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Correspondence should be addressed to Paul Honeine, paul.honeine@utt.fr

Received 30 October 2009; Revised 8 April 2010; Accepted 9 May 2010

Academic Editor: Xinbing Wang

Copyright © 2010 Paul Honeine et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor networks rely on sensor devices deployed in an environment to support sensing and monitoring, including
temperature, humidity, motion, and acoustic. Here, we propose a new approach to model physical phenomena and track their
evolution by taking advantage of the recent developments of pattern recognition for nonlinear functional learning. These methods
are, however, not suitable for distributed learning in sensor networks as the order of models scales linearly with the number of
deployed sensors and measurements. In order to circumvent this drawback, we propose to design reduced order models by using
an easy to compute sparsification criterion. We also propose a kernel-based least-mean-square algorithm for updating the model
parameters using data collected by each sensor. The relevance of our approach is illustrated by two applications that consist of
estimating a temperature distribution and tracking its evolution over time.

1. Introduction

Wireless sensor networks consist of spatially distributed
autonomous sensors whose objective is to cooperatively
monitor physical or environmental parameters such as tem-
perature, humidity, concentration, pressure, and so forth.
Starting with critical military applications, they are now used
in many industrial and civilian areas, including industrial
process monitoring and control, environment and habitat
monitoring, home automation, and so forth. Some common
examples are monitoring the state of permafrost and glacier,
tracking wildland and forest fires spreading, detecting water
and air pollution, sensing seismic activities, to mention a
few. Modeling phenomena under consideration allows the
extrapolation of present states over time and space. This can
be used to identify trends or to estimate uncertainties in
forecasts, and to prescribe detection, prevention, or control
strategies accordingly.

Here, we consider the problem of modeling complex
processes such as heat conduction and pollutant diffusion

with wireless sensor networks, and track changes over time
and space. This typically leads to a dilemma between incor-
porating enough complexity or realism on the one hand,
and keeping the model tractable on the other hand. Due to
computational resource limitations, priority is given to over-
simplification and models that can separate the important
from the irrelevant. Many approaches have been proposed to
address this issue with collaborative sensor networks. In [1],
an incremental subgradient optimization procedure has been
applied in a distributed fashion for the estimation of a single
parameter. See also [2] for an extension to clusters. It consists
of passing the parameter from sensor to sensor, and updating
it to minimize a given cost function locally. More than one
pass over all the sensors may be required for convergence
to the optimal (centralized) solution. This number of cycles
can be theoretically bounded. The main advantages of
this method are the simple sensor-to-sensor scheme with
a short pathway and without lateral communication, and
the need to communicate only the estimated parameter
value over sensors. However, as explained in [3], such a
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technique cannot be used for functional estimation since
evaluating the subgradient in the vicinity of each sensor
requires information related to other sensors. Model-based
techniques that exploit the temporal and spatial redundancy
of data in order to compress communications have also
been considered. For instance, in [4], data captured by each
sensor over a time interval are fitted by (cubic) polyno-
mial curves whose coefficients are communicated between
sensors. Since there is a significant amount of redundancy
between measurements performed by two nearby sensors,
spatial correlations are also modeled by defining the basis
functions over both spatial parameters and time. The main
drawback of such techniques is their dependence upon the
modeling assumptions. Model-independent methods based
on kernel machines have recently been investigated. In
particular, a distributed learning strategy has been success-
fully applied to regression in sensor networks [5, 6]. Here,
each sensor acquires information from neighboring sensors
to solve locally the least-squares problem. This broadcast,
unfortunately, leads to high energy consumption.

We take advantage of the pros of some of the above-
mentioned methods to derive our approach. In particular, we
will require the following important properties to hold.

(i) Sensor-to-sensor scheme: each sensor has the same
importance in the network at each updating cycle.
Thus, failure of any sensor has a small impact on
the overall model, as opposed to cluster-head failure
in aggregation and clustering techniques. It should
be noted that several such conventional methods
have been investigated specifically for use in sensor
networks. Examples are LEACH with data fusion in
the cluster head [7], PEGASIS with data conveyed to a
leader sensor [8], and (minimum) spanning tree and
junction tree, to name a few.

(ii) Kernel machines: these model-independent methods
have gained popularity over the last decade. Ini-
tially derived for regression and classification with
support vector machines [9], they include classical
techniques such as least-squares methods and extend
them to nonlinear functional approximation. Kernel
machines are increasingly applied in the field of sen-
sor networks for localization [10], detection [11], and
regression [3]. One potential problem of applying
classical kernel machines to distributed learning in
sensor networks is that the order of the resulting
models scales linearly with the number of deployed
sensors and measurements.

(iii) Spatial redundancy: taking spatial correlation of data
into account has been recommended by numerous
researchers. See, for example, [12–14] where relation
between the topology of the network and measure-
ment data is studied. In particular, the authors of
[12] seek to identify a small subset of representative
sensors which leads to minimal distortion of the data.

In this paper, we propose a new approach to model
physical phenomena and track their evolution over time.

