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Online prediction of time series data with kernels

Cédric Richard,Senior Member, IEEE,José Carlos M. Bermudez,Senior Member, IEEE,
Paul Honeine,Member, IEEE

Abstract—Kernel-based algorithms have been a topic of
considerable interest in the machine learning community
over the last ten years. Their attractiveness resides in their
elegant treatment of nonlinear problems. They have been
successfullyapplied to pattern recognition, regression and
density estimation. A common characteristicof kernel-
based methods is that they deal with kernel expansions
whose number of terms equals the number of input data,
making them unsuitable for online applications. Recently,
several solutions have been proposed to circumvent this
computational burden in time series prediction problems.
Nevertheless, most of them require excessively elaborate
and costly operations. In this paper, we investigate a
new model reduction criterion that makes computationally
demanding sparsification procedures unnecessary. The
increase in the number of variables is controlled by
the coherence parameter, a fundamental quantity that
characterizes the behavior of dictionaries in sparse approx-
imation problems. We incorporate the coherence criterion
into a new kernel-based affine projection algorithm for
time series prediction. We also derive the kernel-based
normalized LMS algorithm as a particular case. Finally,
experiments are conducted to compare our approach to
existing methods.

Index Terms—Adaptive filters, pattern recognition, non-
linear systems, machine learning.

I. INTRODUCTION

DYNAMIC system modeling has played a crucial
role in the development of techniques for station-

ary and nonstationary signal processing. Most existing
approaches focus on linear models due to their inherent
simplicity from conceptual and implementational points
of view. However, there are many practical situations,
e.g., in communications and biomedical engineering,
where the nonlinear processing of signals is needed. See
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extensive bibliography [1] devoted to the theory of non-
linear systems. Unlike the case of linear systems which
can be uniquely identified by their impulse response,
there is a wide variety of representations to characterize
nonlinear systems, ranging from higher-order statistics,
e.g., [2], [3], to series expansion methods, e.g., [4],
[5]. Two main types of nonlinear models have been
extensively studied over the years: polynomial filters,
usually called Volterra series based filters [6], and neural
networks [7]. The Volterra filters can model a large class
of nonlinear systems. They are attractive because their
output is expressed as a linear combination of nonlinear
functions of the input signal, which simplifies the design
of gradient-based and recursive least squares adaptive
algorithms. One of their primary disadvantages is the
considerable number of parameters to estimate, which
goes up exponentially as the order of the nonlinearity
increases. With their parallel structure, neural networks
represent the ultimate development of black box model-
ing [8]. They are proven to be universal approximators
under suitable conditions, thus providing the means to
capture information in data that is difficult to identify
using other techniques [9]. It is, however, well-known
that algorithms used for neural network training suffer
from problems such as being trapped into local minima,
slow convergence and great computational requirements.

Since the pioneering works of Aronszajin [10], Aiz-
erman et al. [11], Kimeldorf and Wahba [12], [13],
and Duttweiler and Kailath [14], function approxi-
mation methods based on reproducing kernel Hilbert
spaces (RKHS) have gained wide popularity [15]. Recent
developments in kernel-based methods related to regres-
sion include, most prominently, support vector regres-
sion [16], [17]. A key property behind such algorithms
is that the only operations they require is the evaluation
of inner products between pairs of the input vectors.
Replacing inner products with a Mercer kernel provides
an efficient way to implicitly map the data into a high,
even infinite, dimensional RKHS and apply the original
algorithm in this space. Calculations are then carried out
without making direct reference to the nonlinear map-
ping of input vectors. A common characteristic in kernel-
based methods is that they deal with matrices whose size
equals the number of data, making them unsuitable for
online applications. Several attempts have been made
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recently to circumvent this computational burden. A
gradient descent method is applied in [18], [19], while a
RLS-like procedure is used in [20] to update the model
parameters. Each one is associated with a sparsification
procedure based on the matrix inversion lemma, which
limits the increase in the number of terms by including
only kernels that significantly reduce the approximation
error. These processes have reduced the computational
burden of the traditional approaches. Nevertheless, they
still require elaborate and costly operations, that limits
their applicability in real-time systems.

In this paper, we investigate a new model reduc-
tion criterion that renders computationally demanding
sparsification procedures unnecessary.The increase in
the number of variables is controlled by the coherence
parameter, a fundamental quantity that characterizes the
behavior of dictionaries in sparse approximation prob-
lems. We associate the coherence criterion with a new
kernel-based algorithm for time series prediction, called
kernel affine projection (KAP) algorithm. We also derive
the kernel normalized LMS (KNLMS) algorithm as a
particular case. The paper is organized as follows. In the
first part, we briefly review some basic principles of non-
linear regression in RKHS. Next we show how to use the
coherence parameter as an alternative criterion for model
sparsification, and we derive its main properties. We then
incorporate it into our KAP algorithm, which includes as
particular case the KNLMS algorithm. Finally, a set of
experimentsillustrate the effectiveness of the proposed
method compared to other existing approaches.

