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Abstract The pre-image problem is a challenging re-
search subject pursued by many researchers in machine

learning. Kernel-based machines seek some relevant fea-

ture in a reproducing kernel Hilbert space (RKHS),

optimized in a given sense, such as kernel-PCA algo-
rithms. Operating the latter for denoising requires solv-

ing the pre-image problem, i.e. estimating a pattern in

the input space whose image in the RKHS is approxi-

mately a given feature. Solving the pre-image problem

is pioneered by Mika’s fixed-point iterative optimiza-
tion technique. Recent approaches take advantage of

prior knowledge provided by the training data, whose

coordinates are known in the input space and implic-

itly in the RKHS, a first step in this direction made
by Kwok’s algorithm based on multidimensional scal-

ing (MDS). Using such prior knowledge, we propose

in this paper a new technique to learn the pre-image,

with the elegance that only linear algebra is involved.

This is achieved by establishing a coordinate system in
the RKHS with an isometry with the input space, i.e.

the inner products of training data are preserved us-

ing both representations. We suggest representing any

feature in this coordinate system, which gives us infor-
mation regarding its pre-image in the input space. We

show that this approach provides a natural pre-image
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technique in kernel-based machines since, on one hand
it involves only linear algebra operations, and on the

other it can be written directly using the kernel val-

ues, without the need to evaluate distances as with the

MDS approach. The performance of the proposed ap-
proach is illustrated for denoising with kernel-PCA, and

compared to state-of-the-art methods on both synthetic

datasets and realdata handwritten digits.

Keywords kernel-based machines · pre-image prob-
lem · linear algebra · kernel-PCA · nonlinear denoising

1 Introduction

In the last decade or so, kernel-based machines have en-
joyed increasing popularity, providing a breakthrough

in both statistical learning theory and low computa-

tional complexity of nonlinear algorithms. Pioneered

by Vapnik’s Support Vector Machines (SVM) [20], this

concept attracted significant attention due to the ever-
expanding challenges in machine learning. Since then,

many nonlinear algorithms have been developed, for

supervised learning (or classification) such as kernel

Fisher discriminant analysis [13] and least-squares SVM
[18], and for unsupervised learning (with unlabelled

data) with kernel principal component analysis (kernel-

PCA) [17] and support vector domain description [19].

The main idea behind nonlinear algorithms in kernel-

based machines is the kernel trick [1]. This concept
gives rise to nonlinear algorithms based on classical lin-

ear ones, under the only requirement that the algorithm

can be expressed only in terms of inner products be-

tween data. Then, data from the input space are (non-
linearly) mapped into a feature space. This mapping

is achieved implicitly by substituting the inner prod-

uct operator by a positive definite kernel, thus without
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much additional computational cost. This is the essence

of the kernel trick. In order to provide the unified func-

tional framework, common to many communities, this

kernel is called the reproducing kernel while the in-

duced feature space is the reproducing kernel Hilbert

space (RKHS).

With the ever-increasing demands in machine learn-

ing, new challenges require computing the inverse map.

For instance, while the kernel trick provides an elegant
approach to apply denoising or compression techniques

in the RKHS, we need to go back into the input space

for the final result. This is the case in denoising an im-

age (or a signal), the reconstructed image belongs to
the input space of training images. However, getting

back to the input space from the RKHS is not obvi-

ous in general, as most features of the latter may not

have an exact pre-image in the former. This is the pre-

image problem in kernel-based machines, as one seeks
an approximate solution. Solving this problem has re-

ceived a growing amount of attention, with the most

breakthrough given in [14] and [11]. In the former work,

Mika et al. present the problem and its ill-posedness,
and derive a fixed-point iterative scheme to find an ap-

proximate solution. Hence, there is no guarantee that

this leads to a global optimum, and may be unstable.

In the latter work, Kwok et al. determine a relation-

ship between the distances in the RKHS and the dis-
tances in the input data, based on a set of training data.

Applying a multidimensional scaling technique (MDS)

leads to an inverse map estimate and thus to the pre-

image. This approach opens the door to a range of other
techniques taking prior knowledge from training data in

both spaces, such as manifold learning [6] and out-of-

sample methods [5,2].

