female 1 832 225

Female 2 756 219

Average "Hard" 655.4 169.8

Table 1 – Distance and Time at exhaustion for each runner and for each acceleration trial intensity:

"soft", "medium" and "hard"

Male 1 Male 2 Male 3 Average Males Female 1 Female 2 Average Females
soft

medium 1.26 1.87 1.86 1.66 1.70 1.56 1.63
medium
hard 1.81 3.09 2.21 2.37 1.37 1.36 1.37

Table 2 – Ratios of distances to exhaustion for "soft" vs. "medium" and "medium" vs. "hard" acceleration

intensities for each runner
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Figure 1 – Male Runner 1 - Top chart: Velocity (m/s) VS. Time (s); Bottom chart: Acceleration(m/s2)

VS. Time (s) - Comparison of the three acceleration intensity instructions: "soft" (blue curve), "medium"

(red curve) and "hard" (yellow curve)

Moreover the average ratios of the "Soft" to "Medium" instructions on "Distance" and "Time"

are respectively 1.65 and 2.22 and the average ratios of the "Medium" to "Hard" instructions on

"Distance" and "Time" are respectively 1.81 and 2.32. Tables 2 and 3 display those results. Note

that we do not apply any statistical test to determine the significativity of the three regimes

because of the low sample size (3 males and 2 females). This highlights the fact that humans are

able to feel three different intensities of acceleration and divide distance and time to exhaustion

from one intensity to another.

The fact that the three regimes are clearly distinct on the plot strengthens the idea that humans

are able to maintain at least three different intensities of acceleration.
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Male 1 Male 2 Male 3 Average Males Female 1 Female 2 Average Females
soft

medium 1.38 2.02 2.13 1.84 1.81 1.69 1.75
medium
hard 2.07 3.58 2.94 2.86 1.48 1.54 1.51

Table 3 – Ratios of times to exhaustion for "soft" vs. "medium" and "medium" vs. "hard" acceleration

intensities for each runner

3.2 Characterizing the human faculty to maintain a constant acceler-

ation

As shown before, we can consider that humans are able to perceive different intensity levels of

acceleration. The objective is how to characterize those accelerations. To do so, the Ornstein-

Uhlenbeck model (3) is applied.

The goal is to show that it is possible to characterize the human acceleration. We would

like to give an estimation and interpretation of the parameters of the Ornstein-Uhlenbeck model

(â, θ̂, σ̂) and their confidence interval. By applying the method described in subsection 2.4.2, we

have estimated â, θ̂ and σ̂ and the confidence interval for â. Results of the estimated parameters

and confidence intervals for â are shown in Table 4.

We observe the following two points from Table 4:

1. The mean autocorrect abilities (θ̂) of the runners are steady with a slight drop in the "Hard"

trial. This means that the runners are less able to correct their mistakes during the "Hard"

trials.

2. The human variability (σ̂) is steady too with a slight rise in the "Hard" trial. This could be

an answer to the drop of autocorrect ability. This means that the runner variability tends

toward increasing during "Hard" trial.

The next step consists in checking if our model could explain the reality. By its very nature,

an Ornstein-Uhlenbeck process is Gaussian. This property allows us to compute the quantiles

exactly. Once such confidence boundaries are computed, we check the percentage of the measured

acceleration data present inside.

Ratios of estimated acceleration for "soft" vs. "medium" and "medium" vs. "hard" acceleration

intensities in Table 5 seem to confirm the hypothesis that humans are able to distinct at least 3

intensities of acceleration.
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Trial â θ̂ σ̂ C.I

Soft Male 1 0.0036 1.9803 0.1188 [0.0032; 0.0039]

Male 2 0.0026 1.3763 0.0827 [0.0025; 0.0027]

Male 3 0.0046 1.4311 0.0868 [0.0044; 0.0048]

Female 1 0.0038 1.6404 0.0600 [0.0037; 0.0039]

