N

N
N

HAL

open science

Online prediction of time series data with kernels
Cédric Richard, José C. M. Bermudez, Paul Honeine

» To cite this version:

Cédric Richard, José C. M. Bermudez, Paul Honeine. Online prediction of time series data with kernels.
IEEE Transactions on Signal Processing, 2009, 57 (3), pp.1058 -1067.

hal-01965587

HAL Id: hal-01965587
https://hal.science/hal-01965587

Submitted on 4 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1109/TSP.2008.2009895 .


https://hal.science/hal-01965587
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XX XX 1

Online prediction of time series data with kernels

Cédric RichardSenior Member, IEEEJosé Carlos M. Bermude&enior Member, IEEE,
Paul HoneineMember, IEEE

Abstract—Kernel-based algorithms have been a topic of extensive bibliography [1] devoted to the theory of non-
considerable interest in the machine learning community linear systems. Unlike the case of linear systems which
over the last ten years. Their attractiveness resides in their can be uniquely identified by their impulse response,
elegant treatment of nonlinear problems. They have been ihere js a wide variety of representations to characterize
successfullyapplied to pattern recognition, regression and nonlinear systems, ranging from higher-order statistics,

density estimation. A common characteristicof kernel- o1 131 t . . thod 4
based methods is that they deal with kernel expansions e.g., [2], [3], to series expansion methods, e.g., [4],

whose number of terms equals the number of input data, [2]- TWO main types of nonlinear models have been
making them unsuitable for online applications. Recently, €xtensively studied over the years: polynomial filters,
several solutions have been proposed to circumvent this usually called Volterra series based filters [6], and neural
computational burden in time series prediction problems. networks [7]. The Volterra filters can model a large class
Nevertheless, most of them require excessively elaborateof nonlinear systems. They are attractive because their
and costly operations. In this paper, we investigate a gytput is expressed as a linear combination of nonlinear
new moglel reductl_o_n cr_|ter|on that makes computationally functions of the input signal, which simplifies the design
demanding sparsification procedures unnecessaryThe o0 jient hased and recursive least squares adaptive
increase in the number of variables is controlled by . . . . :
the coherence parameter, a fundamental quantity that algor.lthms. One of their primary d|sadvant'ages IS the
characterizes the behavior of dictionaries in sparse approx- considerable number of parameters to estimate, which
imation problems. We incorporate the coherence criterion go€s up exponentially as the order of the nonlinearity
into a new kernel-based affine projection algorithm for increases. With their parallel structure, neural networks
time series prediction. We also derive the kernel-based represent the ultimate development of black box model-
normalized LMS algorithm as a particular case. Finally, mg [8] They are proven to be universal approximators
experiments are conducted to compare our approach t0 ynder suitable conditions, thus providing the means to
existing methods. capture information in data that is difficult to identify
Index Terms—Adaptive filters, pattern recognition, non- using other techniques [9]. It is, however, well-known
linear systems, machine learning. that algorithms used for neural network training suffer
from problems such as being trapped into local minima,
slow convergence and great computational requirements.
Since the pioneering works of Aronszajin [10], Aiz-

YNAMIC system modeling has played a cruciaman et al. [11], Kimeldorf and Wahba [12], [13],

role in the development of techniques for statiofind Duttweiler and Kailath [14], function approxi-
ary and nonstationary signal processing. Most existifig@tion methods based on reproducing kernel Hilbert
approaches focus on linear models due to their inher&R@ces (RKHS) have gained wide popularity [15]. Recent
simplicity from conceptual and implementational pointgevelopments in kernel-based methods related to regres-
of view. However, there are many practical situation§ion include, most prominently, support vector regres-
e.g., in communications and biomedical engineering’®n [16], [17]. A key property behind such algorithms

where the nonlinear processing of signals is needed. $&#hat the only operations they require is the evaluation
of inner products between pairs of the input vectors.

Replacing inner products with a Mercer kernel provides

an efficient way to implicitly map the data into a high,

even infinite, dimensional RKHS and apply the original
C. Richard and P. Honeine are with the Institut Charles D@-Igorithm in this space. Calculations are then carried out
launay (FRE CNRS 2848), Laboratoire LM2S, Universite de techWithout making direct reference to the nonlinear map-
nologie de Troyes, 10010 Troyes, France (cedric.richard@uittffing of input vectors. A common characteristic in kernel-

paul.honeine@utt.fr). . . . .
J. Bermudez is with the Department of Electrical Engineerin based methods is that they deal with matrices whose size

Federal University of Santa Catarina 88040-900, Florianpolis, S%gl_lals the _number of data, making them unsuitable for
Brazil (j.bermudez@ieee.org). online applications. Several attempts have been made
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recently to circumvent this computational burden. A. RKHS and Mercer kernels

gradient descent method is applied in [18], [19], while & ot 3/ genote a Hilbert space of real-valued functions
RLS-like procedure is used in [20] to update the mod ) on a compact/ ¢ IRY, and let(-, )y be the inner
parameters. Each one is associated with a sparsificatbquuct in74. Suppose that the evaluation functiora|
procedure based on the matrix inversion lemma, Whigfifineq byLa[¢] £ ¢(u) is linear with respect ta(.)
limits the increase in the number of terms by including,4 boundela for alke in . By virtue of the Riesz

only kernels that significantly reduce the approximatioysresentation theorem, there exists a unique positive
error. These processes have reduced the computatioal inite functionw; — #(us,u;) in H, denoted by
1 iy Wy )

bgrden o_f the traditional approaches. N(-_zvertheless_, t_ / u;) and calledtepresenter of evaluatioat;, which
still require elaborate and costly operations, that limitS,;isfies [10]
their applicability in real-time systems.