In this paper, we propose a novel approach to solve

the pre-image problem. To achieve this, we learn a
coordinate system, not necessarily orthogonal, in the

RKHS having an isometry with the input space. In

other words, the inner products of the training data are

(approximately) equal in both representations. Thus,
by representing any feature of the RKHS in this coor-

dinate system, we get an estimate of the inner products

between the training data and its counterpart in the

input space. It turns out that this approach is natural

to kernel-based machines, and essentially requires only
linear algebra, with any off-the-shelf linear solver. The

proposed method is universal in the sense of being in-

dependent, in its formulation, of both the type of the

adopted kernel and of the feature under investigation.
Moreover, it extends naturally to get the pre-images of

a set of features, since the coordinate system is com-

puted only once.

The rest of the paper is organized as follows. In the

next Section, we briefly present the framework behind

kernel-based machines, with an illustration on kernel-

PCA for denoising. In Section 3, the pre-image problem

is described, and previous work on solving the problem
are examined. The proposed method is described in Sec-

tion 4, with connections to other methods. Experiments

on synthetic and real datasets are presented in Section

5. Section 6 ends this paper with a brief conclusion.

2 Kernel-based machines, with application to

nonlinear denoising using kernel-PCA

2.1 Kernel-based machines

Let X be a compact of IRp, equipped with the natural

Euclidean inner product defined for any xi,xj ∈ X by

x⊤
i xj =

∑p

ℓ=1
xi,ℓxj,ℓ, with x·,ℓ the ℓ-th entry of vector

x·. Let κ(·, ·) be a positive (semi-)definite kernel on X×
X , where the positive (semi-)definitness is defined by

the property

∑

i,j

αiαjκ(xi,xj) ≥ 0

for all αi, αj ∈ IR and xi,xj ∈ X . The Moore-

Aronszajn theorem [3] states that for every positive

definite kernel, there exists a unique reproducing kernel

Hilbert space (RKHS), and viceversa. With this one-to-

one correspondence between RKHS and positive defi-
nite kernels, the latter will be called reproducing kernels

hereafter. Let H be the RKHS associated with κ, and

let 〈· , ·〉H be the endowed inner product. This means

that any arbitrary function ψ(·) in H can be evaluated
at any xj ∈ X with

ψ(xj) = 〈ψ(·), κ(·,xj)〉H. (1)

This expression shows that the kernel is the represen-

ter of evaluation. Moreover, replacing in this expression

ψ(·) by κ(·,xi) yields to the popular property

κ(xi,xj) = 〈κ(·,xi), κ(·,xj)〉H, (2)

for all xi,xj ∈ X . This is the reproducing property

from which the name of reproducing kernel is derived.

Denoting by φ(·) the map that assigns to each input x ∈
X the kernel function κ(·,x), the reproducing property

(2) implies that κ(xi,xj) = 〈φ(xi), φ(xj)〉H. The kernel

then evaluates the inner product of any pair of elements

of X mapped into H, without any explicit knowledge of
either the mapping function φ(·) or the RKHS H. This

is the well-known kernel trick. Examples of commonly

used reproducing kernels are given in Table 1.
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Table 1 Commonly used reproducing kernels in machine learn-
ing, with parameters β > 0, q ∈ IN, and σ > 0.

Polynomial κ(xi, xj) = (〈xi, xj〉 + β)q

Laplace κ(xi, xj) = exp (−‖xi − xj‖/σ)
Gaussian κ(xi, xj) = exp

`

−‖xi − xj‖
2/2σ2

´

In combination with the kernel trick, the representer

theorem provides a powerful theoretical foundation for

kernel-based machines. Initially derived in [10] and re-

cently generalized in [16], results of this theorem include

SVM and kernel-PCA, where one seeks to maximize the
separating margin between classes or the variance of

projected data, respectively. This theorem states that

any function ϕ∗(·) of a RKHS H minimizing a regular-

ized cost functional of the form

n∑

i=1

J(ϕ(xi), yi) + g(‖ϕ‖2
H),

with predicted output ϕ(xi) for input xi, and eventu-

ally the desired output yi, and g(·) a strictly monoton-

ically increasing function on IR+, can be written as a

kernel expansion in terms of available data

ϕ∗(·) =

n∑

i=1

γi κ(·,xi). (3)

This theorem shows that even in an infinite dimensional

RKHS, as with the Gaussian kernel, we only need to

work in the subspace spanned by the n kernel functions

of the training data, κ(·,x1), . . . , κ(·,xn).