Female 2 0.0033 1.4077 0.0713 [0.0031; 0.0035]

Average "Soft" 0.0036 1.5672 0.0839 -

Medium Male 1 0.0049 1.5569 0.1008 [0.0045; 0.0054]

Male 2 0.0040 1.2028 0.0818 [0.0037; 0.0042]

Male 3 0.0103 1.9777 0.1372 [0.0098; 0.0109]

Female 1 0.0066 1.6293 0.0565 [0.0063; 0.0068]

Female 2 0.0047 1.7663 0.0669 [0.0045; 0.0050]

Average "Medium" 0.0061 1.6266 0.0886 -

Hard Male 1 0.0172 1.0275 0.0982 [0.0159; 0.0185]

Male 2 0.0160 1.4493 0.1054 [0.0151; 0.0169]

Male 3 0.0253 0.7115 0.1400 [0.0213; 0.0293]

Female 1 0.0088 1.2892 0.0450 [0.0085; 0.0091]

Female 2 0.0065 1.3800 0.0907 [0.0059; 0.0072]

Average "Hard" 0.0147 1.1715 0.0958 -

Table 4 – Mean acceleration (â), autocorrect ability (θ̂) and human variability (σ̂) estimated for each

runner and for each acceleration trial intensity: "soft", "medium" and "hard" and confidence interval

(C.I) for â

Male 1 Male 2 Male 3 Female 1 Female 2 Average
soft

medium 0.73 0.65 0.45 0.56 0.70 0.62
medium
hard 0.28 0.25 0.41 0.75 0.72 0.48

Table 5 – Ratios of estimated acceleration for "soft" vs. "medium" and "medium" vs. "hard" acceleration

intensities for each runner
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In order to evaluate the validity of the mean-reverting process applied to acceleration, the

goodness-of-fit of the model has been tested in three steps:

1. Checking the ability of the Ornstein-Uhlenbeck model to distinguish three distinct mean

accelerations.

2. Checking for non autocorrelation of residuals with the Durbin-Watson test.

3. Testing for stationarity with the Augmented Dickey-Fuller (ADF) Test.

3.2.1 Checking the ability of the Ornstein-Uhlenbeck model to distinguish three

distinct mean accelerations

Let us now highlight the ability of our model to distinguish the three intensities of acceleration.

In order to do so, we use the delta method to compute a confidence interval for each estimated

acceleration â. The Figure 2 displays the three different estimated mean accelerations for the

male runner 1, symbolized by three dots. The 95 % confidence intervals for each estimated mean

acceleration have been plotted as well symbolizing by error bars. It appears that the suggested

Ornstein-Uhlenbeck model seems to distinguish three distinct mean accelerations: Figure 2 and

Figures 12, 13, 14, 15 for the four other runners show that the confidence intervals do not overlap.

However, because of the low sample size, this conclusion is purely descriptive. A statistical test

will be applied on the future on a larger dataset.
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Figure 2 – Male Runner 1 - Comparison of the three estimated mean accelerations

The Figure 3 shows the result of one simulation for the first male runner. We can distinguish

3 information per chart with two curves and one filled region on each chart. The black curve

(dotted) represents the measured data (i.e. measured accelerations), the red one (solid) represents

one random simulation of the Ornstein-Uhlenbeck model (equation (3) subsection 2.4) and the

filled region stands for the 95% confidence interval.

We can quickly observe that the confidence interval is consistent with the reality of our data

and that most of the recorded acceleration data seem to be inside the confidence interval. Results

for the four other runners can be found in appendix B, Figures 8 to 11.

To confirm that a significant amount of measured acceleration are inside the confidence bound-

aries, Table 6 shows that the values of percentages of measured data found in the 95% confidence

boundaries are above 92%. Thus the Ornstein-Uhlenbeck model described in subsection 2.4.2

seems to be consistent and could be used to describe the reality.

