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The pre-image problem
In kernel-based machine learning

Paul Honeine, and Cédric Richard

Kernel machines have gained considerable popularity duriof lower dimensionality. The principal component analysis
the last fifteen years, making a breakthrough in nonline@CA), also known as the Karhunen-Loéve transformation,
signal processing and machine learning thanks to extraargli is one of the most widely used dimensionality reduction
advances. This increased interest is undoubtedly driven teghniques. Conventional PCA seeks principal directitwas t
the practical goal of being able to easily develop efficiemapture the highest variance in the data. Mutually orthovady
nonlinear algorithms. The key principle behind this, knowthese directions define the subspace exhibiting informatio
as thekernd trick, exploits the fact that a great number ofather than noise, providing the optimal linear transfaiora
data processing techniques do not depend explicitly on tRere, the optimality is in the sense of least mean square
data itself, but rather on a similarity measure between themeconstruction error. For instance, in data compressiah an
i.e., an inner product. To provide a nonlinear extension afanifold learning, much information is conserved by projec
these techniques, one can apply a nonlinear transformttioring onto the directions of highest variance, while in deimgjs
the data, mapping them into some feature space. Accordingdicections with small variance are dropped. These schemees a
the kernel trick, this can be achieved by simply replacing ttmathematically equivalent, we use here a denoising schema
inner product with a reproducing kernel (i.e., positive semwithout loss of generality.
definite symmetric function), the latter corresponds torarer Consider an input spac& endowed by the inner product
product in the feature space. One consequence is that the), for instance a vectorial space with the Euclidean inner
resulting nonlinear algorithms show significant perfore®n product (z;, z;) = z ;. Let {x1,x2,...,x,} denotes a
improvements over their linear counterparts, with esaéinti set of available data (observations) froth PCA techniques
the same computational complexity. seek the axes that maximize the mean variance of the prdjecte

While the nonlinear mapping from the input space to thgata, under the unit-norm constraint, namely», . . ., ¥, by
feature space is central in kernel methods, the reverseingappnaximizing% Sty s, ve)|? subject toyy, ve) = 64 for
from the feature space back to the input space is also aif¢,¢ = 1,2, ..., k. In this expression, the Kronecker delta is
primary interest. This is the case in many applicationdumic defined asi,» = 1 if £ = ¢/, andd, = 0 otherwise. Solving
ing kernel principal component analysis for signal and imaghis constrained optimization problem using the Lagramgia
denoising. Unfortunately, it turns out that the reverse piragp provides the following problem:
generally does not exist, and only a few elements in the featu
space have a valid pre-image in the input space. The so- Aehe = Cee, @

called pre-image problem consists of finding an approximajghere \, defines the amount of variance capturecilpy and
solution, by identifying data in the input space based Q@ is the covariance matrix of the data. In other words, )
their corresponding features in the high-dimensionalufeat js the eigenvalue-eigenvector of the covariance matrita da

space. The pre-image problem is essentially a dimenstgnalissumed zero-mean. Furthermore, eigenvectors lie in tre sp
reduction problem, and both have been intimately connectgglthe data, since for ever§= 1,2, ...,k we have

in their historical evolution, as studied in this paper.

n

W:/\%CW: . PRCIRINES

I. AN INTRODUCTORY EXAMPLE: KERNEL PCAFOR Aen =

DENOISING . . .
The eigenvectors associated to the largest eigenvalues pro

A. Linear denoising with PCA vides a relevant low-dimensional subspace. As a consequenc

In general, some correlations exist among data, thus teete are interested in elements from this relevant subspace.
nigues for dimensionality reduction or so-called featwteae- This is the case, for instance, in data denoising, where the
tion provide a way to confine the initial space to a subspapeojection of a given noisy data onto this subspace provides
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its noise-free counterpart. Therefore, the latter can be writtepatterns, are notalid images, i.e., the result of applying the

as an expansion of the eigenvectors, namely for a noisyaatanap to some input data. To get the denoised counterpart in the
we get the denoised = Zfd(i',lbm/m and from the above original input space, one needs to operate an approximation
expression, as a linear expansion in terms of the availaile d scheme, i.e., estimate* such that its image(x*) is as close

by taking the form as possible tap.
n Beyond this kernel-PCA example, the kernel trick is well-
¥ = Zai Li- known in the machine learning community. It provides flex-
=t ibility to derive nonlinear techniques based on linear ones
B. Kernel-PCA for nonlinear denoising data being implicitly mapped into a feature space. This epac