2.2 Kernel-PCA for denoising

An elegant kernel-based machine is the kernel-PCA
[17], a nonlinear extension of one of the most used di-

mension reduction and denoising technique, the princi-

pal component analysis (PCA).

With PCA, one seeks principal axes that capture the
highest variance in the data, that is, useful information

as opposed to noise, and thus projecting data onto the

space spanned by these relevant axes yields a denoising

scheme. These principal axes are the eigenvectors ϕk
associated with the largest eigenvalues λk of the covari-
ance matrix R of data, i.e. solving the eigen-problem

Rϕk = λkϕk. There exists another formulation of the

PCA algorithm, using only inner products of the train-

ing data. By substituting the inner product operator
with any valid reproducing kernel, we get an implicit

nonlinear mapping of the data into a RKHS. This is

the kernel-PCA, where each of the resulting principal

functions takes the representer form (3), with

ϕ∗
k(·) =

n∑

i=1

γi,k κ(·,xi).

The weighting coefficients γi,k are obtained from the

eigen-decomposition of the so-called Gram matrix K,

whose entries are κ(xi,xj), for i, j = 1, . . . , n, by solv-

ing

Kγ = nλγ.

In order to have a PCA interpretation in feature space,

two issues should be carried out. First, data is implicitly

centered in feature space by substituting in this expres-

sion K with (1 − 1n)K(1 − 1n), with 1n the n-by-n
matrix of entries 1/n and 1 the identity matrix; sec-

ond, principal functions are normalized to 1, by scaling

expansion coefficients such that
∑n

i=1
γ2
i,k = 1/λk.

In the same spirit of the conventional PCA, one con-

structs a subspace of H spanned by the most relevant

principal functions. Using kernel-PCA for denoising any

given x ∈ X , we project the associated kernel func-

tion κ(·,x) onto that subspace. Since this subspace is
spanned by most relevant principal functions, each of

the form (3), any function from this subspace takes the

same form, i.e. can be written as a kernel expansion

in terms of available data. Let ϕ∗(·) be this projection,
with

ϕ∗(·) =
n∑

i=1

γi κ(·,xi),

which is assumed to be noise-free by virtue of the PCA
interpretation. From this denoised feature, we need to

get its counterpart in the input space, e.g. a denoised

image in the image space. As illustrated in Figure 1, this

requires the estimation of the pattern x∗ from κ(·,x),

by solving the pre-image problem.

3 A brief review of the pre-image problem

For supervised learning, one seeks a prediction value
associated to any input such as in regression problems,

while in classification this value is compared to a thresh-

old, which yields a decision rule. While every optimal

function ϕ∗(·) takes the form (3), we obtain its evalua-

tion at any x with
∑n

i=1
γi κ(xi,x), thus requiring only

computing values of the kernel. For pattern recognition

with unsupervised learning, one is often interested in

the feature in the feature space, or more precisely in its

counterpart in the input space.

Estimating the input whose map is an arbitrary

function in the RKHS is an ill-posed problem. To show
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Fig. 1 Illustration of the pre-image problem in kernel-based machines.

this, recall that the dimensionality of the feature space

can be very high, and even infinite with some ker-

nels such as the Gaussian kernel. Thus, (most) features

ϕ∗(·) ∈ H might not have an existing pre-image in X ,

i.e. a x∗ such that κ(·,x∗) = ϕ∗(·). In order to circum-
vent this difficulty, one seeks an approximate solution,

i.e. x∗ ∈ X whose map κ(·,x∗) is as close as possible

to ϕ∗(·). This is the pre-image problem in kernel-based

machines. Methods for solving the pre-image problem
are roughly classified into two categories: Fixed-point

iterative methods and methods based on learning the

inverse map.