The new approach is based on a kernel machine but con-
trols the model order through a coherence-based criterion
that reduces spatial redundancy. It also employs sensor-to-
sensor communication, and thus is robust to single sensor
failures. The paper is organized as follows. The next section
briefly reviews functional learning with kernel machines
and addresses its limitations within the context of wireless
sensor networks. It is shown how to overcome these limi-
tations through a model order reduction strategy. Section 3
describes the proposed algorithm and its application to
instantaneous functional estimation and tracking. Section 4
addresses implementation issues in sensor networks. Finally,
we report simulation results in Section 5 to illustrate the
applicability of the proposed approach.

2. Functional Learning and Sensor Networks

We consider a regression problem whose goal is, for example,
to estimate the temperature distribution over a region where
n wireless sensors are randomly deployed. We denote by X
the region of interest, which is supposed to be a compact
subset of Rd, and by ‖ · ‖ its conventional Euclidean
norm. We wish to determine a function ψ∗(·) defined on
X that best models the spatial temperature distribution.
The latter is learned from the information coupling sensor
locations and measurements. The information from the n
sensors located at xi ∈ X and providing measurements
di ∈ R, with i = 1, . . . ,n, is combined in the vector
of pairs {(x1,d1), . . . , (xn,dn)}. The fitness criterion is the
mean square error between the model outputs ψ(xi) and the
measurements di, for i = 1, . . . ,n, namely,

ψ∗(·) = arg min
ψ

1
n

n∑

i=1

(
di − ψ(xi)

)2
. (1)

Note that this problem is underdetermined since there exists
an infinite number of functions that verify this expression. To
obtain a well-posed problem, one must restrict the space of
candidate functions. The framework of reproducing kernels
allows us to circumvent this drawback.

2.1. A Brief Review of Kernel Machines. We consider a
reproducing kernel κ : X × X → R. We denote by H its
reproducing kernel Hilbert space, and by 〈·, ·〉H the inner
product in H . This means that every function ψ(·) of H can
be evaluated at any x ∈X with

ψ(x) = 〈ψ(·), κ(·, x)
〉
H . (2)

By using Tikhonov regularization, minimization of the cost
functional over H leads to the optimization problem

ψ∗(·) = arg min
ψ∈H

1
n

n∑

i=1

(
di − ψ(xi)

)2 + η
∥∥ψ
∥∥2

H , (3)

where η controls the trade-off between the fitting to the
available data and the smoothness of the solution.

Before proceeding, we recall that data-driven reproduc-
ing kernels have been proposed in the literature, as well as
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Figure 1: Shapes of the Gaussian and the Laplacian kernels around
the origin.

more classical and universal ones. In this paper, without any
essential loss of generality, we are primarily interested in
radial kernels. They can be expressed as a decreasing function
of the Euclidean distance in X, that is, κ(xi, x j) = κ(‖xi−x j‖)
with some abuse of notation. Radial kernels have a natural
interpretation in terms of measure of similarity in X, as the
kernel value is larger the closer together two locations are.
Two typical examples of radial kernels are the Gaussian and
Laplacian kernels, defined as

Gaussiankernel: κ
(

xi, x j

)
= e−‖xi−x j‖2/2β2

0

Laplaciankernel: κ
(

xi, x j

)
= e−‖xi−x j‖/β0 ,

(4)

where β0 is the kernel bandwidth. Figure 1 represents these
kernels. Other examples of kernels, radial or not, can be
found in [15].

It is well-known in the machine-learning community
that the optimal solution of the optimization problem (3)
can be written as a kernel expansion in terms of the available
data [16, 17], namely,

ψ∗(·) =
n∑

k=1

αk κ(xk, ·). (5)

This means that the optimal function is uniquely identified
by the weighting coefficients α1, . . . ,αn and the n sensor loca-
tions x1, . . . , xn. Whereas the initial optimization problem (3)
considers the infinite dimensional hypothesis space H , we
are now considering the optimal vector α = [α1 · · ·αn]� in
the n-dimensional space of coefficients. The corresponding
cost function is obtained by inserting the model (5) into the
optimization problem (3). This yields

α∗ = arg min
α
‖d−Kα‖2 + ηα�Kα, (6)

where K is the so-called Gram matrix whose (i, j)th entry
is κ(xi, x j), and d = [d1 . . . dn]� is the vector of measure-
ments. The solution to this problem is given by

α∗ = (K�K + ηK
)−1K�d. (7)

Note that the computational complexity involved in solving
this problem is O(n3).

Practicality of wireless sensor networks imposes con-
straints on the computational complexity of calculations
performed by each sensor, and on the amount of internode
communications. To deal with these constraints, the opti-
mization problem (6) may be solved distributively using a
receive—update—transmit scheme. For example, sensor i
gets the parameter vector αi−1 from sensor i− 1, and updates
it to αi based on the error ei defined by

ei = di − [κ(x1, xi) · · · κ(xn, xi)]αi

= di − ψ(xi).
(8)

In order to compute [κ(x1, xi) · · · κ(xn, xi)]; however, each
sensor must know the locations of the other sensors. This
unfortunately imposes a substantial demand for both storage
and computational time, as most practical applications
require a large number of densely deployed sensors for cov-
erage and robustness reasons. To alleviate these constraints,
we propose to control the model complexity to signifi-
cantly reduce the computational effort and communication
requirements.