ia given by the span of the mapped data, i.e., all the linear

nonlinear mapping is applied to the data as a pre-processﬁ%‘é)anSions of mapped data. The price to pay is that, in ggnera
stage, prior to applying the PCA algorithm. Let-) be not each element of the space is necessary the image of some
the nonlinear transformation, mapping data from the inpﬂf"ta' This is the case of most elements in the feature space,
spaceX to some feature spadgé. Then problem[{1) remains since they can be written as

essentially the same, with the covariance matrix assattate
the transformed data. From the linear expansion with réspec

to the latter, the resulting principal axes take the form as illustrated above with either a principal akeor a denoised
n

by = Z<¢(f€z‘)aW>H é(x,), @) feature v. In order to give proper interpretation of these
=1 components, one should define the way back from the feature
where(-, )3, denotes the inner product in the feature sphce into the input space. This is the pre-image problem in kernel
In this space, each feature lies in the span of the mappedbased machine learning, as illustrated in Fiddre 1.

input data, with the coefficients given by tliegh eigenvector
of the eigen-problem Il. KERNEL-BASED MACHINE LEARNING

In order to provide a natural nonlinear extension of PCA,

=" (x),
i=1

In the past fifteen years or so, a novel breakthrough to arti-
ficial neural networks has been achieved in the field of patter
where K is the so-called Gram matrix with entriesiecognition and classification, within the framework of rielr
(¢(i), p(x))n, for i,j = 1,2,...,n. As illustrated here, pased machine learning. They have gained wide popularity,
the expansion coefficients require only the evaluation néin owing, on the one hand, to theoretical guarantees regarding
products. Without the need to exhibit the mapping functiO@erformance, and on the other hand to low computational
this information can be easily exploited for a large class %Bmplexity in nonlinear algorithms. Pioneered by Vapnik’s
nonlinearities, by substituting the inner product with sitive Support Vector Machines (SVM) for classification and regres
semi-definite kernel function. This argument s the kerriekf  gjon [2], kernel-based methods are nonlinear algorithras th
which provides a nonlinear counterpart of the classical PG&n pe adapted to an extensive class of nonlinearities. As a
algorithm, the so-called kernel-PCA [1]. consequence, they have found numerous applications dinclu

Consider the denoising application using kernel-PCA. qug classification [3], regression [4], time series predic{5],

a givenz, its nonlinear transformatios(z) is projected onto novelty detection [6], image denoising [7], and bioengiireg

the subspace spanned by the most relevant principal ax8§; to name just a few (see, e.g., [9] for a review).
providing the denoised pattern. The latter can be writtea as

niap =K oy, (3

linear expansion of thé principal axesg)y, s, . .., ¥, with A. Reproducing kernels and rkHs
k
)= Z<‘B’wi> Ui (4) Originally proposed by Aizermast al. in [10], the kernel
i=1 trick provides an elegant mathematical means to derive pow-

Equivalently, the denoised pattern can also be written asedul nonlinear variants of classical linear techniqueosim
linear expansion of the images of the training data, namelywell-known statistical (linear) techniques can be forneda
Y = > ", a; ¢(x;), where the expansion ifl]l(2) is used. Iras inner product between pairs of data. Thus, applying any
practice, one is interested in representing the denoisttdrpa nonlinear transformation to the data can only impact theesl
in the input space, as illustrated in Figlide 2. It turns oat thof the resulting inner products. Therefore, one does nod nee
most elements of the feature space, including the denoigedcompute such transformation explicitly for a large clafs
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Fig. 1. Schematic illustration of the pre-image problem for patdenoising with kernel-PCA. While dimensionality redantthrough orthogonal projection
is performed in the feature space (right panel), a pre-intagenique is required to recover the denoised pattern inngg space (left panel).

nonlinearities. Instead, one only needs to replace therinqeoperty
product operator with an appropriate kernel, i.e., a symmet
hermitian function. The only restriction is that the latiefines K(mi, i) = (P(xi), p(x)) (5)
an inner product in some space. A sufficient condition fos thi
is ensured by Mercer’s theorem [11], which may be stated &8 any x;,«; € X. Moreover, distances can be easily
follows: Any positive semi-definite kernel can be expressesvaluated using the kernel trick, since the distance betwee
as an inner product in some space, where the positive setiie elements can be given using only kernel values, with
definiteness of a kernel: X x X — IR is determined by the
property lo(@:) — é()15%
Zai o k(zg, x5) >0,
%,J