The pre-image problem was initially studied by

Mika et al. in [14]. They proposed to solve the opti-

mization problem

x∗ = arg min
x∈X

‖ϕ∗(·) − κ(·,x)‖2
H, (4)

where ‖ · ‖H denotes the norm in the RKHS. For this

purpose, a fixed-point iterative scheme is used to solve

the pre-image problem. However, since this optimiza-
tion problem is highly non-convex, such iterative tech-

nique suffers from numerical instabilities and local min-

ima. The pre-image will highly depend on the initial

guess and is likely to get stuck in a local minimum. A
further improvement of the fixed-point iterative scheme

is presented in [15], where the authors operate addi-

tional approximations by, roughly speaking, substitut-

ing the mapping κ(·,x) in (4) with its projection onto

the subspace. It is worth noting that as an alternative
to Mika’s distance minimization, one may consider a

collinearity maximization problem [2], with

x∗ = argmax
x∈X

〈 ϕ∗(·)

‖ϕ∗(·)‖H
,

κ(·,x)

‖κ(·,x)‖H

〉

H

.

A key ingredient of these methods is a high dependence

on the kernel type, since the fixed-point can only be

applied to some specific kernels such as the Gaussian

kernel, and only more recently extended to polynomial

kernels in [11].

Recent approaches take advantage of prior knowl-
edge provided by some available training data, whose

coordinates are available in both the input and the fea-

ture spaces. This approach is initiated by an algorithm

based on multidimensional scaling (MDS), presented
by Kwok et al. [11]. This is achieved by computing

distances between every pair of training data, in both

spaces. For each pair, the classical Euclidean distance

is used in the input space, as well as the distance in

the RKHS which can be computed using kernel values.
With these pairs of distances, a MDS technique is con-

sidered by performing a singular-value-decomposition1.

This yields an inverse map, in the same spirit of the out-

of-sample extension [2]. In order to make this method
tractable in practice, only the neighboring data affect

the pre-image estimation. Learning the inverse map is

studied in [4] by solving a regression problem, while

alternative approaches can be based on the manifold

learning [6]. All these methods take advantage of prior
knowledge, i.e. training data with information available

in both input and feature spaces.

Using such prior knowledge, we propose in this pa-
per to learn the inverse map without the need to com-

pute distances, and does not require sophisticated opti-

mization schemes. Only conventional linear algebra are

needed. Furthermore, it is universe, in the sense that

it does not depend on the kernel type, as opposed to
fixed-point iterative techniques.

1 This is done by operating on the distances, transforming
them into inner products, and then apply eigen-decomposition
into the resulting Gram matrix to get the coordinates. This nicely
captures our guiding intuition of the problem in contrast with
the MDS : we propose to work exclusively on the inner products,
without the need to compute distances.
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4 The proposed pre-image method

Given a set of training data {x1,x2, . . . ,xn}, we seek

the pre-image in X of some arbitrary ϕ∗(·) of the RKHS

H, denoted x∗. The proposed method can be organized

into two stages: learning the inverse map and operat-

ing a pre-image. To learn the inverse map, a coordinate
system is constructed in the RKHS, having an isometry

with the input space coordinates, where the isometry is

defined with respect to the training data. In order to

operate a pre-image, we represent ϕ∗(·) in this coordi-
nate system which, by virtue of the isometry, gives the

values of the inner products of its pre-image with the

training data in the input space. From these values we

obtain the pre-image x∗.

Stage 1: Learn the inverse map

In this stage, we provide a coordinate system in the

RKHS that is isometric with the input space. In or-
der to achieve such isometry, we consider a set of

n training data {x1,x2, . . . ,xn} ∈ X . By virtue

of the representer theorem, we only need to con-

sider the subspace spanned by their kernel functions

{κ(·,x1), κ(·,x2), . . . , κ(·,xn)}. Within this subspace,
we define the set of ℓ coordinate functions, denoted

{ψ1(·), ψ2(·), . . . , ψℓ(·)} with ℓ ≤ n, and write

ψk(·) =

n∑

i=1

αk,i κ(·,xi),

for k = 1, 2, . . . , ℓ. For any kernel function κ(·,x), its

coordinate on ψk(·) is given by

〈ψk(·), κ(·,x)〉H = ψk(x) =

n∑

i=1

αk,i κ(xi,x),

where (1) is used. Therefore, its representation in this

coordinate system is obtained by the ℓ coordinates,
written vector-wise as

Ψx = [ψ1(x) ψ2(x) · · · ψℓ(x)]⊤,

where the k-th entry depends on the αk,i, for i =

1, . . . , n.