II. PRINCIPLES OF NONLINEAR REGRESSION IN

RKHS

A possible way to extend the scope of linear models
to nonlinear processing is to map the input dataui into a
high-dimensional space using a nonlinear functionϕ(·),
and apply linear modeling techniques to the transformed
dataϕ(ui). The model coefficients are then determined
as the solution of the normal equations written for the
nonlinearly transformed input data. Clearly, this basic
strategy may fail when the image ofϕ(·) is a very
high, or even infinite, dimensional space. Kernel-based
methods that lead manageable dimensions have been
recently proposed for applications in classification and
regression problems. Well-known examples can be found
in [15], [21]. This paper exploits the central idea of this
research area, known as thekernel trick, to investigate
new nonlinear algorithms for online prediction of time
series. Next section briefly reviews the main definitions
and properties related to reproducing kernel Hilbert
spaces [10] and Mercer kernels [22].

A. RKHS and Mercer kernels

Let H denote a Hilbert space of real-valued functions
ψ(·) on a compactU ⊂ IRℓ, and let〈· , ·〉H be the inner
product inH. Suppose that the evaluation functionalLu
defined byLu[ψ] , ψ(u) is linear with respect toψ(·)
and bounded, for allu in U . By virtue of the Riesz
representation theorem, there exists a unique positive
definite function ui 7→ κ(ui,uj) in H, denoted by
κ(·,uj) and calledrepresenter of evaluationatuj , which
satisfies [10]

ψ(uj) = 〈ψ(·), κ(·,uj)〉H, ∀ψ ∈ H (1)

for every fixeduj ∈ U . A proof of this may be found
in [10]. Replacingψ(·) by κ(·,ui) in (1) yields

κ(ui,uj) = 〈κ(·,ui), κ(·,uj)〉H (2)

for all ui, uj ∈ U . Equation (2) is the origin of
the now generic termreproducing kernelto refer to
κ(· , ·). Note thatH can be restricted to the span of
{κ(·,u) : u ∈ U} because, according to (1), nothing
outside this set affectsψ(·) evaluated at any point of
U . Denoting byϕ(·) the map that assigns to each input
u the kernel functionκ(·,u), equation (2) implies that
κ(ui,uj) = 〈ϕ(ui),ϕ(uj)〉H. The kernel then evaluates
the inner product of any pair of elements ofU mapped
to H without any explicit knowledge of eitherϕ(·) or
H. This key idea is known as thekernel trick.

Classic examples of kernels are the radially Gaussian
kernel κ(ui,uj) = exp

(

−‖ui − uj‖2/2β2
0

)

, and the
Laplacian kernelκ(ui,uj) = exp(−‖ui − uj‖/β0),
with β0 ≥ 0 the kernel bandwidth. Another example
which deserves attention in signal processing is theq-
th degree polynomial kernel defined asκ(ui,uj) =
(η0 + uti uj)

q, with η0 ≥ 0 and q ∈ IN∗. The nonlin-
ear functionϕ(·) related to the latter transforms every
observationui into a vector ϕ(ui), in which each
component is proportional to a monomial of the form
(ui,1)

k1(ui,2)
k2 . . . (ui,p)

kp for every set of exponents
satisfying 0 ≤ ∑p

r=1 kr ≤ q. For details, see [23],
[24] and references therein. The models of interest then
correspond toq-th degree Volterra series representations.

B. Nonlinear regression with Mercer kernels

The kernel trick has been widely used to transform
linear algorithms expressed only in terms of inner prod-
ucts into nonlinear ones. Examples are the nonlinear
extensions to the principal components analysis [25] and
the Fisher discriminant analysis [26], [27]. Recent work
has been focussed on kernel-based online prediction of
time series [18], [19], [20], the topic of this article. Let
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κ : U ×U → IR be a kernel, and letH be the RKHS as-
sociated with it. Considering the least-squares approach,
the problem is to determine a functionψ(·) of H that
minimizes the sum ofn squared errors between samples
di of the desired response and the corresponding model
output samplesψ(ui) = 〈ψ(·), κ(·,ui)〉H, namely,

min
ψ∈H

n
∑

i=1

|di − ψ(ui)|2. (3)

By virtue of the representer theorem [12], [28], the
function ψ(·) of H minimizing (3) can be written as
a kernel expansion in terms of available data

ψ(·) =
n

∑

j=1

αj κ(·,uj). (4)

It can be shown that the problem (3) becomes
minα ‖d−Kα‖2, whereK is the Gram matrix whose
(i, j)-th entry is κ(ui,uj). The solution vectorα is
found by solving then-by-n linear system of equations
Kα = d.

III. A NEW MODEL REDUCTION METHOD

Online prediction of time series data raises the ques-
tion of how to process an increasing amount of observa-
tions and update the model (4) as new data is collected.
We focus on fixed-size models of the form

ψn(·) =

m
∑

j=1

αj κ(·,uωj
) (5)

at any time stepn, where theωj ’s form anm-element
subsetJn of {1, . . . , n}. We call {κ(·,uωj

)}mj=1 the
dictionary, andm the order of the kernel expansion by
analogy with linear transversal filters. Online identifica-
tion of kernel-based models generally relies on a two-
stage process at each iteration: a model order control
step that inserts and removes kernel functions from the
dictionary, and a parameter update step.

A. A brief review of sparsification rules

Discarding a kernel function from the model expan-
sion (5) may degrade its performance. Sparsification
rules aim at identifying kernel functions whose removal
is expected to have negligible effect on the quality of
the model. An extensive literature addressing this issue
in batch and online modes exists, see e.g. [29] and
references therein. In particular, much attention has been
recently focused on least-squares support vector ma-
chines since they suffer from the loss of sparsity due to
the use of a quadratic loss function [17]. In batch modes,
this problem was addressed by using pruning [30], [31]

and fixed-size approaches [17], [32], [33]. Truncation
and approximation processes were considered in online
scenarios [29].