(P(xi) — d(x)), d(xi) — b))
IQ(:EZ', :El) -2 H(:Ei, :Bj) + H(:Ej, .’Bj),

(6)

for all o;,; € R andz;, ¢; € X'. Furthermore, the Moore-
Aronszajn theorem [12] states that to any positive semi-
definite kernelx corresponds a unique reproducing kernavhere|| - ||z, denotes the norm in the rkHs.
Hilbert space (rkHs) whose inner produ¢t )4, usually The inherent modularity of reproducing kernels allows
called reproducing kernel, is itself. scaling up linear algorithms into nonlinear ones, adapting
The one-to-one correspondence between rkHs and positiegnel-based machines to tackle a large class of nonlinear
semi-definite functions has proved to be quite useful in ntasks. Kernels are commonly defined on vectorial spages,
merous fields (see [13] and references therein). Since #redowed with the Euclidean inner produat;, z,) = =, x;
pioneering work of Aronszajn [12], reproducing kernels andnd the associated norfi;||. They can be easily adapted to
rkHs formalism have been increasingly used, especiallgr afbperate on images, e.g., in face recognition or image diegpis
being selected for the resolution of interpolation protdemy They are not restricted to vectorial inputs, but can be @ditur
Parzen [14], Kailath [15] and Wahba [16]. A rkHs is a Hilbertlesigned to measure similarities between sets, graphygstr
space of functions for which point evaluations are boundeaihd text documents [9]. As illustrated in Table |, most of the
and where the existence and uniqueness of the reprodudiegnels used in the machine learning literature can be elivid
kernel is guaranteed by the Riesz representation theomemirito two categories: projective kernels are functions afein
fact, let’H be a Hilbert space of functions defined on somproduct, such as the polynomial kernel, and radial kerradd®(
compactX, for which the evaluation)(x) of the function known by isotropic kernels) are functions of distance, sagh
1 € H is bounded for alle € X'. By this theorem, there existsthe Gaussian kernel. These kernels map implicitly the data
a unique functionp(x) € H such asy(x) = (¢, ¢(x))y. into a high dimensional space, even infinite dimensional for
Also denoteds(-, ), this function has the following popularthe latter.
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Fig. 2. Kernel machines map the input space (blue region in theplafel) into a higher-dimensional space (blue region in idjiet panel). The rkH is
defined as the completion of the span of the mapped input détta,elements written as a linear expansion of mapped datsueider, not each element of
‘H is necessary the image of some input data. The pre-imagéepratpnsists of going back to the input space, e.g., to reptea the input space elements
of the rkHs (e.qg., the effect of projecting onto a subspaseilastrated here).

TABLE I kernel-based machine learning in [18], including SVM and

kernel-PCA, as follows:
Theorem 1 (Representer theorem): For any function) € H

COMMONLY USED KERNELS IN MACHINE LEARNING, WITH PARAMETERS

c¢>0,pe INL,AND o > 0.

Kernels Expressions minimizing a regularized cost function of the form
2 monomial (i, z;))P ~
§  polynomial (c+ (@i, ;)P S Flyi () +ng(lvl3),
‘S exponential exp((z;,x;)/202) i—1
& sigmoid (perceptron) tanh({(x;, x;) /0 + ¢) . . . .
Zhad] with f(-,-) some loss function angl(-) a strictly monotonic
_ Gaussian exp(—|lz; — z;|?/202) . ing f . AR b . .
E  |Laplacian exp(—||z: — ;/202) increasing function onlR,, can be written as an image
¢  multiquadratic Vi — 2 +c¢ expansion in terms of the available data, namely
inverse multiquadratic] 1/+/|lz; — x;|?> + ¢ n
=" (x). )
. =1 . e .
This theorem shows that,Z even in an infinite dimensional rkHs
B. The representer theorem one only needs to work in the subspace spanned bynthe