2.2. Complexity Control of Kernel Machines in Sensor Net-
works. Consider the restriction of the kernel expansion (5) to
a dictionary Dm composed of m functions κ(xωk , ·) carefully
selected among the n available ones, where {ω1, . . . ,ωm}
is a subset of {1, . . . ,n} and m is several orders of mag-
nitude smaller than n. This is equivalent to choosing m
sensors denoted by ω1, . . . ,ωm whose locations are given by
xω1 , . . . , xωm . The resulting reduced order model will be given
by

ψ(·) =
m∑

k=1

αkκ
(

xωk , ·
)
. (9)

The selection of the kernel functions in the reduced-
order model is crucial for achieving good performance.
In particular, the removed kernel functions must be well
approximated by the remaining ones in order to minimize
the difference between the optimal model given in (5)
and the reduced one in (9). A variety of methods have
been proposed in recent years for deriving kernel-based
models with reduced order. They broadly fall into two
categories. In the first one, the optimization problem (6) is
regularized by an �1 penalization term applied to α [18, 19].
These techniques are not suitable for sensor networks due
to their large computational requirements. In the second
category, postprocessing algorithms are used to control
the model order when new data becomes available. For
instance, the short-time approach consists of including,
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as we visit each sensor, the newly available kernel function
while removing the oldest one. Another technique, called
truncation, removes the kernel functions associated with
the smallest weighting coefficients αi. These naive methods
usually exhibit poor performance because they ignore the
relationships between the kernel functions of the model. To
efficiently control the order of the model (9) as the model
travels through the network, only the less redundant kernel
functions must be added to the kernel expansion. Several
criteria have been proposed in the literature to assess the
contribution of each new kernel function to an existing
model. In [20–22], for instance, the kernel function κ(xi, ·)
is inserted into the model and its order is increased by one if
the approximation error defined below is greater than a given
threshold ε

min
β1,...,βm

∥∥∥∥∥∥
κ(xi, ·)−

m∑

k=1

βkκ(xωk , ·)
∥∥∥∥∥∥

2

H

≥ ε, (10)

where κ is a unit-norm kernel (replace κ(xi, ·) with
κ(xi, ·)/

√
κ(xi, xi) in (10) if κ(xi, ·) is not unit-norm.) that is,

κ(xi, xi) = 1. Note that this criterion requires the inversion
of an m-by-m matrix, and thus demands high precision and
large computational effort from the microprocessor at each
sensor.

In this paper, we cut down the computational cost associ-
ated with this selection criterion by using an approximation
which has a natural interpretation in the wireless sensor
network setting. Based on recent work in kernel-based online
prediction of time series by three of the authors [23, 24], we
employ the coherence criterion which includes the candidate
kernel function κ(xi, ·) in themth order model provided that

max
k=1,...,m

∣∣κ
(

xi, xωk
)∣∣ ≤ ν, (11)

where ν is a threshold in [0, 1[ which determines the sparsity
level of the model. By the reproducing property of H , we
note that κ(xi, xωk ) = 〈κ(xi, ·), κ(·, xωk )〉H . The condition
(11) then results in a bounded crosscorrelation of the kernel
functions in the model. Without going into details, we refer
interested readers to our recent paper [23], where we study
the properties of the resulting models, and connections
to other sparsification criteria such as (10) or the kernel
principal component analysis.

We shall now show that the coherence criterion has a
natural interpretation in the wireless sensor network setting.
Let us compute the distance of two kernel functions in H

∥∥∥κ(xi, ·)− κ
(

x j , ·
)∥∥∥

2

H

=
〈
κ(xi, ·)− κ

(
x j , ·

)
, κ(xi, ·)− κ

(
x j , ·

)〉
H

= 2
(

1− κ
(

xi, x j

))
,

(12)

where we have assumed, without substantive loss of gener-
ality, that κ is a unit-norm kernel. Back to the coherence
criterion and using the above result, (11) can be written as
follows:

min
k=1,...,m

∥∥κ(xi, ·)− κ(xωk , ·)
∥∥2

H ≥ 2 (1− ν). (13)

Table 1: Distributed learning algorithm.

In-sensor parameters

Evaluation of the kernel κ(· , ·)
Coherence threshold ν

Step-size parameter ρ

Communicated message

Locations of selected sensors [xω1 · · · xωm]

Weighting coefficients [αω1,i−1 · · ·αωm ,i−1] = α�i−1

At each sensor i

(1) Compute κi κi = [κ(xi, xω1 ) · · · κ(xi, xωm)]�

(2) If coherence condition
violated:

maxk=1,...,m|κ(xi, xωk )| < ν

Increment the model order
m =m + 1, xωm = xi, αi−1 =
[α�i−10]�

(3) Update coefficients αi=αi−1+
ρ

‖κi‖2
κi(di−κ�i αi−1)

Thus, the coherence criterion (11) is equivalent to a distance
criterion in H where kernel functions are discarded if they
are too close to those already in the model. Distance criteria
are relevant within the context of sensor networks since they
can be related to signal strength loss [10]. We shall discuss
this property further at the end of the next section when we
study the optimal selection of sensors.