The most informative sparsification criteria use ap-
proximate linear dependence conditions to evaluate
whether the contribution of a candidate kernel function
can be distributed over the elements of the dictionary
by adjusting their multipliers. In [34], determination of
the kernel function which is best approximated by the
others is carried out by an eigendecomposition of the
Gram matrix. This process is not appropriate for online
applications since its complexity, at each time step, is
cubic in the sizem of the dictionary. In [20], the kernel
function κ(·,un) is inserted at time stepn into the
dictionary if the following condition is satisfied

min
γ

‖κ(·,un) −
∑

ωj∈Jn−1

γj κ(·,uωj
)‖2

H ≥ ν, (6)

whereκ is a unit-normkernel1, that is,κ(uk,uk) = 1 for
all uk. The thresholdν determines the level of sparsity
of the model. Note that condition (6) ensures the linear
independence of the elements of the dictionary. A similar
criterion is used in [18], [19], but in a different form.
After updating the model parameters, a complementary
pruning process is executed to limit the increase in
the model order in [19]. It estimates the errorinduced
in ψn(·) by the removal of each kernel and discards
those kernelsfound to have the smallest contribution.
A major criticism that can be made of rule (6) is that it
leads to elaborate and costly operations with quadratic
complexity in the cardinalitym of the dictionary. In [18],
[19], the model reduction step is computationally more
expensive than the parameter update step, the latter being
a stochastic gradient descent with linear complexity in
m. In [20], the authors focus their study on a parameter
update step of the RLS type with quadratic complexity
in m. To reduce the overall computational effort, the
parameter updateand the model reduction stepsshare
intermediate results of calculations. This excludes very
useful and popular online regression techniques.

B. Redundant dictionaries, coherence and Babel func-
tion

Coherence is a fundamental parameter to character-
ize a dictionary in linear sparse approximation prob-
lems [35]. It was introduced as a quantity of heuristic
interest by Mallat and Zhang for Matching Pursuit [36].
The first formal developments were described in [37],
and enriched for Basis Pursuit in [38], [39]. In our

1Replaceκ(·, uk) with κ(·, uk)/
√

κ(uk, uk) in (6) if κ(·, uk) is
not unit-norm.
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kernel-based context, we propose to define the coherence
parameter as

µ = max
i6=j

|〈κ(·,uωi
), κ(·,uωj

)〉H| = max
i6=j

|κ(uωi
,uωj

)|
(7)

where κ is a unit-norm kernel(see footnote 1). The
parameterµ is then the largest absolute value of the off-
diagonal entries in the Gram matrix.It reflects the largest
cross-correlations in the dictionary. Consequently, it is
equal to zero for every orthonormal basis.A dictionary
is said to be incoherent whenµ is small.

Now, consider the Babel function given by

µ1(m) = max
ω0

max
ωj∈J
ωj 6=ω0

m
∑

j=1

|κ(uω0
,uωj

)| (8)

whereJ is a set ofm indices. Functionµ1(m) is defined
as the maximum total coherence between a fixed kernel
function κ(·,uω0

) and a subset ofm other functions
κ(·,uωj

) of the dictionary. It provides a more in-depth
description of a dictionary. We note thatµ1(m) ≤ mµ
for a dictionary with coherenceµ, as|κ(uω0

,uωj
)| ≤ µ

for any distinctω0 andωj in this case. The following
proposition establishes a useful sufficient condition for a
dictionary of kernel functions to be linearly independent.

Proposition 1: Let κ(·,u1), . . . , κ(·,um) be an arbi-
trary set ofm kernel functions from a dictionary, and
let µ1(m) be the Babel function evaluated for this set.
If µ1(m− 1) < 1, then this set is linearly independent.

Proof: Consider any linear combination
∑m

i=1 αi κ(·,ui). We have

‖
m

∑

i=1

αi κ(·,ui)‖2
H = αtKα ≥ λmin‖α‖2 ≥ 0,

whereλmin is the smallest eigenvalue of the Gram matrix
K. According to the Geršgorin disk theorem [40], every
eigenvalue ofK lies in the union of them disks{λ : |λ−
κ(ui,ui)| ≤ ri}, each centered on the diagonalelement
κ(ui,ui) of K and with radii ri =

∑

j 6=i |κ(ui,uj)|
for all 1 ≤ i ≤ m. The normalization of the kernel
and the definition of the Babel functionyield |λ− 1| ≤
µ1(m− 1). The result follows directly sinceλmin > 0 if
µ1(m− 1) < 1.

If computation of µ1(m − 1) becomes too expen-
sive, the simpler but somewhat more restrictive suf-
ficient condition (m − 1)µ < 1 can be used, since
µ1(m−1) ≤ (m−1)µ. The results above show that the
coherence coefficient (7) provides valuable information
on the linear independence of the kernel functions of a
dictionary at low computational cost. In the following
we show how to use it for sparsification of kernel
expansions as an efficient alternative to the approximate
linear condition (6).