In this paper, we investigate a new model reduc- Pluj) = (P(), k(- uy))n, VY EH 1)
tion criterion thatrenders computationally demandin(% _ _
sparsification procedures unnecessdiye increase in 107 eVery fixedu; < U. A proof of this may be found
the number of variables is controlled by the coherent®[10]- Replacingy(-) by (-, ;) in (1) yields
parameter, a fundamental quantity that characterizes the
behavior of dictionaries in sparse approximation prob-
lems. We associate the coherence criterion with a néwr all w;,, u; € U. Equation (2) is the origin of
kernel-based algorithm for time series prediction, callee now generic ternreproducing kernelto refer to
kernel affine projection (KAP) algorithm. We also derive:(-,-). Note that’H can be restricted to the span of
the kernel normalized LMS (KNLMS) algorithm as a(x(-,u) : u € U} because, according to (1), nothing
particular case. The paper is organized as follows. In tbatside this set affects(-) evaluated at any point of
first part, we briefly review some basic principles of nori/. Denoting byy(-) the map that assigns to each input
linear regression in RKHS. Next we show how to use the the kernel functions(-,«), equation (2) implies that
coherence parameter as an alternative criterion for mogék,;, u;) = (p(u;), p(u;))3. The kernel then evaluates
sparsification, and we derive its main properties. We théme inner product of any pair of elements@fmapped
incorporate it into our KAP algorithm, which includes aso H without any explicit knowledge of eithep(-) or
particular case the KNLMS algorithm. Finally, a set of{. This key idea is known as thieernel trick
experimentsllustrate the effectiveness of the proposed Classic examples of kernels are the radially Gaussian

k(g ug) = (K(wi), k(- ui))n )

method compared to other existing approaches. kernel r(u;,u;) = exp(—|lu; —u;|?/263), and the
Laplacian kernels(u;, w;) = exp(—|uwi —u;l[/fo),
Il PRINCIPLES OF NONLINEAR REGRESSION I With Bo > 0 the kernel bandwidth. Another example

RKHS which deserves attention in signal processing is ¢he
th degree polynomial kernel defined a$u;, u;) =
A possible way to extend the scope of linear mode{s,,o + ul uj)q, with 70 > 0 and ¢ € IN*. The nonlin-
to nonlinear processing is to map the input dafanto a ear functione(-) related to the latter transforms every
high-dimensional space using a nonlinear functe), observationu; into a vector ¢(u;), in which each
and apply linear modeling techniques to the transformgdmponent is proportional to a monomial of the form
data(u;). The model coefficients are then determinedy, ;)% (u; 5)** ... (u;,,)*» for every set of exponents
as the solution of the normal equations written for theatisfying 0 < SP_ k. < q. For details, see [23],
nonlinearly transformed input data. Clearly, this basjg4] and references therein. The models of interest then

strategy may fail when the image @(-) is a very correspond tg-th degree \olterra series representations.

high, or even infinite, dimensional space. Kernel-based

methods that lead manageable dimensions have been ) ) )

recently proposed for applications in classification arfet Nonlinear regression with Mercer kernels

regression problems. Well-known examples can be foundThe kernel trick has been widely used to transform

in [15], [21]. This paper exploits the central idea of thifinear algorithms expressed only in terms of inner prod-

research area, known as tkernel trick to investigate ucts into nonlinear ones. Examples are the nonlinear
new nonlinear algorithms for online prediction of timextensions to the principal components analysis [25] and
series. Next section briefly reviews the main definitiorthe Fisher discriminant analysis [26], [27]. Recent work

and properties related to reproducing kernel Hilbehias been focussed on kernel-based online prediction of
spaces [10] and Mercer kernels [22]. time series [18], [19], [20], the topic of this article. Let
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k:UxU — TR be a kernel, and lek be the RKHS as- and fixed-size approaches [17], [32], [33]. Truncation
sociated with it. Considering the least-squares approaahd approximation processes were considered in online
the problem is to determine a functiafn(-) of H that scenarios [29].

minimizes the sum of squared errors between samples The most informative sparsification criteria use ap-
d; of the desired response and the corresponding mogdebximate linear dependence conditions to evaluate

output sampleg)(u;) = (¢(-), k(-, u;)), namely, whether the contribution of a candidate kernel function
n can be distributed over the elements of the dictionary

min Z |d; — ¢(ui)|2_ (3) by adjusting their multipliersin [34], determination of
ver o the kernel function which is best approximated by the

[28] th@thers is carried out by an eigendecomposition of the
" Gram matrix. This process is not appropriate for online
applications since its complexity, at each time step, is
cubic in the sizen of the dictionary. In [20], the kernel
g function x(-,u,,) is inserted at time step into the
= ; 4 i P . o s
() jzla] ol ug) “) dictionary if the following condition is satisfied

By virtue of the representer theorem [12],
function ¢ (-) of H minimizing (3) can be written as
a kernel expansion in terms of available data

It can be shown that the problem (3) becomes mA}ﬂH’i(',un) - > yrtu )i =v,  (6)
ming, ||d — Kal?, where K is the Gram matrix whose W €Tn—1