3. Distributed Learning Algorithm

Let ψ(·) = ∑m
k=1 αk κ(xωk , ·) be the mth order model

where the kernels κ(xωk , ·) form a ν-coherent dictionary
determined under the rule (11). In accordance with the least-
squares problem (3), them-dimensional coefficient vector α∗

satisfies

α∗ = arg min
α
‖d−Hα‖2 + ηα�Kωα, (14)

where H is the n-by-m matrix with (i, j)th entry κ(xi, xωj ),
and Kω is the m-by-m matrix with (i, j)th entry κ(xωi , xωj ).
The solution α∗ is obtained as follows:

α∗ = (H�H + ηKω
)−1H�d, (15)

which requires O(m3) operations as compared to O(n3),
with m � n, for the optimal solution given by (7). We shall
now cut down the computational cost further by using a
distributed algorithm in which each sensor node updates the
coefficient vector.

3.1. Recursive Parameter Updating. To solve problem (15)
recursively, we consider an optimization algorithm based
on the principle of minimal disturbance, as studied in our
paper [25]. Sensor i computes αi from αi−1 received from
sensor i−1 by minimizing the norm between both coefficient
vectors under the constraint ψ(xi) = di. The optimization
problem solved at sensor i is

min
αi
‖αi−1 − αi‖2

subject to κ�i αi = di,
(16)
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where κi is a m-dimensional column vector whose kth entry
is κ(xi, xωk ). The model order control using (11) requires
different measures for each of the two alternatives described
next.

maxk=1,...,m|κ(xi, xωk )| > ν. Sensor i is close to one of
the previously selected sensors ω1, . . . ,ωm in the sense of
the norm in H . Thus, the kernel function κ(xi, ·) does not
need to be inserted into the model, whose order remains
unchanged. Only the coefficient vector needs to be updated.
The solution to (16) can be obtained by minimizing the
Lagrangian function

J(αi, λ) = ‖αi−1 − αi‖2 + λ
(
di − κ�i αi

)
, (17)

where λ is the Lagrange multiplier. Differentiating this
expression with respect to both αi and λ, and setting the
derivatives to zero, we get the following equations

2(αi − αi−1) = λκi, (18)

κ�i αi = di. (19)

Assuming that κ�i κi is nonzero, these equations yield

λ = 2
(
κ�i κi

)−1(
di − κ�i αi−1

)
. (20)

Substituting the expression for λ into (18) leads to the
following recursion

αi = αi−1 +
ρ

‖κi‖2 κi
(
di − κ�i αi−1

)
, (21)

where we have introduced the step-size parameter ρ in order
to control the convergence rate of the algorithm.

maxk=1,...,m|κ(xi, xωk )| ≤ ν. The topology defined by
sensors ω1, . . . ,ωm does not cover the region monitored by
sensor i. The kernel function κ(xi, ·) is then inserted into the
model, and will henceforth be denoted by κ(xωm+1 , ·). Now
we have

ψ(·) =
m+1∑

k=1

αk κ
(

xωk , ·
)
. (22)

To accommodate the new entry αm+1, we modify the
optimization problem (16) as follows:

min
αi

∥∥αi−1 − αi,[1:m]
∥∥2 + α2

m+1,

subject to κ�i αi = di,
(23)

where the subscript[1:m] denotes the first m elements of αi.
Note that κi now has one more entry, κ(xi, xωm+1 ). Writing
the Lagrangian and setting to zero its derivatives with respect
to αi and λ, we get the following updating rule

αi =
[
αi−1

0

]
+

ρ

‖κi‖2 κi

(
di − κ�i

[
αi−1

0

])
. (24)

The form of recursions (21)–(24) is that of the kernel-
based normalized LMS algorithm with order-update mech-
anism. The pseudocode of the algorithm is summarized in
Table 1.

3.2. Algorithm and Remarks. We now illustrate the proposed
approach. We shall address the problem of optimally select-
ing the sensors ωk in the next subsection. Consider the
network schematically shown in Figure 2. Here, each sensor
is represented by a node, and communications between
sensors are indicated by one-directional arrows. The process
is initialized with sensor 1, that is, we set ω1 = 1 and
m = 1. Let us suppose that sensors 2 and 3 belong to the
neighborhood of sensor 1 with respect to criterion (11). As
illustrated in Figure 2, this means that (11) is not satisfied for
k = 1 and i = 2, 3. Thus, the model order remains unaltered
when the algorithm processes the information at nodes 2
and 3. The coefficient vector αi is updated using rule (21)
for i = 2, 3. Sensor-to-sensor communications transmit the
locations of sensors that contribute to the model, here x1, and
the updated parameter vector. As information propagates
through the network, it may be transmitted to a sensor
which satisfies criterion (11). This is the case of sensor 4,
which is then considered to be outside the area covered by
contributing sensors. Consequently, the model order m is
increased by one at sensor 4 and the coefficient vector α4 is
updated using (24). Next, the sensor locations [x1x4] and the
parameter vector α4 are sent to sensor 5, and so on.