In order to estimate the coordinate functions, we
propose an equivalence, between the inner products in

this coordinate system and their counterparts in the

canonic input space, using the model

Ψ⊤
xi
Ψxj

= x⊤
i xj + ǫij , (5)

for all the training set, i.e. i, j = 1, 2, . . . , n, and where

ǫij corresponds to the lack-of-fit of the model. We insist

on the fact that this model is not coupled with any

constraint on the coordinate functions, as opposed to

the orthogonality between the functions resulting from

the kernel-PCA. The only requirement we impose is

the isometry defined in (5). The minimization of the

variance of ǫij , a lack-of-fit criterion, consists of solving
the optimization problem

min
ψ1,...,ψℓ

1

2

n∑

i,j=1

(
x⊤
i xj − Ψ⊤

xi
Ψxj

)2
+ λR(ψ1, . . . , ψℓ).

As suggested in machine learning literature, we include

in this expression a regularization term, where λ a tun-

able parameter controlling the tradeoff between the fit-

ness to the model (5) and the smoothness of the so-

lution. In order to penalize high norm functions, the
regularization R(ψ1, . . . , ψℓ) =

∑ℓ
k=1

‖ψk‖
2
H

is used in

this paper.

This optimization problem can be written in matrix

form. This is done by a factorization of Ψx into a matrix

of unknowns and a vector of available information, with

Ψx = A κx,

where κx = [κ(x1,x) κ(x2,x) · · · κ(xn,x)]⊤ and A

is a ℓ × n matrix of unknowns whose (k, i)-th entry is

αk,i. This leads to the optimization problem

Â = arg min
A

1

2

n∑

i,j=1

(
x⊤
i xj − κ⊤

xi
A⊤Aκxj

)2

+λ

ℓ∑

k=1

n∑

i,j=1

αk,iαk,j κ(xi,xj).

By denoting ‖·‖F the Frobenius norm2 of a matrix and

tr(·) its trace, this yields

Â = arg min
A

1

2
‖P− K A⊤AK‖2

F + λ tr(A⊤AK),

where P and K are the Gram matrices with entries

x⊤
i xj and κ(xi,xj), respectively. Taking the derivative

of the above cost function with respect to A⊤A, rather

than A, and setting it to zero, we get

Â
⊤

Â = K−1
(
P − λK−1

)
K−1. (6)

In what follows, we show that only A⊤A is required to

find the pre-image, rather than A. Fortunately, we do

not need to compute the coefficients αk,j to generate

the coordinate system in the RKHS; only their inner
products are required.

2 The Frobenius norm of a matrix is the root of sum of squared
(absolute) values of all its elements, or equivalently ‖M‖2

F
=

tr(M⊤
M).
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Stage 2: Operate a pre-image

Since the model (5) is valid for all the training data,
we apply it to do the pre-image, as discussed in this

stage. Let ϕ∗(·) be any optimal function resulting from

a kernel-based machine, with ϕ∗(·) =
∑n

i=1
γi κ(·,xi)

as given in (3). By virtue of the representer theorem, it

belongs to the subspace spanned by the training kernel
functions, and therefore can be expressed in terms of

the provided coordinate system. The coordinate of ϕ∗(·)

associated to the coordinate function ψk(·) is

〈ϕ∗(·), ψk(·)〉H =
n∑

i,j=1

αk,i γj κ(xi,xj).

Each of these ℓ coordinates are computed and collected

into one vector, denoted Ψϕ∗ with some abuse of nota-

tion. Thus, we extend the model (5), and write

Ψ⊤
xi
Ψϕ∗ = x⊤

i x∗,

for i = 1, 2, . . . , n, where x∗ is the pre-image to be

estimated. This identity can be expressed matrix-wise
with

KÂ
⊤

Â Kγ = X⊤x∗

where γ = [γ1 γ2 · · · γn]⊤ and X = [x1 x2 · · · xn]. By

injecting the provided system (6) into this expression,

we get

X⊤x∗ = (P − λK−1)γ. (7)

This is a classical system of linear equations. Thus,

the pre-image can be estimated by applying any off-

the-shelf solver. For instance, one can solve the linear

least-squares optimization problem

x∗ = argmin
x

‖X⊤x − (P − λK−1)γ‖2, (8)

where any iterative or non-iterative technique can

be used, such as the pseudo-inverse or the eigen-

decomposition3, in the spirit of the Nyström method. It

is worth noting that the optimization scheme is applied

here to the input space, as opposed to high dimensional
RKHS with the fixed-point iteration schemes. More-

over, one needs only to consider solution from the span

of the training data, in coherence with previous work on

the pre-image problem [14,11]. The proposed method is
universal in the sense of being independent, in its for-

mulation, of both the type of the adopted kernel and of

the feature under investigation.