C. The coherence-based sparsification rule

Typical sparsificationmethods use approximate linear
dependence conditions to evaluate whether, at each time
stepn, the new candidate kernel functionκ(·,un) can
be reasonably well represented by a combination of the
kernel functions of the dictionary. If not, it is added to
the dictionary.To avoid the computational complexity
inherent to these methods,we suggest insertingκ(·,un)
into the dictionary provided that its coherence remains
below a given thresholdµ0, namely,

max
ωj∈Jn−1

|κ(un,uωj
)| ≤ µ0, (9)

whereµ0 is a parameter in[0, 1[ determining both the
level of sparsity and the coherence of the dictionary. We
shall now show that, under a reasonable condition onU ,
the dimension ofthe dictionary determinedunder rule(9)
remainsfinite asn goes to infinity.

Proposition 2: Let U be a compact subspace of a
Banach space, andκ : U × U → IR be a Mercer kernel.
Then, the dimension of the dictionary determined under
the sparsification rule (9) with0 ≤ µ0 < 1 is finite for
any sequence{ui}∞i=1.

Proof: From thecompactness ofU and continuity
of κ(·,u), we know that{κ(·,u) : u ∈ U} is compact.
This implies that a finite open cover ofℓ2-balls of this
set exists. We observe that, under (9),any two kernel
functionsκ(·,uωi

) andκ(·,uωj
) in the dictionary verify

‖κ(·,uωi
)−κ(·,uωj

)‖2
H = 2−2κ(uωi

,uωj
) ≥ 2−2µ0.

Then, the number of such balls is finite.
The above proposition implies that the computational
cost per time-step of algorithms implementing the strat-
egy (9) becomes independent of time after a transient pe-
riod. After such period, the computational costdepends
only on the cardinalitym of the final dictionary, which
is a function of the thresholdµ0. For instance, we set
µ0 in the numerical experiments presented in Section V
so thatm never exceeds a few tens. Since the proposed
sparsification rule is an alternative to the approximate
condition (6), it is of interest to establish a connection
between that condition and rule (9). We do this in the
following proposition.

Proposition 3: Letκ(·,uω1
), . . . , κ(·,uωm

) bem ker-
nel functions selected by the coherence-based rule (9).
If (m − 1)µ0 < 1, then the norm ofthe projection of
κ(·,uωm

) onto the span of the other(m − 1) kernel

functionsis less than or equal to
√

(m−1) µ2
0

1−(m−1) µ0
.

Proof: Let S denote the span ofκ(·,uω1
), . . . ,

κ(·,uωm−1
) and let PSκ(·,uωm

) be the projection of
the kernel functionκ(·,uωm

) onto S. The norm of
PSκ(·,uωm

) is the maximum, over all the unit functions
ψ(·) of S, of the inner product〈κ(·,uωm

), ψ(·)〉H.
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Writing ψ(·) =
∑

m−1

i=1
αi κ(·,uωi

)

‖
∑

m−1

i=1
αi κ(·,uωi

)‖H

, the problem can be
formally stated as follows:

‖PSκ(·,uωm
)‖H

= max
α

〈∑m−1
i=1 αi κ(·,uωi

), κ(·,uωm
)〉H

‖∑m−1
i=1 αi κ(·,uωi

)‖H

= max
α

(
∑m−1

i=1 αi κ(uωi
,uωm

))

‖∑m−1
i=1 αi κ(·,uωi

)‖H
. (10)

On the one hand, the numerator of this expression can
be upper bounded as follows:

[

m−1
∑

i=1

αi κ(uωi
,uωm

)

]2

≤
[

m−1
∑

i=1

µ0 |αi|
]2

≤ (m− 1)µ2
0 ‖α‖2, (11)

where the last inequality follows from the Cauchy-
Schwartz inequality. On the other hand, the denominator
in equation (10) can be lower bounded as follows:
∥

∥

∥

∥

∥

m−1
∑

i=1

αi κ(·,uωi
)

∥

∥

∥

∥

∥

2

H

= αtKα ≥ λmin‖α‖2

≥
[

1 − (m− 2)µ0

]

‖α‖2, (12)

whereK denotes here the Gram matrix of the(m− 1)
kernel functionsκ(·,uωi

). The last inequality follows
from the Geršgorin disk theorem [40]. Finally, combin-
ing inequalities (11) and (12) with equation (10) yields

‖PSκ(·,uωm
)‖H ≤

√

(m− 1)µ2
0

1 − (m− 2)µ0
. (13)

This bound is valid and non-trivial if it lies in the interval
[0, 1[, that is, if and only if(m− 1)µ0 < 1. This is also
the sufficient condition stated in Proposition 1 for the
κ(·,uωj

)’s to be linearly independent.
The projection ofκ(·,uωm

) onto the space spanned
by the (m − 1) previously selected kernel functions
results in a squared error‖(I − PS)κ(·,uωm

)‖2
H. From

Proposition 3, we deduce that

‖(I − PS)κ(·,uωm
)‖2

H

= ‖κ(·,uωm
)‖2

H − ‖PSκ(·,uωm
)‖2

H

≥ 1 − (m− 1)µ2
0

1 − (m− 2)µ0
(14)

under the condition(m− 1)µ0 < 1, which ensures that
the lower bound lies in the interval]0, 1]. As expected,
the smallerm and µ0, the larger the squared error
in the approximation of any dictionary element by a
linear combination of the others. We conclude that the
coherence-based rule (9) implicitly specifies a lower
bound on the squared error‖(I−PS)κ(·,uωm

)‖2
H viaµ0,

a mechanism which is explicitly governed byν in the
approximate linear condition (6). Both approaches can
then generate linearly independent sets of kernel func-
tions, a constraint that will be ignored in what follows.A
major advantage of the coherence-based rule is that it is
simpler and far less time consuming than condition (6).
At each time-step, its computational complexity is only
linear in the dictionary sizem, whereas (6)has at least
quadratic complexity evenwhen computed recursively.