Updating cycles can be repeated to refine the model or
to track time-varying systems. (Though beyond the scope of
this paper, one may assume a time-evolution kernel-based
model in the spirit of [4] where the authors fit a cubic
polynomial to the temporal measurements of each sensor.)

For a network with a fixed sensor spatial distribution, the
coefficient vectors αi tend to be adapted using (21) with a
fixed-order m, after a transient period during which rules
(21) and (24) are both used.

Note that different approaches may be used to derive the
recursive parameter updating equation. The wide available
literature on adaptive filtering methods [26, 27] can be used
to derive different kernel-based adaptive algorithms that may
have desirable properties for solving specific problems [23].
For instance, specific strategies may be used to tune the
step-size parameter ρ in (21) and (24) for a better trade-off
between convergence speed and steady-state performance.
Note also that regularization is usually unnecessary in (21)
and (24) for adequate values of ν. (Regularization would be
implemented in (21) and (24) by using a step-size of the form
ρ/(‖κi‖2 + η), where η is the regularization coefficient.) If
sensor i is one of the m model-contributing sensors, then
κ(xi, xi) is an entry of vector κi. Assuming again without
loss of generality that κ is a unit-norm kernel, this yields
‖κi‖ ≥ 1. Otherwise, sensor i does not satisfy criterion (11).
This implies that there exists at least one index k such that
κ(xi, xωk ) > ν, and thus ‖κi‖ > ν.

3.3. On the Optimal Selection of Sensors ωk. In order to
design an efficient sensor network and to perform a proper
dimensioning of its components, it is crucial that the order
m of the model be as small as possible. So far, we have
considered a simple heuristic consisting of visiting the
sensor nodes as they are encountered, and selecting onthe-
fly with criterion (11) those to include in the model. We
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[x1]
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[x1 x4]
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[x1 x4]
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Neighborhood
of sensor 4

Neighborhood
of sensor 1

Figure 2: Illustration of the distributed learning algorithm.

shall now formalize this selection as a minimum set cover
combinatorial optimization problem.

We consider the finite set Hn = {κ(x1, ·), . . . , κ(xn, ·)} of
kernel functions, and the family of disks of radius ν centered
at each κ(xk, ·). Within this framework, a set cover is a
collection of some of these disks whose union is Hn. Note
that we have denoted by Dm the set containing the κ(xωk , ·)’s,
with k = 1, . . . ,m. In the set covering optimization problem,
the question is to find a collection Dm with minimum
cardinality. This problem is known to be NP-hard. The linear
programming relaxation of this 0-1 integer program has been
considered by numerous authors, starting with the seminal
work [28]. Greedy algorithms have also received attention as
they provide good or near-optimal solutions in a reasonable
time [29]. Greedy algorithms make the locally optimum
choice at each iteration, without regard for its implications
on future stages. To insure stochastic behavior, randomized
greedy algorithms have been proposed [30, 31]. They often
generate better solutions than the pure greedy ones. To
improve the solution quality, sophisticated heuristics such
as simulated annealing [32], genetic algorithms [33], and
neural networks [34] introduce randomness in a systematic
manner.

Consider, for instance, the use of the basic greedy
algorithm to determine Dm. The greedy algorithm for set
covering chooses, at each stage, the set which contains the
largest number of uncovered elements. It can be shown
that this algorithm achieves an approximation ratio of the
optimum equal to H(p) = ∑p

k=1 1/k, where p is the size
of the largest set of the cover. To illustrate the effectiveness
of this approach for sensor selection, and to compare it
with the on-the-fly method discussed previously, 100 sensors
were randomly deployed over a 1.6-by-1.6 square area.
The variation of the number of selected sensor nodes as

0

20

40

60

80

100

m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

νx

Figure 3: Number of sensor nodes selected by the greedy (solid)
and the on-the-fly (dashed) algorithms as a function of the
coherence threshold.

a function of the coherence threshold was examined. To
provide numerical results independent of the kernel form,
and thus to simplify the presentation, criterion (11) was
replaced by the following. (In the case where κ is a strictly
decreasing function, criterion (11) can be rewritten as ‖xi −
xωk‖ < νx with νx = κ−1(1 − ν/2).) For instance, with the

Gaussian kernel, we have νx =
√
−2β0 ln(1− ν/2)

max
k=1,...,m

∥∥xi − xωk
∥∥ ≤ νx. (25)

The results are reported in Figure 3, and illustrative examples
are shown in Figure 4. These examples indicate that the
greedy algorithm, which is based on centralized computing,
performs only slightly better than the on-the-fly method.
Moreover, it can be observed that m tends rapidly to
moderate values in both cases. Our experience has shown
that the application of either algorithm leads to a model
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Figure 4: Cluster heads (red dots) and slaves (black dots) obtained for νx = 0.30 using the greedy and the on-the-fly algorithms. The
numbers of cluster heads obtained over 100 sensor nodes were equal to 14 and 18, respectively.

ordermwhich is at least one order of magnitude smaller than
the number of sensors n. This property will be illustrated in
Section V, where the results obtained using the elementary
decentralized on-the-fly algorithm indicate that there is
room for further improvement of the proposed approach.