To go further, it would be interesting to perform self-paced acceleration following the same

protocol with first, more runners in order to check if there is a trend in the ratios, second,

splitting the runners into two categories (men and women) to check if there is a gender effect on

those ratios.
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Figure 3 – Male Runner 1 - From top to bottom: Soft, Medium and Hard Acceleration Intensities -

Measured data VS. Ornstein-Uhlenbeck model

Male 1(%) Male 2(%) Male 3(%) Female 1(%) Female 2(%)

Acceleration Soft 94.42 95.43 94.02 97.51 97.89

Medium 95.24 97.14 94.33 94.29 95.63

Hard 99.32 97.60 96.00 92.89 95.45

Table 6 – Results of percentages of measured data found in the 95% confidence interval for acceleration

for each trial and each runner.
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Male 1 Male 2 Male 3 Female 1 Female 2

Soft 0.94 0.33 0.89 0.95 0.21

Medium 0.86 0.33 0.84 0.82 0.96

Hard 0.52 0.63 0.008 0.61 0.29

Table 7 – p − values of Durbin-Watson statistic to check for autocorrelation among residuals for each

runner and for each acceleration trial intensity ("soft", "medium" and "hard")

3.2.2 Testing for non autocorrelation of residuals

In this subsection, we want to detect the presence of autocorrelation among residuals. In our

case, the residuals is a vector defined by the difference between our measured data a(t) and

the estimated acceleration parameter from the Ornstein-Uhlenbeck model (â). We perform the

Durbin-Watson statistic on the following linear regression:

a(t)− a(t−∆t) = θ̂(a(t)− â)∆t + η(t), (4)

where η(t) is the vector of residuals. If the model is correct, the residuals are independent and

their distribution follows a normal distribution described as follows: N (0, σ2∆t)

In order to perform the Durbin-Watson statistic, we define the null hypothesis (H0) as follows:

the residuals of the linear regression (4) are uncorrelated. The alternative hypothesis (H1) is

that there is autocorrelation among the residuals. In order to test H0 against H1, we used the

function dwtest1 from Matlab R©. The results of the test are shown in Table 7.

The range of p − value is included between 0.08 and 0.98. Given those results, we cannot

reject the null hypothesis stating that the residuals are uncorrelated.

3.2.3 Testing for stationarity

In this subsection, we test for no unit root and wether the process of acceleration is stationary

or not to insure that the estimated mean accelerations neither grow nor decrease over time. We

define the null Hypothesis (H0) as follows: the unit root is present in the measured acceleration

time series. The alternative hypothesis (H1) is defined as follows: the accelerations time series is

trend-stationary. In order to test H0 against H1, we used the function adftest2 from Matlab R©.

The results of the test are shown in Table 8. Given those results, we reject the null hypothesis

1See the documentation on dwtest: https://fr.mathworks.com/help/stats/dwtest.html
2See the documentation on adftest: https://fr.mathworks.com/help/econ/adftest.html
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Male 1 Male 2 Male 3 Female 1 Female 2

Soft < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03

Medium < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03

Hard < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03 < 1.0e-03

Table 8 – p− value of Augmented Dickey-Fuller static to check for stationarity for each runner and for

each acceleration trial intensity ("soft", "medium" and "hard")

stating that the simulation of acceleration is non-stationary.

4 Discussion

Our results showed that recreational runners are able to control their acceleration until exhaus-

tion at three significantly different accelerations values perceived to be "soft", "medium" and

"hard". Indeed, our data showed that runners are able to apply distinct, subjective acceleration

values when so instructed and maintain constant acceleration until exhaustion, regardless of the

acceleration value. In addition, our results showed that self-paced acceleration fitted the follow-

ing Ornstein-Uhlenbeck process dat = −θ(at − a)dt+ σdWt where a is the mean acceleration, θ

is the human ability for autocorrection, σ the human variation and at the measured acceleration.