(i,7)-th entry is #(u;, u;). The solution vectora i \yherex is a unit-normkernel, that is, i (wy, uy,) = 1 for
found by solving then-by-n linear system of equationsy| 4, . The threshold, determines the level of sparsity
Ka =d. of the model. Note that condition (6) ensures the linear
independence of the elements of the dictionary. A similar
[ll. A NEW MODEL REDUCTION METHOD criterion is used in [18], [19], but in a different form.
Online prediction of time series data raises the queifter updating the model parameters, a complementary
tion of how to process an increasing amount of obserauning process is executed to limit the increase in
tions and update the model (4) as new data is collectéde model order in [19]. It estimates the eriaduced

We focus on fixed-size models of the form in v, (-) by the removal of each kernel and discards
m those kerneldound to have the smallest contribution.

P () = ZO‘J K U, (5) A major criticism that can be made of rule (6) is that it

j=1 leads to elaborate and costly operations with quadratic

at any time step:, where thew's form anm-element complexity in the cardinalityn of the dictionary. In [18],

subset, of {1 n}. We éall (k(uu )V, the [19], the model reduction step is computationally more
n 3ty . )y Pwj =1 . .

dictionary, andm the order of the kernel exp]ansion bfxpenswe than the parameter update step, the latter being

analogy with linear transversal filters. Online identifica® stochastlchgradlﬁnt dfescenthwlth linear complexity in
tion of kernel-based models generally relies on a tw&*: In [20], the authors focus t el study on a parameFer
stage process at each iteration: a model order conﬂr‘@ldate step of the RLS type with quadratic complexity

step that inserts and removes kernel functions from tfik " To reduce the overall computational effort, the
dictionary, and a parameter update step parameter updatand the model reduction stephare
’ intermediate results of calculations. This excludes very

_ , o useful and popular online regression techniques.
A. A brief review of sparsification rules

Discarding a kernel function from the model exparg Redundant dictionaries, coherence and Babel func-
sion (5) may degrade its performance. Sparsificatigg,,

rules aim at identifying kernel functions whose removal
is expected to have negligible effect on the quality of

the model. An extensive literature addressing this iss . . -
ems [35]. It was introduced as a quantity of heuristic

in batch and online modes exists, see e.g. [29] a : :
references therein. In particular, much attention has belaberef_st f’¥ Malllatdandl Zhangtfor Matcglng Pburzu_lt [3367]'
mdte first formal developments were described in [37],

recently focused on least-squares support vector - . : o
chines since they suffer from the loss of sparsity due ﬁ?d enriched for Basis Pursuit in [38], [39]. In our
the use of a quadratic loss function [17]. In batch MOdeS;Replaces(:, uy) with (-, we)//mlar,wr) in (6) if £(, ) is
this problem was addressed by using pruning [30], [3&ét unit-norm.

Coherence is a fundamental parameter to character-
g a dictionary in linear sparse approximation prob-
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kernel-based context, we propose to define the cohere@ceThe coherence-based sparsification rule

parameter as Typical sparsificationmethods use approximate linear
= max |(K(, Uy, ), (-, U, ) )| = max [k (U, Uy, )| dependence conditior?s to evaluate Whe_,\ther, at each time
7 7 7) Stepn, the new candidate kernel functio(-,w,,) can

where x is a unit-norm kernel(see footnote 1) The be reasonaply well repre.se_nted by a corr_1b_|nat|on of the
ﬁlgernel functions of the dictionary. If not, it is added to

parametey. is then the largest absolute value of the o e dicti T d th tational lexit
diagonal entries in the Gram matrixreflects the largest . € dictionary. 10 avol € computational complexity

cross-correlations in the dictionary. Consequently, it |g{1e;ﬁnt ;0 :hese metho_gkmﬁ f#g??ft miertlng(-,un) .
equal to zero for every orthonormal basfsdictionary Into the dictionary provided that Its coherence remains

is said to be incoherent whanis small. below a given thresholg, namely,

Now, consider the Babel function given by m%X 1K (s s, )| < o, (9)
m Wi € JIn—1
pi(m) = max max Z | (U, U, )| (8) whereyy is a parameter if0, 1[ determining both the
’ fjjiwjo j=1 level of sparsity and the coherence of the dictionary. We

where 7 is a set ofin indices. Functionu (m) is defined shall now show that, under a reasonable conditio@/on

as the maximum total coherence between a fixed kerm)‘l2 dl_m(?ns_lon othe dlctlona_lr);_d_etermmednder rule(9)
function #(-, u.,) and a subset ofn other functions remainsfinite a;” goes EO Infinity. o f
r(-, u,,) of the dictionary. It provides a more in-depth Proposition 2: Let I/ be a compact subspace of a

description of a dictionary. We note that (m) < m u Banach space, and: i x i/ — IR be a Mercer kernel.
for a dictionary with coherence, as|r (ue,, . )| < s Then, the dimension of the dictionary determined under
for any distinctw, andw; in this case. The following the sparsification rule (9) with < o < 1 is finite for
oo

proposition establishes a useful sufficient condition for{"Y sequlsncéul}iﬁl. q o
dictionary of kernel functions to be linearly independent. Proof: From thecompactness cif anc continuity

Proposition 1: Let x(-,u1), ..., (-, u,,) be an arbi- of (-, u), we know that{r(-,u) : u € U} is compact.
trary set ofm kernel functions from a dictionanyand This implies that a finite open cover @é$-balls of this

let 411 (m) be the Babel function evaluated for this .sef®! exists. We observe thainder (9),any two kernel

If ui(m — 1) < 1, then this set is linearly independentUnctionsx(:, u.,) ands(-, u., ) in the dictionary verify

2 _
Proof: Consider any linear combination![# (s ww:) = £, ww, ) [I3 = 2 =2 K(uw,, ue,) = 2-2 0.