3 Doing eigen-decomposition gives the pre-image relative to the
eigen-basis in the input space. A post-processing is required to
set the pre-image relative to the training data; this is called the
procrustes problem.

In order to better understand this result, consider

the potential theoretical setting of linear independent

training data. In this case, the minimization problem

(8) has a unique solution, given by solving the nor-

mal equations XX⊤x∗ = X
(
P − λK−1

)
γ. By us-

ing the pseudo-inverse matrix algebra with the identity

(XX⊤)−1X = X(X⊤X)−1, we get

x∗ = XP−1
(
P − λK−1

)
γ. (9)

Extension to a set of features

These expressions can be applied readily to a set of fea-
tures in the RKHS to get their pre-images in the input

space. This can be done straightforwardly by writing

(7) as

X⊤X∗ = (P − λK−1)Γ ,

where each column of matrix Γ represents the coeffi-

cient vector γ, and each column of X∗ the correspond-

ing pre-image. From the solution (9), we see that the
matrix

M = XP−1
(
P − λK−1

)

needs to be computed only once, and then applied with

X∗ = M Γ .

This corresponds to a matrix completion scheme, or
more specifically the kernel matrix regression approach,

as given in [21,9].

5 Experiments

In this section, we compare the proposed method with

two state-of-the art methods4: the fixed-point iterative

technique [14] and the MDS-based approach [11]. For
this purpose, the kernel-PCA for denoising is applied

on synthetic and real datasets. The Gaussian kernel

κ(xi,xj) = exp(‖xi − xj‖
2/2σ2) is used, its bandwidth

σ fixed to the same value for the three methods.

5.1 Synthetic datasets

We consider a family of four datasets in 2-D, each hav-
ing a geometric form corrupted by a noise of bandwidth

parameter ν. The data are sampled uniformly randomly

within this area. We generate ntrain data to train the

4 Matlab codes for these algorithms are avail-
able from the Statistical Pattern Recognition Toolbox
http://cmp.felk.cvut.cz/cmp/software/stprtool/
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Table 2 Values of the parameters for the synthetic datasets.

ntrain npre-image ν neigen σ

frame 350 850 0.1 5 0.4
banana 300 200 0.2 3 0.5
spiral 70 250 0.3 10 0.3
sine 420 330 0.5 10 0.4

neigen eigenfunctions and to construct the coordinate

system. Then, we apply these results on another set of

npre-image generated data, in order to denoise using the
pre-image techniques. For each dataset, the parameters

values are summarized in Table 2.

The frame dataset consists of a square with sides

of length 2. Data are generated uniformly randomly
on each side and corrupted by a noise uniformly dis-

tributed on the interval [−ν, ν] normal to the side. The

banana dataset is given by the parabola defined by the

coordinates (x, x2 + ξ), with x on the x-axis uniformly

distributed on the interval [−1, 1], and ξ normally dis-
tributed with a standard deviation of ν. The spiral is

defined by the coordinates (A(ϕ) cos(ϕ), A(ϕ) sin(ϕ)),

with A(ϕ) = 0.07ϕ + ξ, where ϕ and ξ are gener-

ated uniformly on the intervals [0, 6π] and [0, ν], re-
spectively. The sine dataset is defined by the coordi-

nates (ϕ, 0.8 sin(2ϕ)), where ϕ is generated uniformly

on the interval [0, 2π], and corrupted with an additive

uniformly distributed noise in the range [0, ν]2. See [7]

for more information.

The fixed-point iterative algorithm is set with a

stopping criterion of maximum 100 iterations, reaching

the limit of reasonable cpu time. The initial estimate is

chosen from the valid model x∗ =
∑
i γi xi, with the

weighting coefficients γi generated uniformly on the in-

terval [−1, 1]. The MDS-based algorithm operates using

a global optimization scheme, which gives better results

than the neighborhood setting. Since this algorithm is
based on an eigen-decomposition technique, it results

in a new coordinate system in the input space. Hence,

we consider a procrustes technique to align it with the

initial canonical one, by minimizing the mean-squares

error.