In machine learning, inferences are focused on the estilig29es of the training data. ) _
tion of the structure of some data, based on a set of availablc,ﬁ efore we proceed further, we examine the effectiveness

data. Giver: observationsg,, = ., and eventually the of this theorem on two machine learning techniques: First,
. 1y L2y, y . ) . )
corresponding labelsy. v, . . ., yn onenseeks a function tha,[con5|derthe kernel-PCA, where the projected variance is ma

imi - 1 ) 2
minimizes a fitness error over the data, with some contr'&“zed’ namelyzpl,wg,._..’wk = %rgmaxw % i (@ V)7,
of its complexity (i.e., functional norm). To this end, we-nder the orthonormality constraintye, )3 = de for all
. S )
consider the rkHs associated to the reproducing kernelaas {hé =1,2,..., k. As derived in the introductory example, one

hypothesis space from which the optimal is determined. TI%1Iy needs to solve t.he.elgen-proble[ﬁh (3), involving only
rkHs associated te can be identified, modulo certain detailsunknowns for each principal axe. These unknowns correspond

with a space of functions defined by a linear combination & the weighting coefficients in the expansi@h (7). Secord, w

the functionss(z1), ¢(s), . .., d(an). Its flexibility allows to consider a regression problem, known as the ridge regressio

solve efficiently optimization problems, owing to the (geneln this case, the mean squared error is minimized, with

alized) representer theorem. Originally derived by Kinoetd

1L 2 2
. . . . min — yi — ()" + |5, 8
and Wahba for splines in [17], it was recently generalized to Yon ;' (@) "+ lvll (®)
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where the first term is the fitness error while the second ofet ) = """ | o; ¢(x;). The pre-image problem consists of the
controls the complexity of the solution (known as Tikhonofollowing optimization problem:

regularization). By substitutindg7) int@1(8), we get thetiop n 2
mization problem " = argmin H 2041' P(x;) — ¢(33)HH- (10)
min ||y — Ka|?> +na' Ka, Equivalently, from the kernel trickg* minimizes the objective
« function
with a = a1 az -+ o] andy = [y1 y2 - yn]'. n
The optimal weighting coefficients are obtained by solving E(x) = r(x, @) — 220% k(@ i), (11)
=1

the linear system .
where the term independent efhas been dropped.

(K +nl)a =y, 9) As opposed to this functional formalism, one may also
adopt a vector-wise representation, with elements in this rk
wherel is the identity matrix. given by their coordinates with respect to an orthogonal

Such models as a sum of basis functions have been exiggsis. Taking for instance the basis defined by the kernel-
sively studied in the literature, for instance in intergma  pca as given in[{4), eachy € # is represented vector-
problems [19] and more recently in machine learning [20}ise with [(,1) (W, 4bs) - (p,4px)]T, thus defining a
To illustrate this theorem, take for instance the Gauss&mn k_dimensional representation. In such a case, the Euclidean
nel, investigated in [21] for interpolation in two-dimenBs. gistance between the latter and the one obtained from the
For this kernel, we can think about the magx;): ©; — image of z* is minimized. This is essentially a classical
exp(—|| - —=;||?/20?) that transforms each input data into &imensionality reduction problem, connecting the pregma
Gaussiarbump centered on that point. Clearly, the representgfoplem to the historical evolution of dimensionality retian

theorem (Theorei 1) states that the optimal solution ise@lin techniques. This is emphasized next, providing a survey on a
combination of Gaussians centered on the available infat dayyge variety of methods.

However, it is well known that a sum-of-Gaussians centered

at different points, cannot be written as a single Gaussiaq. The exact pre-image, when it exists
Thus, the. solution) 'T] (@ cannot be. a_‘ Gaussnan. S|-tt|ng on Suppose for now that there exists an exact pre-imagg, of
some arbitrary data; in other words, it is not a valid image ?f

i _ ~ T.e., x* such thatp(x*) = ¢, then the optimization problem
some:x e X_’ usmg. the maps(-) associated to the Gau55|aqn (@0) results into that pre-image. Furthermore, the pre-
kernel. Finding an input*

i . ] whose image can approximate th?mage can be easily computed when the kernel is an invertible
function is the pre-image problem. function of (z;, ), such as some projective kernels including
the polynomial kernel with odd degree and the sigmoid kernel
I1l. SOLVING THE PRE-IMAGE PROBLEM (see Tabléll). Leb: IR — IR defines the inverse function such
that h(k(x;, x;)) = (@i, z;). Then, given any orthonormal

A problem is ill-posed if at least one of the following™ ™ "™ )
basis in the input spacfe;, es,...,exn}, every element: €

three conditions, which characterize well-posed probléms )

the sense of Hadamard, is violated: (i) a solution exisisit(i X can be ertt?vn as v

is unique, and (iii) it depends continuously on the datao(als _ . o . }

known as the stability condition). Unfortunately, idewtifg v j;<e'7’w> 9= ;h(ﬁ(e'j’w)) o

the pre-image is generally an ill-posed problem. This is gy 5 consequence, the exact pre-imageof some pattern

outcome of the higher dimensionality of the feature spage_ S | oy é(;), namelyg(z*) = ¢, can be expanded as

compared to the input space. As a consequence, most elements N N

1 in the rkHs might not have a pre-image in the input space, T — Z h(zai K(ej, mi)) e;.