S i k(- u). We have Then, the number of such balls is finite. [ |
=1 m The above proposition implies that the computational
[ Zo‘i /i(-,uz‘)H%( = a!Ka > Apinlla]? > 0, cost per time-step of algorithms implementing the strat-
P egy (9) becomes independent of time after a transient pe-

where,;, is the smallest eigenvalue of the Gram matriy0d- After such period, the computational castpends
9nly on the cardinalityn of the final dictionary, which

K. According to the GerSgorin disk theorem [40], ever X X

eigenvalue o< lies in the union of then disks{) : [\— 1S @ function of the thresholg,. For instance, we set

k(us, u;)| <}, each centered on the diagomément 0 in the numerical experiments prese_nted in Section V

K(uiu;) of K and with radiir; = 3, |w(w,u;)| SO tha_lt_m never exc_eeds a few tens. Since the proposed

foral 1 < i < m. The normalizatiorjl of the kernelSParsification rule is an alternative to the approximate
AfiAi condition (6), it is of interest to establish a connection

and the definition of the Babel functigneld |A — 1| < . S
yi1(m — 1). The result follows directly sinc&y, > 0 if between that condition and rule (9). We do this in the
e following proposition.

pa(m —1) < 1. u b .
If computation of i (m — 1) becomes too expen- Proposition 3:Lets(:, uy,), ..., (-, uy,, ) bem ker-

sive, the simpler but somewhat more restrictive supel functions selected by the coherence-based rule (9).

ficient condition (m — 1); < 1 can be used, since!f (m —1)uo < 1, thenthe norm ofthe projection of
p1(m—1) < (m—1) . The results above show that the( Uw,,) onto the span of the othefm - 1) kernel
coherence coefficient (7) provides valuable informatidinctionsis less than or equal t‘e/ %

on the linear independence of the kernel functions of a Proof: Let S denote the span ok(-,u.,), ...,
dictionary at low computational cost. In the followings(-,u,,, ,) and let Psx(-,u,,, ) be the projection of
we show how to use it for sparsification of kernethe kernel functions(-,u,.,,) onto S. The norm of
expansions as an efficient alternative to the approximatex(-, u.,, ) is the maximum, over all the unit functions
linear condition (6). P(-) of S, of the inner product(x(-,u.,,),¥(:))x-
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Writing ¢(-) = l%ﬁ%ﬁlj‘in’?ffﬁ))ll%, the problem can be a mechanism which is explicitly governed byin the
formally stated as Tollows: approximate linear condition (6). Both approaches can
then generate linearly independent sets of kernel func-
| Psk(-, we, )|+ tions, a constraint that will be ignored in what follows.
. <2§’;‘11 i K+ U, )y K( Uy, ) ) major advantage of the coherence-based rule is that it is
o I Z;f;l i k(- e, ) ||ln simpler and far less time consuming than condition (6).
m—1 At each time-step, its computational complexity is only
_ O aik(uy,, uy,)) . : > ;
= max —— . (10) linear in the dictionary sizen, whereas (6has at least
oI il ue)ln guadratic complexity evewhen computed recursively.
On the one hand, the numerator of this expression carlt is also of interest tastablish a connection between
be upper bounded as follows: the coherence-based rule and quadratic Renyi entropy.
2 2 This measure, which quantifies the amount of disorder in
e = a system, is defined as follow&r = — log [ p(u)? du
; Qi (U, U, )| S ; Ho la with p a probability density function. Consider first the
< (m=-1)2lal? @11 Parzen density estimate
m
where the_ last |.nequallty follows from the Caughy- plu) = iz% exp(—|lu)?/8?) (15)
Schwartz inequality. On the other hand, the denominator m = (V7o)

in equation (10) can be lower bounded as follows:

m—1
Z a; k(- Uy, )
i=1

based on the Gaussian window. By the convolution

2 theorem applied to Gaussian distributions, we have

= o' Ka > Apllal?

H . 2 1 Ui fc(ui, ’u]')
Hr~—1lo u)“du = —log | — E —
> (1= (m—2) o) af? (22) F g/ e ®lm? L i)
where K denotes here the Gram matrix of the — 1) (16)

kernel functionss (-, u., ). The lastinequality follows Wheres(u;, u;) = exp(—|lu; — ”J‘HQ/%%)_ denotes the
from the Gerdgorin disk theorem [40]. Finally, combin&aussian kernel. The above example simply shows that

ing inequalities (11) and (12) with equation (10) yieldéhe SL_Jm o_f the entrie_s Qf the Gram matrix ch.aracterizes
the diversity of the dictionary of kernel functions [41].