Indeed, a fine-grain analysis of the data shows that accelerations are obtained by the applica-

tion of brief and frequent corrections designed to reach a mean target value a, and that there

is no drift in the accelerations. Moreover, the fact that there is no unit-root in the acceleration

time series shows that possible strong deviance from the mean value a are rapidly corrected and

vanishes by mean-reverting corrections. Further studies are now required for characterizing the

deceleration of a recreational runner.

Given the fact that this is the first study having examine the human ability to maintain self-paced

acceleration, we are going to discuss the two following points:

1. The self-paced acceleration range values compared with current use of acceleration protocols

in laboratory.

2. The possible mechanisms allowing humans to control its body acceleration in accordance

with prior results obtained on manual task.
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4.1 The self-paced acceleration range values compared with current

use of acceleration protocols in laboratory

The range of these perceived acceleration values is in accordance with observed values in middle-

distance running [28]. Furthermore, these freely chosen accelerations also correspond to the

imposed acceleration values frequently used in treadmill ramp protocols for determining VO2max

[29, 30]. In ramp protocols, the work rate is ramped up as a continuous increase and then a

continuous acceleration. Given that the linearity of the oxygen uptake response is a major

discriminating cardiovascular feature for assessing exercise intolerance, it is important to be sure

that the work rate profile is linear and then the acceleration is constant. That is why the tests

are currently performed on a treadmill. Even though manufacturers have developed a range

of technologies for enabling ramp tests (e.g. controlled cycle ergometer), some subjects have

difficulty walking and running on a treadmill and then reaching their maximum VO2 and speed

at VO2max. It has been argued that the treadmill use induces a higher maximum metabolic rate

and requires a mode of exercises that more closely approximates some activities of daily living

[31, 32]. In a much easier protocol, the present study shows that male and female middle-aged,

recreational runners were able to self-monitor acceleration and thus reproduced an outdoor ramp

protocol. Indeed, the present results showed that it is possible to apply a self-paced, ramp-like

running protocol on a real running track. Regardless of the acceleration intensity level ("soft",

"medium" or "hard"), the protocol uses a continuous change in speed and brings the subjects to

exhaustion in approximately 2 minutes and 30 seconds to 20 minutes; this meets the criteria for

clinical exercise testing issues by the relevant international organizations (American College of

Sports Medicine 2000, American Thoracic Society 2003, [33, 34, 35]).

4.2 The possible mechanisms allowing humans to control its body ac-

celeration in accordance with prior results obtained on manual

task

Here we showed that human are accurately able to accelerate smoothly and constantly, with

acceleration vs. time values close to 0 m.s−2 (even near to exhaustion). However, the question

of how acceleration is controlled remains to be determined. There is still no studies having worked

on the ability of self-pace its acceleration in locomotion. Therefore we can only discuss versus

prior studies on arm and hand movement in catching tasks. In that tasks, neurophysiologists have

demonstrated that the human brain imposes (in a top-down fashion) its rules of interpretation
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on sensory data. It transforms the perceived world according to rules of symmetry and stability

and kinematic laws derived from principles of maximum smoothness [36]. They hypothesized

that the first possibility was that humans can perceive distance very accurately [37]. It has

been proved that humans possess efficient mechanisms for building an abstract representation of

distances, which can be transferred from one perceptual context to another [37].

This paper seemed to show that whatever the variation in velocity, from "soft" acceleration

intensity level at 0.0026 m.s−2 to ten times that at 0.0253 m.s−2 in the "hard" acceleration

intensity level in self-paced acceleration trial, the acceleration was well controlled and steady,

with a human ability to autocorrect and a minimal jerk value. The concept of "jerk-cost" has

been validated for running and walking stride smoothness [38].