It is also of interest toestablish a connection between
the coherence-based rule and quadratic Renyi entropy.
This measure, which quantifies the amount of disorder in
a system, is defined as follows:HR = − log

∫

p(u)2 du
with p a probability density function. Consider first the
Parzen density estimate

p̂(u) =
1

m

m
∑

i=1

1

(
√
πβ0)ℓ

exp
(

−‖u‖2/β2
0

)

(15)

based on the Gaussian window. By the convolution
theorem applied to Gaussian distributions, we have

HR ≈ − log

∫

p̂(u)2 du = − log





1

m2

m
∑

i,j=1

κ(ui,uj)

(2πβ2
0)ℓ/2





(16)
whereκ(ui,uj) = exp

(

−‖ui − uj‖2/2β2
0

)

denotes the
Gaussian kernel. The above example simply shows that
the sum of the entries of the Gram matrix characterizes
the diversity of the dictionary of kernel functions [41].
In [17], this was used as a criterion in a selection
mechanism with fixed-size least-squares support vec-
tor machines. We observe in equation (16) that the
coherence-based rule (9) ensures that

HR ≥ log(2πβ2
0 )ℓ/2 − log

[

1 + (m− 1)µ0

m

]

. (17)

As expected, the lower bound onHR increases asµ0

decreases andm increases. In a more general way, since
the integral

∫

p̂(u)2 du also defines the squared norm
‖p̂‖2

H of the functional formp̂(·) = 1
m

∑m
i=1 κ(·,ui), it

was observed in [41] that

HR ≈ − log ‖p̂‖2
H = − log





1

m2

m
∑

i,j=1

κ(ui,uj)



. (18)

In the case whereκ is not a unit-norm ker-
nel, remember thatκ(·,uk) must be replaced by
κ(·,uk)/

√

κ(uk,uk) in the coherence-based rule (9).
Assuming thatκ(uk,uk) = ζ for all k, equation (18)
leads to

HR ≥ log

(

1

ζ

)

− log

[

1 + (m− 1)µ0

m

]

. (19)
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Note that this bound, which depends on the norm of ker-
nel functions, increases asµ0 decreases orm increases.
This result emphasizes the usefulness of coherence to
accurately characterize the diversity of kernel functions
in a dictionary. In the next section,we usethis criterion
to derive a new kernel-based algorithm for time series
prediction, called kernel-based affine projection (KAP)
algorithm.

IV. A KERNEL-BASED AFFINE PROJECTION

ALGORITHM WITH ORDER-UPDATE MECHANISM

Let ψ̂n(·) denote them-th order model at time step
n, with m ≤ n. Then,

ψ̂n(·) =

m
∑

j=1

α̂n,j κ(·,uωj
), (20)

where theκ(·,uωj
)’s form a µ0-coherent dictionary

determinedunder rule(9). In accordance withthe least-
squares problem described in Section II-B, the optimal
α̂n solves minα ‖dn − Hnα‖2 where Hn denotes
the n-by-m matrix whose(i, j)-th entry isκ(ui,uωj

).
Assuming that(H t

nHn)
−1 exists,

α̂n = (H t
nHn)

−1H t
ndn. (21)

A possible way trade convergence speed for part of
the computational complexity involved in determining
the least-squares solution (21) has been proposed in [42].
The algorithm, termed Affine Projection algorithm, de-
termines a projection of the solution vectorα that solves
an under-determined least-squares problem. At each time
stepn, only thep most recent inputs{un, . . . ,un−p+1}
and observations{dn, . . . , dn−p+1} are used. An adap-
tive algorithm based on this method is derived next.

A. TheKernel Affine Projection Algorithm

In the following, Hn denotes the matrix whose(i, j)-
th entry isκ(un−i+1,uωj

), anddn is the column vector
whosei-th element isdn−i+1. Our approach starts with
the affine projection problem at time stepn

min
α

‖α − α̂n−1‖2 subject to dn = Hn α. (22)

In other words,α̂n is obtained by projectinĝαn−1 onto
the intersection of thep manifoldsAi defined as

Ai = {α : htn−i+1α − dn−i+1 = 0}, i = 1, . . . , p

with hn−i+1 = [κ(un−i+1,uω1
) κ(un−i+1,uω2

) . . .]t.
At iteration n, upon the arrival of new data, one of the
following alternatives holds. Ifκ(·,un) does not satisfy
the coherence-based sparsification rule (9),the dictionary
remains unaltered. On the other hand, if condition (9)

is met,κ(·,un) is inserted into the dictionary where it
is denoted byκ(·,uωm+1

). The number of columns of
matrixHn then is increased by one, relative toHn−1, by
appending [κ(un,uωm+1

) . . . κ(un−p+1,uωm+1
)]t. One

more entry is also added to the vectorα̂n.