(m — 1) pd In [17], this was used as a criterion in a selection
1—(m—2)po (13) mechanism with fixed-size least-squares support vec-

) ] ) S _ tor machines. We observe in equation (16) that the
This bound is valid and non-trivial if it lies in the intervalesnerence-based rule (9) ensures that

[0,1], that is, if and only if(m — 1) uy < 1. This is also
the sufficient condition stated in Proposition 1 for the 7, > 1og(2732)%/? —log[l + (m — 1)M0]' 17)
(-, uy,)’s to be linearly independent. [ | N m

The projection ofx(-, u.,,) onto the space spannedas expected, the lower bound oz increases as

by the (m — 1) previously selected kernel2 functiongjecreases ana increases. In a more general way, since
results in a squared errg{/ — Fs) £ (-, uw,)[l3- FrOM  the integral [ (u)? du also defines the squared norm

[Ps (s U, )17 <

Proposition 3, we deduce that 15|12, of the functional formp(-) = L 37 k(- w), it
(I = Ps) k(- uw, ) |12 was observed in [41] that
= I8 wa, )l = 1Pss(c v, Il . 1 &
(m — 1) pd Hp ~ —log||pll7; = —log | — Z K(ui,uj) |- (18)
> l——x (14) =
I~ (m — 2) o ’

under the conditiorfm — 1) o < 1, which ensures that!n the case wherex is not a unit-norm ker-
the lower bound lies in the intervéd, 1]. As expected, M€l remember_thate(-,u)) must be replaced by
the smallerm and 1o, the larger the squared error(»@k)/+/#(uk, up) in the coherence-based rule (9).
in the approximation of any dictionary element by ASSUMING that(uy, uy) = ¢ for all k, equation (18)
linear combination of the others. We conclude that tHg2ds t©

coherence-based rule (9) implicitly specifies a lower 1 1+ (m—1)uo

bound on the squared ertp{ —Ps) (-, w.,, ) |13, via po, Hp 2 1Og(_> B log[ ] (19)
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Note that this bound, which depends on the norm of kés- met, x(-, u,,) is inserted into the dictionary where it
nel functions, increases ag decreases o increases. is denoted byx(-, u.,,,,). The number of columns of
This result emphasizes the usefulness of coherencematrix H,, then is increased by one, relativekb, 1, by
accurately characterize the diversity of kernel functiomppending [r(u,, ue,, ., ) - - - K(Un—p+1, U, ., )]'. One
in a dictionary. In the next sectiome usethis criterion more entry is also added to the vectoy.

to derive a new kernel-based algorithm for time series

prediction, called kernel-based affine projection (KAP)

algorithm. B. First case studymax;—i, . [K(tn, Uy, )| > fo
In this casekx(-,u,) can be reasonably well repre-
IV. A KERNEL-BASED AFFINE PROJECTION sented by the kernel functions already in the dictionary.
ALGORITHM WITH ORDER-UPDATE MECHANISM Thus, it does not need to be inserted into the dictionary.
Let %(-) denote them-th order model at time step The solution to(22) can be determined by minimizing
n, with m < n. Then, the Lagrangian function
. m _ A 2 trg
() =D dn (), (o) (@A) =la=analF A(d, — Hya) o (23)
7j=1

where is the vector of Lagrange multipliers. Differenti-
where the (-, u,,)'s form a pg-coherent dictionary ating this expression with respectdoand, and setting
determinedunder rule(9). In accordance witlthe least- the derivatives to zero, we get the following equations
squares problem described in Section |I#Be optimal that ¢,, must satisfy:
&, solvesming ||d, — H,al|/> where H, denotes

the n-by-m matrix whose(i, j)-th entry is s (u;, u.,,). 2(6p —Gpq) = HEA (24)
Assuming that H:, H,,)~" exists, H,&, = d,. (25)

Assuming H, H! nonsingular, these equations lead
A possible way trade convergence speed for partof A = 2(H,H!) '(d, — H,&,_1). Substituting

the computational complexity involved in determiningnto (24), we obtain a recursive update equationder.

the least-squares solution (21) has been proposed in [42].

The algorithm, termed Affine Projection algorithm, de@n = &n—1 + 1 H, (eI + H, H}) "' (d, — Hpéu-1),

termines a projection of the solution vecterthat solves (26)

an under-determined least-squares problem. At each tiffaere we have introduced the step-size control parameter

stepn, only thep most recent input$uw,,, ..., up—pr1} and_ the regulari;atio_n fac_t@ti. At each time stem,

and observationgd,,, ...,d, 1} are used. An adap-€quation (26) requires inverting the usually smaby-p

tive algorithm based on this method is derived next, matrix (eI + H, H).

A. TheKernel Affine Projection Algorithm C. Second case studyiax;—1._m |#(tn, uy,)| < o
In the following H,, denotes the matrix whoge, j)-
th entry isk(w,—it1,uw,), andd, is the column vector
whosei-th element isd,,_; 1. Our approach starts with

the affine projection problem at time step

In this casekx(-,u,) cannot be represented by the
kernel functionsalreadyin the dictionary. Then, it is
inserted into the dictionary and will henceforth be de-
noted bys(-, u.,, ). The orderm of (20) is increased

min |ja — fxn—le subjectto d, = H, . (22) by one, andH,, is updated to g-by-(m + 1) matrix.