4. Resource Requirements

Algorithms designed to be deployed in sensor networks
must be evaluated regarding their requirements for energy
consumption, computational complexity, memory alloca-
tion, and communications. Most of these requirements are
interrelated, and thus cannot be analyzed independently. In
this section, we provide a brief discussion of several aspects
regarding such requirements for the proposed algorithm,
assuming for simplicity that each sensor requires similar
resources to receive a message from the previous sensor,
update its content, and send it to the next one.

Energy-Accuracy Trade-Off. the proposed solution allows
for a trade-off between energy consumption and model
accuracy. This trade-off can be adjusted according to the
application requirements. Consider the case of a large
neighborhood threshold ν. Then, applying rule (11), each
sensor will have many neighbors and the resulting model
order will be low. This will result in low computational
cost and power consumption for communication between
sensors, at the price of a coarse approximation. On the other
hand, a small value for ν will result in a large model order.
This will lead to a small approximation error, at the price
of high computational load for updating the model at each
sensor, and high power requirements for communication.
This is the well-known energy-accuracy dilemma.

Localization. as each node needs to know its location, a pre-
processing stage for sensor autolocalization is often required.

The available techniques for this purpose can be grouped
into centralized and decentralized ones. See, for example,
[10, 35–37] and references therein. The former requires
the transmission of ranging information, such as distance
or received signal strength measurements, from sensors to
a fusion center. The latter makes each sensor location-
aware using information gathered from its neighbors. The
decentralized approach is more energy-efficient, in particular
for large-scale sensor networks, and should be preferred over
the centralized one. Note that the model (9) locally requires
the knowledge of only m out of the n sensor locations, with
m� n.

Computational Complexity. the m-dimensional parameter
updating presented in this paper uses, at each sensor node, an
LMS-based adaptive algorithm. LMS-based algorithms are
very popular in industrial applications, mainly because of
their low complexity—O(m) operations per updating cycle
and sensor—and their numerical robustness [26].

Memory Storage. each sensor node must store its coordi-
nates, the coherence threshold ν, the step-size parameter
ρ, and the parameters of the kernel. Unlike conventional
techniques, the proposed algorithm does not require storing
information about local neighborhoods. Each sensor node
needs to know is if it is a neighbor of the model-contributing
sensors. This is determined by evaluating rule (11) using the
locations xωk transmitted by the last active node.

Energy Consumption. communications account for most
of the energy consumption in wireless sensor networks.
The energy spent in communication is often dramatically
greater than the energy consumption incurred by in-sensor
computations, although the latter is difficult to estimate
accurately. Consider, for instance, the energy dissipation
model introduced in [7]. According to this model, the energy
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required to transmit one bit between two sensors � meters
apart is given by Eamp�2 + Eelec, where Eelec denotes the
electronic energy, and Eamp is the amplifier energy. Eelec

depends on the signal processing required, and Eamp depends
on the acceptable bit-error rate. The energy cost incurred
by the reception of one bit can be modeled as well by
Eelec. Therefore, the energy dissipation is quadratic in the
routing distance, and linear in the number of bits sent.
The proposed algorithm transmits information between
neighboring sensors and requires the transmission of a small
amount of information only.

Evaluation. in a postprocessing stage of the distributed
learning algorithm, the model is used to estimate the
investigated spatial distribution at given locations. From
(9), this requires m evaluations of the kernel function,
m multiplications with the weighting coefficients, and m
additions. This reinforces the importance of a reduced model
order m, as provided by the proposed algorithm.

5. Simulations

The emerging world of wireless sensor networks suffers
from lack of real system deployments and available data
experiments. Researchers often evaluate their algorithms and
protocols with model-driven data [38]. Here, we consider
a classical application of estimating a temperature field
simulated using a partial differential equation solver. Before
proceeding, let us describe the experimental setup. Heat
propagation in an isotropic and homogeneous medium can
be modeled by the partial differential equation

μC
∂T(x, t)
∂t

− k∇2
xT(x, t) = Q(x, t) + h(T(x, t)− Text),

(26)

where T(x, t) is the temperature as a function of location
and time, μ and C the density and the heat capacity of the
medium, k the coefficient of heat conduction,Q(x, t) the heat
sources, h the convective heat transfer coefficient, and Text

the external temperature. In the above equation, ∇2
x denotes

the Laplace spatial operator. Two sets of experiments were
conducted. In the first experimental setup, we considered
the problem of estimating a static spatial temperature
distribution, and studied the influence of different tuning
parameters on the convergence of the algorithm. In the
second experimental setup, we studied the problem of
monitoring the evolution of the temperature over time.