B. First case study:maxj=1,...,m |κ(un,uωj
)| > µ0

In this caseκ(·,un) can be reasonably well repre-
sented by the kernel functions already in the dictionary.
Thus, it does not need to be inserted into the dictionary.
The solution to (22) can be determined by minimizing
the Lagrangian function

J(α,λ) = ‖α − α̂n−1‖2 + λt(dn − Hnα) (23)

whereλ is the vector of Lagrange multipliers. Differenti-
ating this expression with respect toα andλ, and setting
the derivatives to zero, we get the following equations
that α̂n must satisfy:

2 (α̂n − α̂n−1) = Ht
n λ (24)

Hnα̂n = dn. (25)

Assuming HnH
t
n nonsingular, these equations lead

to λ = 2 (HnH
t
n)

−1(dn − Hnα̂n−1). Substituting
into (24), we obtain a recursive update equation forα̂n:

α̂n = α̂n−1 + ηH t
n(ǫI + HnH

t
n)

−1(dn − Hnα̂n−1),
(26)

where we have introduced the step-size control parameter
η, and the regularization factorǫI. At each time stepn,
equation (26) requires inverting the usually smallp-by-p
matrix (ǫI + HnH

t
n).

C. Second case study:maxj=1,...,m |κ(un,uωj
)| ≤ µ0

In this caseκ(·,un) cannot be represented by the
kernel functionsalready in the dictionary. Then, it is
inserted into the dictionary and will henceforth be de-
noted byκ(·,uωm+1

). The orderm of (20) is increased
by one, andHn is updated to ap-by-(m + 1) matrix.
To accommodate the new element in̂αn, we modify
problem (22) as

min
α

‖α1,...,m − α̂n−1‖2 + α2
m+1 subject todn = Hnα,

(27)
whereα1,...,m denotes the firstm elements of the vector
α and Hn has been increased by one column as ex-
plained before. Note that the(m+ 1)-th elementαm+1

is incorporated to the objective function as a regularizing
term. Considerations similar to those made to obtain (26)
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Initialization
Fix the memory length p, the step-size η, and the regularization factor ǫ
Insert κ(·, up) into the dictionary, denote it by κ(·, uω1

)
Hp = [κ(up, uω1

) . . . κ(u1, uω1
)]t, α̂p = 0, m = 1

At each time step n > p, repeat
1. Get (un, dn)
2. If maxj=1,...,m |κ(un, uωj

)| > µ0: (parameter update)
Compute the p-by-m matrix Hn = [κ(un−i+1, uωj

)] i=1,...,p
j=1,...,m

Calculate α̂n using equation (26)
3. If maxj=1,...,m |κ(un, uωj

)| ≤ µ0: (parameter update with order increase)
m = m + 1
Insert κ(·, un) into the dictionary, denote it by κ(·, uωm)
Compute the p-by-m matrix Hn = [κ(un−i+1, uωj

)] i=1,...,p
j=1,...,m

Calculate α̂n using equation (28)

TABLE I
THE KAP ALGORITHM WITH COHERENCE CRITERION.

lead to thefollowing recursion

α̂n =

[

α̂n−1

0

]

+ ηH t
n(ǫI + HnH

t
n)

−1

(

dn − Hn

[

α̂n−1

0

])

.

(28)

We call the set of recursions (26) and (28) theKernel
Affine Projection (KAP) algorithm. It is described in
pseudo-code in Table I. The value ofp is termed the
memory lengthor the orderof the algorithm. Next, we
explore the idea of using instantaneous approximations
for the gradient vectors.

D. Instantaneous approximations– The Kernel NLMS
algorithm

Now consider the casep = 1. At each time stepn,
the algorithm described above then enforces the equality
dn = htnαn wherehn is the column vector whosei-th
entry isκ(un,uωi

). Relations (26) and (28) reduce to
1. If maxj=1,...,m |κ(un,uωj

)| > µ0

α̂n = α̂n−1 +
η

ǫ+ ‖hn‖2
(dn − htnα̂n−1)hn, (29)

with hn = [κ(un,uω1
) . . . κ(un,uωm

)]t.
2. If maxj=1,...,m |κ(un,uωj

)| ≤ µ0

α̂n =

[

α̂n−1

0

]

+
η

ǫ+ ‖hn‖2

(

dn − htn

[

α̂n−1

0

])

hn,

(30)
with hn = [κ(un,uω1

) . . . κ(un,uωm+1
)]t.

The form of these recursions is that of the normalized
LMS algorithm with kernels, referred to as KNLMS and
described in pseudo-code in Table II. As opposed to

the scalar-valueda priori error, ea,n = dn − htnα̂n−1,
used by KNLMS, we note that KAP algorithm uses a
vector-valued error,ea,n = dn − Hnα̂n−1, to update
the weight vector estimate. The next subsection discusses
computational requirements of both approaches.

E. Computational complexity

Table III reports the estimated computational costs of
KAP and KNLMS algorithms for real-valued data, in
terms of the number of real multiplications and real addi-
tions per iteration.The computation cost to evaluatehn
scales linearly with the dictionary dimensionm. This
cost has not been included in Table III becauseit depends
on the selected kernel. Recursions with (see (28), (30))
and without (see (26), (29)) order increase are considered
separately in Table III. The coherence criterion (9) used
to select which update to perform is significantly simpler
than the approximate linear condition (6) since it consists
of comparing the largest element in magnitude ofhn to
a thresholdµ0. Note that the final size of a dictionary
of kernel functions determined under the rule (9) is
finite. This implies that, after a transient period during
which the order of the model increases, computational
complexity is reduced to that of equations (26) and (29).
The main conclusion is that the costs of KNLMS and
KAP algorithms areO(m) and O(p2m), respectively.
As illustrated in the next section, the sizem of kernel
expansions never exceeded a few tens.