5 Conclusion

To the best of our knowledge, a human’s ability to maintain constant acceleration in a conscious

way until exhaustion has not yet been investigated. We therefore decided to test the hypothesis

whereby humans are able to maintain a constant acceleration, regardless of the velocity and the

magnitude of acceleration. Indeed, despite the large, published body of work on pacing strategy

and speed control (especially concerning feedback vs. feed forward power output control and

central vs. peripheral mechanisms), this is the first study to have examined acceleration control

during running.

The main findings of this research are as follows:

1. The measured data seemed to show that runners are able to apply at least three distinct

and subjective acceleration intensities when so instructed.

2. The measured data seemed to show that the runners tend towards reducing the time and

distance to exhaustion between the "soft" and the "medium" instruction as well as between

the "medium" and "soft" instructions.

3. The simulation using the Ornstein-Uhlenbeck process seemed to show that accelerations

are obtained by the application of brief and frequent corrections designed to reach a mean

target value a.

4. The simulation showed that the runners tend towards increasing the mean acceleration

between the "soft" and the "medium" instruction as well as between the "medium" and

"soft" instructions.
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Our results show that runners are able to control their acceleration until exhaustion at three

significantly different accelerations values perceived to be "soft", "medium" and "hard". According

to Newton’s Second Law, humans could control their force of motion as it is directly proportional

to the acceleration opening the door on future study related to human physiology and human

energetic. We can think of two research opportunities go further. One would be to study

the deceleration and see if humans are also able to control it. Once we successfully describe

both acceleration and deceleration with mathematical models, we could think about alternating

acceleration and deceleration phases to see how runners would react and study the sequence. The

other would be gathering data from many runners, both males and females, in order to establish

a predictive model for human acceleration. This could be done using Stochastic Differential

Mixed-Effects Equations.

Appendices

Appendix A
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Figure 4 – Male Runner 2 - Top chart: Velocity (m/s) VS. Time (s); Bottom chart: Acceleration(m/s2)

VS. Time (s) - Comparison of the three acceleration intensity instructions: "soft" (blue curve), "medium"

(red curve) and "hard" (yellow curve)

Figure 5 – Male Runner 3 - Top chart: Velocity (m/s) VS. Time (s); Bottom chart: Acceleration(m/s2)

VS. Time (s) - Comparison of the three acceleration intensity instructions: "soft" (blue curve), "medium"

(red curve) and "hard" (yellow curve)
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Figure 6 – Female Runner 1 - Top chart: Velocity (m/s) VS. Time (s); Bottom chart: Acceleration(m/s2)

VS. Time (s) - Comparison of the three acceleration intensity instructions: "soft" (blue curve), "medium"

(red curve) and "hard" (yellow curve)
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Figure 7 – Female Runner 2 - Top chart: Velocity (m/s) VS. Time (s); Bottom chart: Acceleration(m/s2)

VS. Time (s) - Comparison of the three acceleration intensity instructions: "soft" (blue curve), "medium"

(red curve) and "hard" (yellow curve)

Appendix B

21



Figure 8 – Male Runner 2 - From top to bottom: Soft, Medium and Hard Acceleration Intensities -

Measured data VS. Ornstein-Uhlenbeck model
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Figure 9 – Male Runner 3 - From top to bottom: Soft, Medium and Hard Acceleration Intensities -

Measured data VS. Ornstein-Uhlenbeck model
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Figure 10 – Female Runner 1 - From top to bottom: Soft, Medium and Hard Acceleration Intensities -

Measured data VS. Ornstein-Uhlenbeck model
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Figure 11 – Female Runner 2 - From top to bottom: Soft, Medium and Hard Acceleration Intensities -

Measured data VS. Ornstein-Uhlenbeck model

Appendix C
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Figure 12 – Male Runner 2 - Comparison of the three estimated mean accelerations
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Figure 13 – Male Runner 3 - Comparison of the three estimated mean accelerations
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Figure 14 – Female Runner 1 - Comparison of the three estimated mean accelerations
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Figure 15 – Female Runner 2 - Comparison of the three estimated mean accelerations
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