In Figure 2, we show the four datasets, with on the

one hand the training data (blue dots), and on the other

the denoised estimates (red dots) obtained from another

set of noisy data (not shown here, yet given by the un-
marked ends of green lines). Green lines show the dis-

tance between the denoised and the initial noisy data.

The fixed-point iterative method suffers on one side

from numerical instabilities, illustrated through many
estimates falling outside the bounds of the images (fol-

lowing the long green lines), and on the other from lo-

cal minima, illustrated with improper denoising (for in-

stance, the upper border of the frame dataset (y-axis

close to 1) are not denoised to the same area). It is obvi-

ous that the MDS-based approach is clearly inappropri-

ate to any of the given datasets. The method presented

in this paper gives good results with the four proposed
datasets, with the smallest reconstruction error of all

algorithms. It seems less sharper in denoising than the

fixed-point iterative algorithm, without suffering from

the drawbacks of the latter. However, it causes the es-
timates to fold over itself, in the same sense of mani-

fold learning. This is illustrated for instance with the

banana data, yet much less pronounced than the MDS-

based results.

5.2 Real datasets

We illustrated the efficiency of our method on denoising
real datasets. We consider the handwritten digit “2”, ob-

tained from the MNIST database of handwritten digits

[12]. The images are (almost) binary images of 28-by-28

pixels. Hence, from a machine learning point of view,

each image is simply a point in the 784-dimensional
space. The original images were corrupted by adding a

zero-mean white Gaussian noise with variance ν = 0.1.

A set of ntrain = 1 000 images are used to train the

kernel-PCA with the neigen = 100 leading principal
functions retained. We apply the Gaussian kernel to

all three algorithms, with bandwidth set to σ = 105.

The parameter settings are summarized in Table 3.

To illustrate the denoised ability of each algorithm,

another set of npre-image = 10 images is considered un-
der the same noise conditions. These images are il-

lustrated in Figure 3 (first row), with results from

the fixed-point iterative (second row), the MDS-based

(third row) and the proposed (fourth row) algorithms.
It is obvious that fixed-point iterative algorithm is in-

appropriate for such application, even with the number

of maximum iterations set to 10 000 corresponding to

an average total CPU time of up to 1 hour and a half.

To take advantage of prior knowledge, the same training
set is used for learning the inverse map. Realistic results

can be obtained using the MDS-based algorithm, with

5 minutes and a half. The algorithm proposed in this

paper achieves better denoised results, as illustrated in
Figure 3. For this simulation, the regularization param-

eter was set to λ = 10−9, and the resulting average total

CPU time is 1.3 seconds5.

5 CPU times are given only as an indication of the computa-
tions required for the various algorithms.
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Fig. 2 Experimental results for the frame (first row), the banana (second row), the spiral (third row), and the sine (fourth row)
datasets, using the fixed-point iterative (left), the MDS-based (middle), and the proposed (right) algorithms. Training data are
represented by blue dots, estimated pre-images by red dots, and green lines illustrate the distance between these estimates and the
initial noisy data (not shown).
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10 digits corrupted by noise

Fixed-point iterative method [14]

MDS-based method [11]

Method proposed in this paper

Fig. 3 Comparative analysis for denoising a set of ten “2” digits (first row), with the denoised images from the fixed-point iterative
(second row), the MDS-based (third row), and the proposed (fourth row) algorithms.

Table 3 Values of the parameters for the real digit dataset.

ntrain npre-image ν neigen σ

1 000 10 0.1 100 105

6 Conclusion

In this paper, we presented a new method to solve the
pre-image problem. As opposed to previous work, the

proposed method neither suffers from numerical insta-

bility, nor requires computing the distances in the input

and the RKHS spaces. We showed that using the inner

product information in both spaces, we can provide a
coordinate system in the RKHS to learn the inverse

map. The efficiency of the proposed method were stud-

ied with experiments on both synthetic data and real

handwritten digits, and compared to state-of-the-art
methods. The major advantage of the proposed method

resides on its simplicity in dealing with the optimization

issue, thanks to conventional linear algebra.
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