V. SIMULATION EXAMPLES

The purpose of this section is toillustrate the per-
formance of the proposed approach. We shall report the
results of two simulated data experiments.
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Initialization
Fix the step-size η, and the regularization factor ǫ
Insert κ(·, u1) into the dictionary, denote it by κ(·, uω1

)
h1 = κ(u1, uω1

), α̂1 = 0, m = 1
At each time step n > 1, repeat

1. Get (un, dn)
2. If maxj=1,...,m |κ(un, uωj

)| > µ0: (parameter update)
Compute the column vector hn = [κ(un, uω1

) . . . κ(un, uωm)]t

Update α̂n using equation (29)
3. If maxj=1,...,m |κ(un, uωj

)| ≤ µ0: (parameter update with order increase)
m = m + 1
Insert κ(·, un) into the dictionary, denote it by κ(·, uωm)
Compute the column vector hn = [κ(un, uω1

) . . . κ(un, uωm)]t

Update α̂n using equation (30)

TABLE II
THE KNLMS ALGORITHM WITH COHERENCE CRITERION.

KNLMS KAP

without order increase
× 3m + 1 (p2 + 2p)m + p3 + p
+ 3m (p2 + 2p)m + p3 + p2

with order increase
× 3m + 3 (p2 + 2p)m + p3 + 2p2 + p
+ 3m + 1 (p2 + 2p)m + p3 + p2 + p − 1

TABLE III
ESTIMATED COMPUTATIONAL COST PER ITERATION OFKNLMS AND KAP ALGORITHMS.

A. Experiment with KNLMS

As a first benchmark problem, we consider the non-
linear system described by the difference equation

dn =
(

0.8 − 0.5 exp(−d2
n−1)

)

dn−1

−
(

0.3 + 0.9 exp(−d2
n−1)

)

dn−2

+ 0.1 sin(dn−1π) (31)

where dn is the desired output. This highly nonlinear
time series has been investigated in [18]. The data were
generated by iterating the above equation from the initial
condition (0.1, 0.1). Outputs dn were corrupted by a
measurement noise sampled from a zero-mean Gaussian
distribution with standard deviation equal to0.1. This
led to a signal-to-noise ratio, defined as the ratio of the
powers ofdn and the additive noise, of17.2 dB. These
data were used to estimate a nonlinear model of the form
dn = ψ(dn−1, dn−2). In identifying the system, we re-
stricted ourselves to KNLMS and the experimental setup
described in [18]. In particular, as in [18], the Gaus-
sian kernelκ(ui,uj) = exp

(

−3.73 ‖ui − uj‖2
)

was
considered. Preliminary experiments were conducted as
explained below to determine all the adjustable param-
eters, that is, the thresholdµ0, the step-sizeη and the
regularization factorǫ. The algorithm was then evaluated
on several independent test signals, which led to the
learning curve depicted in Figure 1 and the normalized
mean-square prediction error reported in Table IV. The

same procedure was followed to parameterize and test
the state-of-the-art methods discussed later.

The preliminary experiments were conducted on se-
quences of3000 samples to determineµ0, η and ǫ.
Performance was measured in steady-state using the
mean-square prediction error

∑3000
n=2501(dn−ψn−1(un))

2

over the last500 samples of each sequence, and averaged
over10 independent trials. The dictionary was initialized
with κ( ·,u1), where u1 = [0.1, 0.1]t. The step-size
η and the regularization coefficientǫ were determined
by grid search over(10−4 ≤ η ≤ 10−1) × (10−4 ≤
ǫ ≤ 10−1) with increment2 × 10−k within each range
[10−k, 10−k+1]. The thresholdµ0 was varied from0.05
to 0.95 in increments of0.05. It was observed that
increasingµ0 was associated with performance improve-
ments until a threshold was attained, when performance
stayed basically unchanged. A practical compromise be-
tween the model order and its performance was reached
by setting the thresholdµ0 to 0.5. The step-size param-
eterη and the regularization coefficientǫ were fixed to
9 × 10−2 and3 × 10−2, respectively.

The KNLMS algorithm was tested with the parameter
settings specified above over two hundred 10000-sample
independent sequences. This led to the ensemble-average
learning curve shown in Figure 1. The orderm of
kernel expansions was, on average, equal to21.3. The
normalized mean-square prediction error over the last
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Algorithm × + Parameter settings m NMSE
NORMA 2m m λ = 0.98, ηn = 1/

√
n 38 0.1051

KNLMS 3m + 1 3m µ0 = 0.5, ǫ = 0.03, η = 0.09 21.3 0.0197
SSP 3m2 + 6m + 1 3m2 + m − 1 κ = 0.001, η = 0.1 23.8 0.0184

KRLS 4m2 + 4m 4m2 + 4m + 1 ν = 0.6 22.1 0.0173

TABLE IV
EXPERIMENT A: ESTIMATED COMPUTATIONAL COST PER ITERATION, EXPERIMENTAL SETUP AND PERFORMANCE ON INDEPENDENT

TEST SEQUENCES.