« To accommodate the new element d¥),, we modify
In other words &, is obtained by projectingv,—1 onto  problem (22) as

the intersection of the manifolds.A; defined as
min |, m — G&uo1|? + a2y, subject tad, = H o,

* (27)
with hy,—it1 = [K(Un—it1, U, ) K(Un—it1,uy,) ...]'. wherea; ., denotes the first: elements of the vector
At iteration n, upon the arrival of new data, one of thex and H,, has been increased by one column as ex-
following alternatives holds. Ik(-, u,) does not satisfy plained beforeNote that the(m + 1)-th elementa;,,+1
the coherence-based sparsification rulet{®,dictionary is incorporated to the objective function as a regularizing
remains unalteredOn the other hand, if condition (9)term. Considerations similar to those made to obtain (26)
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Initialization
Fix the nenory length p, the step-size n, and the regul arization factor ¢
Insert s(,,up) into the dictionary, denote it by k(,uw,)
H, = [5(up,uw,) ... k(u1,u0,)], @& =0 m=1
At each tine step n>p, repeat
1. Get (un,dn)
2. 1f maxjz1,.m[K(Un, ue;)| > po: (parameter update)
Conmput e the p-by-m matrix Hp = [5(Wn—it1,%e;)] i=1,...p

Jj=1,..., m

Cal cul ate &, using equation (26)

3. If maxj—1,.m|k(wn, ;)| < po: (parameter update with order increase)
m=m-+1
Insert k(,u,) into the dictionary, denote it by k(- ua,,)

Conmput e the p-by-m matrix Hy = [5(Wn—it1,%e;)] i=1,...p
j=1,..., m
Cal cul ate &, using equation (28) !

TABLE |
THE KAP ALGORITHM WITH COHERENCE CRITERION

lead to thefollowing recursion the scalar-value@ priori error, e, , = dp, — hl a1,
. used by KNLMS, we note that KAP algorithm uses a
A~ o an—l _ A~
a, = [ 0 ] vector-valued errore,,, = d, — H, 6,1, t0o update

X the weight vector estimate. The next subsection discusses
+ pH.(eI+H, H')™! (dn —H, [a%lb _ computational requirements of both approaches.

(28) E. Computational complexity

We call the set of recursions (26) and (28) ®emel 1416 11| reports the estimated computational costs of
Affine PI’OjeCtI.OI’] (KAP) algorithm. It is described in kAP and KNLMS algorithms for real-valued data, in
pseudo-code in Table I. The value pfis termed the ormg of the number of real multiplications and real addi-
memory lengthor the orderof the algorithm. Next, We tjong per iterationThe computation cost to evaluate,
explore the lldea of using instantaneous approximatiogs,|es linearly with the dictionary dimension. This
for the gradient vectors. cost has not been included in Table Ill becaisepends

on the selected kernel. Recursions with (see (28), (30))

D. Instantaneous approximations The Kernel NLMS and without (see (26), (29)) order increase are considered
algorithm separately in Table Ill. The coherence criterion (9) used

Now consider the casg — 1. At each time steps, to select which l.deate.to perform ?s signifi_cantl_y simp!er
the algorithm described above then enforces the equamé‘?n the approximate linear condition (6) since it consists
d, = hla, whereh,, is the column vector whoséth of comparing the largest element in magnitudehgfto

entry is x(un, u.,). Relations (26) and (28) reduce to a thresholdug. Note that the final size of a dictionary
1. 1f max,_; [|'<é(u uw )| > o of kernel functions determined under the rule (9) is
. J=1,....m ny Yw;

finite. This implies that, after a transient period during

&y =1 + Nl (dp — hfzdnfl) h,, (29) which the order of the model increases, computational

e+ [ complexity is reduced to that of equations (26) and (29).

with b, = [K(tn, uy,) - . . £(tn, uy, )] The main conclusion is that the costs of KNLMS and
2. 1F maxj—1,_m |K(un, uy,)| < po KAP algorithms areO(m) and O(p?>m), respectively.

R R As illustrated in the next section, the size of kernel
L= [anl} + n 5 (dn _ h% [anlbhm expansions never exceeded a few tens.
0 €+ ||kl

(30)
with by, = [k (tn, U, ) - - 5 (Un, U, )] V. SIMULATION EXAMPLES
The form of these recursions is that of the normalized The purpose of this section is fttlustrate the per-
LMS algorithm with kernels, referred to as KNLMS andormance of the proposed approach. We shall report the

described in pseudo-code in Table Il. As opposed tesults of two simulated data experiments.

(o)
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Initialization
Fix the step-size n, and the regularization factor e
Insert x(,ui) into the dictionary, denote it by x(,u.,)
hlzm(ul,uwl), (3(120, m=1
At each tine step n>1, repeat
1. Get (un,dn)
2. 1f maxj—i,.m|8(Un, uw;)| > po: (parameter update)
Conpute the colum vector hy, = [K(Un,Uw,) ... 5(Un, Uw,,)]
Update &, using equation (29)
3. If maxj—i, . m|K(tn,uw;)| < po: (parameter update with order increase)

,,,,,

t

Insert x(,u,) into the dictionary, denote it by k(,uu,,)
Conput e the col um vector h, = [5(Un, U, ) - - - K(Un, U, )]
Update &, using equation (30)

TABLE I
THE KNLMS ALGORITHM WITH COHERENCE CRITERION
KNLMS KAP
2 3
without order increase dm+1 (p2 +2p)m +pg +p2
3m (p° +2p)m +p° +p

3m+3 (p* +2p)m +p° +2p° +p

with order increase
3m+1 | (PP+2p)m+p*+p>+p—1

+ X[+ X

TABLE Il
ESTIMATED COMPUTATIONAL COST PER ITERATION OFKNLMS AND KAP ALGORITHMS.