5.1. Estimation of a Static Field. As a first benchmark
problem, we reduce the propagation equation (26) to the
following partial derivative equation of parabolic type

−∇2
xT(x) = Q(x) + T(x). (27)

The region of interest is a 1.6-by-1.6 square area with open
boundaries and two circular heat sources dissipating 20 W.
In order to estimate the spatial distribution of temperature at
any location, 100 sensors were randomly deployed according
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Figure 5: Learning curves for νx varying from 0.20 to 0.40, obtained
by averaging over 200 experiments.
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Figure 6: Spatial distribution of temperature estimated using 100
sensors. Parameters were set as follows: ρ = 0.3, β0 = 0.24,
νx = 0.30, σ = 0.1. The resulting model order was m = 19. The
heat sources are represented by two yellow discs. The sensors are
indicated by black dots. The latter are red-circled in the case of
cluster heads.

to a uniform distribution. The desired outputs T(x), gen-
erated by using the Matlab PDE solver, were corrupted by
a measurement noise sampled from a zero-mean Gaussian
distribution with standard deviation σ equal to 0.01 at first,
and next equal to 0.1. This led to signal-to-noise ratios,
defined as the ratio of the powers of T(x) and the additive
noise, of 9.7 dB and 25 dB, respectively. These data were used
to estimate a nonlinear model of the form Tn = ψ(xn)
based on the Gaussian kernel. Preliminary experiments were
conducted as explained below to determine all the adjustable
parameters, that is, the kernel bandwidth β0 and the step-
size ρ. To facilitate comparison between different settings,
we fixed the threshold νx introduced in (25) rather than
the coherence ν presented in (11). The algorithm was then
evaluated on several independent test signals. This led to the
learning curves depicted in Figure 5, and to the performance
reported in Table 2. An estimation of the temperature field is
provided in Figure 6.
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Table 2: Parameter settings, performance and model order as a
function of the measurement noise level.

Parameter settings NMSE

ρ β0 νx σ = 0.01 σ = 0.1 m

0.3 0.24

0.20 0.015 0.081 31.8

0.25 0.025 0.091 23.4

0.30 0.064 0.130 17.8

0.35 0.117 0.171 14.2

0.40 0.176 0.248 11.7
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Figure 7: Learning curves for KNLMS, NORMA, SSP, and KRLS
obtained by averaging over 200 experiments.

The preliminary experiments were conducted on
sequences of 5000 noisy samples, which were obtained
by visiting the 100 sensor nodes along a random path.
These data were used to determine β0 and ρ, for given νx.
Performance was measured in steady-state using the mean-
square prediction error 1/1000

∑5000
n=4001(Tn − ψn−1(xn))2

over the last 1000 samples of each sequence and averaged
over 40 independent trials. The threshold νx was varied
from 0.20 to 0.40 in increments of 0.05. Given νx, the best
performing step-size parameter ρ and kernel bandwidth
β0 were determined by grid search over the intervals
(0.05 ≤ ρ ≤ 0.7) × (0.14 ≤ β0 ≤ 0.26) with increments 0.05
and 0.02, respectively. A satisfactory compromise between
convergence speed and accuracy was reached with β0 = 0.24
and ρ = 0.3. The algorithm was tested over two hundred
5000-sample independent sequences, with the parameter
settings obtained as described above and specified in Table 2.
This led to the ensemble-average learning curves shown in
Figure 5. Steady-state performance was measured by the
normalized mean-square prediction error over the last 1000
samples, defined as follows:

NMSE = E

{∑5000
n=4001

(
Tn − ψn−1(xn)

)2

∑5000
n=4001 T2

n

}
, (28)

where the expectation was approximated by averaging over
the ensemble. Table 2 also reports the sample mean values m

for the model order m over the two hundred test sequences.
It indicates that the prediction error decreased asm increased
and νx decreased. Note that satisfactory levels of performance
were reached with small model orders.

For comparison purposes, state-of-the-art kernel-based
methods for online prediction of time series were also
considered: NORMA [39], Sparse Sequential Projection
(SSP) [40], and KRLS [22]. As the KNLMS algorithm,
NORMA performs stochastic gradient descent on RKHS.
The order of the kernel expansion is fixed a priori since it uses
the m most recent kernel functions as a dictionary. NORMA
requires O(m) operations per iteration. SSP method also
starts with stochastic gradient descent to calculate the a
posteriori estimate. The resulting (m + 1)-order kernel
expansion is then projected onto the subspace spanned by
the m kernel functions of the dictionary, and the projection
error is compared to a threshold in order to evaluate whether
the contribution of the (m + 1)th candidate kernel function
is significant enough. If not, the projection is used as the
a posteriori estimate. In the spirit of the sparsification rule
(10), this test requires O(m2) operations per iteration when
implemented recursively. KRLS is a RLS-type algorithm with,
in [22], an order-update process controlled by the condition
(10). Its computational complexity is also O(m2) operations
per iteration. Table 3 reports a comparison of the estimated
computational costs per iteration for each algorithm, in the
most usual situation where no order increase is performed.
These results are expressed for real-valued data in terms of
the number of real multiplications and real additions.

The temperature distribution T(x) considered previ-
ously, corrupted by a zero-mean white Gaussian noise with
standard deviation σ equal to 0.1, was used to estimate a
nonlinear model of the form Tn = ψ(xn) based on the
Gaussian kernel. The same initialization process used for
KNLMS was followed to initialize and test NORMA, SSP
and KRLS. This means that preliminary experiments were
conducted on 40 independent 5000-sample sequences to
perform explicit grid search over parameter spaces and,
following the notations used in [22, 39, 40], to select the best
settings reported in Table 3. For an unambiguous compari-
son of these algorithms, note that their sparsification rules
were individually hand-tuned, via appropriate threshold
selection, to provide models with approximately the same
order m. In addition, the Gaussian kernel bandwidth β0 was
set to 0.24 for all the algorithms. Each approach was tested
over two-hundred 5000-sample sequences, which led to
the normalized mean-square prediction errors displayed in
Table 3. As shown in Figure 7, the algorithms with quadratic
complexity performed better than the other two, with only a
small advantage of SSP over KNLMS. Obviously, this must be
balanced with the large increase in computational cost. This
experiment also highlights that KNLMS significantly outper-
formed the other algorithm with linear complexity, namely,
NORMA, which clearly demonstrates the effectiveness of our
approach.