Algorithm × + Parameter settings m NMSE
NORMA 2m m λ = 0.09, ηn = 0.09/

√
n 35 0.56

KNLMS 3m + 1 3m µ0 = 0.3, ǫ = 0.0009, η = 0.01 5.4 0.20
KAPp=2 8m + 10 8m + 12 µ0 = 0.3, ǫ = 0.07, η = 0.009 5.4 0.21
KAPp=3 15m + 30 15m + 36 µ0 = 0.3, ǫ = 0.07, η = 0.01 5.4 0.21

SSP 3m2 + 6m + 1 3m2 + m − 1 κ = 0.005, η = 0.03 17.5 0.21
KRLS 4m2 + 4m 4m2 + 4m + 1 ν = 0.7 8.1 0.17

TABLE V
EXPERIMENT B: ESTIMATED COMPUTATIONAL COST PER ITERATION, EXPERIMENTAL SETUP AND PERFORMANCE ON INDEPENDENT

TEST SEQUENCES.

most accurate in this experiment. The bandwidthβ0 was
varied from0.1 to 1 in increments of0.005 to find the
optimal setting. The coherence thresholdµ0 was also
varied from0.05 to 0.5 in increments of0.05. Memory
lengthsp ranging from1 to 3 were considered and, in
each case, the best performing step-size parameterη and
regularization constantǫ were determined by grid search
over (10−4 ≤ η ≤ 10−1) × (10−4 ≤ ǫ ≤ 10−1) with
increment2 × 10−k within each range[10−k, 10−k+1].
Parameter choices are reported in Table V, forp ranging
from 1 to 3.

Each configuration was run over two hundred10000-
sample independent test sequences. The orderm of the
kernel expansion was5.4 on average, and the mean
value of the Babel function was0.56. By Proposition 1,
this indicates that the kernel functions of the dictionary
were most frequently, if not always, chosen linearly
independent. Steady-state performance was measured
by the normalized mean-square prediction error (32).
Table V reports mean values over the two hundred test
sequences for memory lengthsp ranging from 1 to
3. It indicates that steady-state performance remained
almost unchanged asp increased. Figure 2 illustrates
the convergence behavior of KAP-type methods. These
ensemble-average learning curves were obtained by time
averaging over20 consecutive samples. It appears as
an evidence that KAP algorithm provided a significant
improvement in convergence rate over KNLMS.

The same procedure as before was followed to ini-
tialize and test NORMA, SSP and KRLS algorithms.
The preliminary experiments that were conducted led

to the parameter settings displayed in Table V, where
we use the same notations as those in [18], [20], [43].
This table also reports the average orderm of kernel
expansions and the normalized mean-square prediction
error of each algorithm, estimated over two-hundred
independent test sequences. Figure 2 shows that KRLS
converges faster than KAP-type algorithms, as might be
expected, since they are derived from stochastic-gradient
approximations. Nevertheless, the KRLS algorithm is an
order of magnitude inm costlier than KAP. It can also be
seen that SSP has approximately the same convergence
rate as KNLMS, but converges slower than the other
two KAP algorithms. Moreover, SSP is more demanding
computationally and requires kernel expansions of larger
orderm. Figure 2 finally highlights that NORMA, the
other approach with linear complexity inm, is clearly
outperformed by KAP-type algorithms.

The tradeoffs involved in using RLS, affine projection
and LMS algorithms are well known inlinear adaptive
filtering. It is expectedthat these tradeoffs would persist
with their kernel-based counterparts. This was confirmed
by simulations, even considering that no theoretical effort
was made to determine analytically the optimum tuning
parameters for each algorithm. In general, the KRLS
algorithm will provide the fastest convergence rate at the
expense of the highest computational complexity. The
KNLMS algorithm will lead to the lowest computational
cost, but will affect the convergence rate of the filtering
process. The KAP algorithm lies halfway between these
two extremes, converging faster than KNLMS and slower
than KRLS,and having a computational complexity that
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Fig. 2. Learning curves for KAP, KNLMS, SSP, NORMA and KRLS obtained by averaging over200 experiments.

is higher than KNLMS and lower than KRLS.

VI. CONCLUSION

Over the last ten years or so there has been an
explosion of activity in the field of learning algorithms
utilizing reproducing kernels, most notably in the field
of classification and regression. The use of kernels is an
attractive computational shortcut to create nonlinear ver-
sions of conventional linear algorithms. In this paper, we
have demonstrated the versatility and utility of this fam-
ily of methods to develop nonlinear adaptive algorithms
for time series prediction, specifically of the KAP and
KNLMS types. A common characteristic in kernel-based
methods is that they deal with models whose order equals
the size of the training set, making them unsuitable for
online applications. Therefore it was essential to first
develop a methodology of controlling the increase in the
model order as new input data become available. This led
us to consider the coherence parameter, a fundamental
quantity that characterizes the behavior of dictionaries
in sparse approximation problems. The motivation for
using it was two-fold. First, it offers several attractive
properties that can be exploited to assess the novelty
of input data. This framework is a core contribution to
our paper. Secondly, the coherence parameter is easy to
calculate and its computational complexity is only linear
in the dictionary size. We proposed to incorporate it into
a kernel-based affine projection algorithm with order-
update mechanism, which has also been a notable con-
tribution to our study. Perspectives include the use of the
Babel function instead of the coherence parameter since

it provides a more in-depth description of a dictionary.
Online minimization of the coherence parameter or the
Babel function of the dictionary by adding or removing
kernel functions also seems interesting. Finally, in a
broader perspective, improving our approach with tools
derived from compressed sensing appears as a very
promising subject of research.
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