A. Experiment with KNLMS same procedure was followed to parameterize and test
As a first benchmark problem, we consider the noff?€ State-of-the-art methods discussed later.
linear system described by the difference equation The preliminary experiments were conducted on se-
d = (08—0 5 exp(—d>2 ))d ) guences of3000 samples to determingg, n and e.
n — . . n—1 mn—

5 Performance was measured in steady-state using the

— (0.3 +0.9 exp(—d;_;)) dn—2 mean-square prediction erdr> 5. (dy, — 1,1 (u,))?

+0.1 sin(d,,—17) (31) overthe lasb00 samples of each sequence, and averaged

where d, is the desired output. This highly nonlineaP\./erlo independent trials. The dlctlor;ary was |n|t|a!|zed

: . . . . with x(-,u1), wherew; = [0.1,0.1]". The step-size

time series has been investigated in [18]. The data were . 0 )
: . . ...n.and the regularization coefficiemtwere determined

generated by iterating the above equation from the initial

I y grid search ovef10™* < n < 107!) x (107* <
condition (0.1,0.1). Outputsd,, were corrupted by a ¢ < 10-1) with increment2 x 10-* within each range

measurement noise sampled from a zero-mean Gaussjan, . .. .
distribution with standard deviation equal €l. This ﬂ%ﬂ ! IQ . J. The threshold., was varied from.05
to 0.95 in increments of0.05. It was observed that

led to a signal-to-noise ratio, defined as the ratio of tri‘r?creasin was associated with performance improve-
powers ofd,, and the additive noise, df7.2 dB. These %o P P

. . ments until a threshold was attained, when performance
data were used to estimate a nonlinear model of the fon;n

d, = (dy_1,dyn o). In identifying the system, we .S ayed basically unchanged. A practical compromise be-

stricted ourselves to KNLMS and the experimental set fween the model order and its performance was reached

described in [18]. In particular, as in [18], the Gaugﬁ/ setting the thresholfly t0 0.5. The step-size param-
sian kernels(u;,u;) = exp(—3.73 |u; — u||?) was etern and the regularization coefficieatwere fixed to
iy Wy) — 9. i — Wy

-2 -2 ;
considered. Preliminary experiments were conducted 9a§< 107" and3 > 1077, respectively.

explained below to determine all the adjustable param-The KNLMS algorithm was tested with the parameter
eters, that is, the threshold,, the step-size; and the settings specified above over two hundred 10000-sample
regularization factoe. The algorithm was then evaluatedndependent sequences. This led to the ensemble-average
on several independent test signals, which led to tlearning curve shown in Figure 1. The ordet of
learning curve depicted in Figure 1 and the normalizé@rnel expansions was, on average, equalltd. The
mean-square prediction error reported in Table IV. Thermalized mean-square prediction error over the last
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Algorithm X + Parameter settings m NMSE
NORMA 2m m A=098 n,=1//n 38 | 0.1051
KNLMS 3m+1 3m po = 0.5, ¢ = 0.03, n=0.09 | 21.3 | 0.0197

SSP 3m*+6m+1 | 3m*+m—1 k=0.001, n = 0.1 23.8 | 0.0184
KRLS 4m? + 4m 4m? 4 4m + 1 v=20.6 22.1 | 0.0173

TABLE IV
EXPERIMENTA: ESTIMATED COMPUTATIONAL COST PER ITERATION EXPERIMENTAL SETUP AND PERFORMANCE ON INDEPENDENT
TEST SEQUENCES

Algorithm X + Parameter settings m NMSE
NORMA 2m m X =0.09, n, = 0.09/y/n 35 0.56
KNLMS 3m 41 3m po = 0.3, e =0.0009, n=0.01 | 54 | 0.20
KAP,—2 8m + 10 8m + 12 po =0.3,e=0.07,n=10.009 | 54 | 0.21
KAP,_3 15m + 30 15m + 36 o =0.3,e=0.07,7=0.01 | 54 | 021

SSP 3m*+6m+1| 3m>+m—1 k= 0.005, n = 0.03 175 | 0.21
KRLS 4m? + 4m 4m?® +4m +1 v=07 81 | 0.17

TABLE V
EXPERIMENT B: ESTIMATED COMPUTATIONAL COST PER ITERATION EXPERIMENTAL SETUP AND PERFORMANCE ON INDEPENDENT
TEST SEQUENCES