5.2. Tracking of a Dynamic Field. As a second application,
we consider the problem of heat propagation governed by
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Figure 8: Spatial distribution of temperature estimated at time instants 10 (a) and 20 (b), when the heat sources are turned off and on.

Table 3: Estimated computational cost per iteration, experimental setup and performance.

Algorithm × + Parameter settings m NMSE

NORMA 2m m λ = 0.3, η = 0.7 18 0.3514

KNLMS 3m + 1 3m νx = 0.3, η = 0.3 18.17 0.1243

SSP 3m2 + 6m + 1 3m2 +m− 1 κ = 0.08 18.03 0.1164

KRLS 4m2 + 4m 4m2 + 4m + 1 ν = 0.68 18.13 0.1041

equation (26) in a partially bounded conducting medium.
As can be seen in Figure 8, the region of interest is a 2-by-3
rectangular area with two heat sources that dissipate 2000 W
when turned on. This area is surrounded by a boundary
layer with low conductance coefficient, except on the right
side where an opening exists. The parameters used in the
experimental setup considered below include

rectangular area:
(
μC
)
r = 1 kr = 10 hr = 0,

boundary layer:
(
μC
)
b = 1 kb = 0.1 hb = 0.

(29)

The heat sources were simultaneously turned on or off over
periods of 10 time steps. In order to estimate the spatial
distribution of temperature at any location, and track its
evolution over time, 9 sensors were deployed in a grid. The
desired outputs T(x, t) were generated using the Matlab
PDE solver. They were corrupted by an additive zero-mean
white Gaussian noise with standard deviation σ equal to
0.08, corresponding to a signal-to-noise ratio of 10 dB. These
data were used to estimate a nonlinear model, based on the
Gaussian kernel, that predicts temperature as a function of
location and time.

Preliminary experiments were conducted to determine
the adjustable parameters of our algorithm, using 100
independent sequences of 360 noisy samples. Each sequence
was obtained by collecting, simultaneously, the 9 sensor
readings over 2 on-off source periods. Performance was

measured with mean-square prediction error, which was
averaged over the 100 sequences. Due to the small number
of available sensors, no condition on coherence was imposed
via ν or νx. This led to models of order m = n = 9. The best
performing kernel bandwidth β0 and step-size parameter ρ
were determined by grid search over the interval (0.3 ≤
β0 ≤ 0.7) × (0.5 ≤ ρ ≤ 2.0) with increment 0.05 for both
β0 and ρ. A satisfactory compromise between convergence
speed and accuracy was reached by setting β0 to 0.5, and ρ
to 1.55.

The algorithm was tested over two hundred 360-sample
sequences prepared as above. This led to the predicted
temperature curves depicted in Figure 9, which demonstrate
the ability of our technique to track local changes. Figure 8
provides two snapshots of the spatial distribution of tem-
perature, at time instants 10 and 20, when the heat sources
are turned off and on. We can observe the flow of heat from
inside the container to the outside, through the opening in
the right side.

6. Conclusion

Over the last ten years or so, there has been an explosion of
activity in the field of learning algorithms utilizing repro-
ducing kernels, most notably in the field of classification
and regression. The use of kernels is an attractive computa-
tional shortcut to create nonlinear versions of conventional
linear algorithms. In this paper, we have demonstrated the
versatility and utility of this family of methods to develop
a nonlinear adaptive algorithm for time series prediction
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Figure 9: Evolution of the predicted (solid blue) and measured (dashed red) temperatures by each sensor. Both heat sources were turned on
over the intervals [0, 10] and [20, 30], and turned off over [10, 20] and [30, 40]. Sensor locations can be found in Figure 8.

in sensor networks. A common characteristic in kernel-
based methods is that they deal with models whose order
equals the size of the training set, making them unsuitable
for online applications. Therefore, it was essential to first
propose a mechanism for controlling the increase in the
model order as new input data become available. This led us
to consider the coherence criterion. We incorporated it into a
kernel-based normalized LMS algorithm with order-update
mechanism, which is a notable contribution to our study.
Our approach has demonstrated good performance during
experiments.

Perspectives include the derivation of new sparsification
criteria also based on sensor readings rather than being
limited to sensor locations. This would certainly result in
better performance on the prediction of dynamic fields.
Online optimization of this criterion by adding or removing
kernel functions from the dictionary also seems interesting.
Finally, in a broader perspective, controlling the movement
of sensor nodes, when allowed by the application, to achieve

improved estimation accuracy appears as a very promising
subject for research.
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nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and
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Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.

l d l d d

Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