most accurate in this experiment. The bandwigftwas to the parameter settings displayed in Table V, where
varied from0.1 to 1 in increments 0f0.005 to find the we use the same notations as those in [18], [20], [43].
optimal setting. The coherence threshqlg was also This table also reports the average orderof kernel
varied from0.05 to 0.5 in increments 00.05. Memory expansions and the normalized mean-square prediction
lengthsp ranging from1 to 3 were considered and, inerror of each algorithm, estimated over two-hundred
each case, the best performing step-size parametad independent test sequences. Figure 2 shows that KRLS
regularization constartwere determined by grid searclconverges faster than KAP-type algorithms, as might be
over (1074 < 7 < 107!) x (107* < e < 107!) with expected, since they are derived from stochastic-gradient
increment2 x 10~ within each rangd10=*, 10~*+1]. approximations. Nevertheless, the KRLS algorithm is an
Parameter choices are reported in Table V jfoanging order of magnitude im» costlier than KAP. It can also be
from 1 to 3. seen that SSP has approximately the same convergence
Each configuration was run over two hundreapoo- rate as KNLMS, but converges slower than the other
Samp|e independent test sequences. The ordef the two KAP algorithms. Moreover, SSP iS more demanding
kernel expansion wa$.4 on average, and the mearpomputationally and requires kernel expansions of Iarger
value of the Babel function was56. By Proposition 1, orderm. Figure 2 finally highlights that NORMA, the
this indicates that the kernel functions of the dictiona§ther approach with linear complexity im, is clearly
were most frequently, if not always, chosen linearlputperformed by KAP-type algorithms.
independent. Steady-state performance was measurefihe tradeoffs involved in using RLS, affine projection
by the normalized mean-square prediction error (32nd LMS algorithms are well known ilinear adaptive
Table V reports mean values over the two hundred t@ffering. It is expectedhat these tradeoffs would persist
sequences for memory lengths ranging from1 to wjith their kernel-based counterparts. This was confirmed
3. It indicates that steady-state performance remainggsimulations, even considering that no theoretical effor
almost unchanged ag increased. Figure 2 illustratesyas made to determine analytically the optimum tuning
the convergence behavior of KAP-type methods. Theggrameters for each algorithm. In general, the KRLS
ensemble-average learning curves were obtained by tiglgorithm will provide the fastest convergence rate at the
averaging over20 consecutive samples. It appears @xpense of the highest computational complexity. The
an evidence that KAP algorithm provided a significarKNLLMS algorithm will lead to the lowest computational
improvement in convergence rate over KNLMS. cost, but will affect the convergence rate of the filtering
The same procedure as before was followed to imrocess. The KAP algorithm lies halfway between these
tialize and test NORMA, SSP and KRLS algorithmgwo extremes, converging faster than KNLMS and slower
The preliminary experiments that were conducted léedan KRLS,and having a computational complexity that
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\ KAP,_5

mean-square error
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0 500 1000 1500, 2000 2500 3000
iteration

Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA and KRLS obtained by averaging 28eexperiments.

is higher than KNLMS and lower than KRLS. it provides a more in-depth description of a dictionary.
Online minimization of the coherence parameter or the
Babel function of the dictionary by adding or removing
kernel functions also seems interesting. Finally, in a
Over the last ten years or so there has been Brpader perspective, improving our approach with tools
explosion of activity in the field of learning algorithmsderived from compressed sensing appears as a very
utilizing reproducing kernels, most notably in the fielghromising subject of research.
of classification and regression. The use of kernels is an
attractive computational shortcut to create nonlinear ver-
sions of conventional linear algorithms. In this paper, we _ _ _ o _
have demonstrated the versatility and utility of this fam{1] G.B. Giannakis and E. Serpedin, “A bibliography on nonlinear
. . . . system identification,'Signal Processingvol. 81, pp. 553-580,
ily of methods to develop nonlinear adaptive algorithms 5551
for time series prediction, specifically of the KAP and[2] s. w. Nam and E. J. Powers, “Application of higher order
KNLMS types. A common characteristic in kernel-based spectral analysis to cubically nonlinear system identification,”
methods is that they deal with models whose order equals IZEEE ig’;j' Processing Magazingol. 42, no. 7, pp. 2124—
the size of the training set, making them unsuitable fop) ¢ | Nikias and A. P. Petropulthligher-order spectra analysis
online applications. Therefore it was essential to first - a nonlinear signal processing framework Prentice Hall,
develop a methodology of controlling the increase in the Englewood Cliffs, NJ, 1993. ,
model order as new input data become available. This I&d ';Ays?ecrzgt\fv?g hﬁe\\f\?'\t(irrf‘ iﬂf’ l’\ggger theory of the nonlinear
us to consider the coherence parameter, a fundamentgl n. wiener, Nonlinear problems in random thegryviley, New
quantity that characterizes the behavior of dictionaries York, NY, 1958.
in sparse approximation problems. The motivation fofél V- J-S\Aith‘\?/‘o’_f a”gf“ g‘ L. Sl:lcura;‘zip'n\‘(o%% (;5'9”&' process-
. . _ . . . Ing, Jonhn ey ons, New YOrK, , .
using It_ was two-fold. First, It_ offers several attractlve[t7] S. Haykin, Neural networks: a comprehensive foundafion
properties that can be exploited to assess the novelty prentice Hall, Englewood Cliffs, NJ, 1999.
of input data. This framework is a core contribution to[8] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.-Y.
our paper. Secondly, the coherence parameter is easy to Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-
lculate and its computational complexity is onlv linear box modeling in system identification: a unified overview,
calculate a omp piexity y int Automatica vol. 31, no. 12, pp. 16911724, 1995.
in the dictionary size. We proposed to incorporate it intgo] A. N. Kolmogorov, “On the representation of continuous
a kernel-based affine projection algorithm with order- functions of many variables by superpositions of continuous

. : _ functions of one variable and additiorl)oklady Akademii Nauk
update mechanism, which has also been a notable con USSR vol. 114, pp. 953956, 1957,

tribution to our _StUdY- Perspectives include the use of 'tm] N. Aronszajn, “Theory of reproducing kernelsTransactions
Babel function instead of the coherence parameter since of the American Mathematical Societol. 68, 1950.

VI. CONCLUSION
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