i.e., there may not exist ag* such thatp(x*) = . Moreover, j=1 =1

even ifx* exists, it may not be unique. In order to circumventikewise, when the kernel is an invertible function of the

this difficulty, one seeks an approximate solution, %, distance, such as radial kernels, a similar expression can

whose mapp(x*) is as close as possible @ be derived by using the polarization identity(x*,e;) =
Consider a patterny in the feature spac@{, obtained by |z* +e;|* — ||z* — ;|| [22].

any kernel-based machine, e.g., a principal axe or a dahoiseClearly, such a simple derivation for the pre-image is

pattern obtained from kernel-PCA. By virtue of the Theotém bnly valid under the crucial assumption that the pre-image
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x* exists. Unfortunately, for a large class of kernels, themgith x(x}, x;) = exp(—||z; —x;||*/20?). Similar expressions
are no exact pre-images. Rather than seeking the exact man be derived for most kernels, such as the polynomial kerne
image, we consider an approximate pre-image by solving th&édegreep [23] with
optimization pr.oblem in [@O). In- what follows, wg presgnt . n (xF, @) + ¢ p—1
several strategies for solving this problem. We first review Lip1 = Zozi T

techniques based on classical optimization schemes. We the i_zl o _ . .
present learning-based techniques, incorporating @diti Unfortunatel){, .the fixed-point iterative technique stillffers |
prior information. from local minima and tends to be unstable. The numerical

instability occurs especially when the value of the dena@tan
decreases to zero. To prevent this situation, a regularized
B. Gradient descent techniques solution can be easily formulated, as studied in [24].

Gradient descent is one of the simplest optimization tech-An interesting fact about the fixed-point iterative methsd i
niques. It requires computing the gradient of the objectiBat the resulting pre-image lies in the span of the availabl
function [I1), denotedv,Z(z*). In its simplest form, the data, taking the forme™ = 3, 5; ; for some coefficients

(i, x}) +c

current guesse; is updated intoz},, by stepping into the 61, 82,...,0, to be determined. Thus, the search space is

direction opposite to the gradient, with controlled, as opposed to gradient descent techniques that
explore the entire space. We further exploit informaticonir

T =, —m Vad(xy) available training data, and their mapped counterparts, as

. : . _ _ discussed next.
wheren, is a step size parameter, often optimized using a line-

search procedure. As an alternative to the gradient descent ) _

- . D., Learning the pre-image map
one may use more sophisticated techniques, such as Newton'’s
method. Unfortunately, the objective function is inhehent To find the pre-image map, a learning machine is con-
nonlinear and clearly non-convex. Thus, a gradient descé#ucted with training elements from the feature space atid e
algorithm must be run many times with several differedpated values in the input space, as follows: we seek to egtima
starting values, in hope that a feasible solution will be agss @ functionI'* with the property thal™(¢(z;)) = @, for i =

the local minima obtained over the runs. 1,2,...,n. Then, ideally'* (1) should givez*, the pre-image
of 4. In order to make the problem computationally tractable,

two issues are considered in [25], [26]. First, the functi®n

defined on a vector space. This can be done by representing
The structure of kernel functions provides useful insighteector-wise anyy € H with [(,¥1) (¥, 1¥2) --- (W, i) T

to derive more appropriate optimization techniques, bdyotising an orthogonal basis obtained from kernel-PCA. Second

classical gradient descent. More precisely, the gradiént the pre-image map™ is decomposed intdim(X’) functions

expression(11) has a closed-form expression for most lernéo estimate each componentof. From these considerations,

By setting this expression to zero, this greatly simplifie¢e seek functions™}, I, ... T4, ), with I'7: R* — TR.

the optimization scheme, resulting into a fixed-point itiwen Each of these functions is obtained by solving the optinszat

technique. Taking for instance the Gaussian kernel [7], tipgoblem

objective function in[(1l1) becomes

C. Fixed-point iteration method

. Ty, = argmin £ ([, T($)) +19(I0])

~2) " exp(~ e — @il /20”), -
iz1 wheref(-,-) is some loss function, and],, denotes then-th

component operator. By taking for instance the distance as a

with its gradient .
loss function, we get

2 n
VoZ(@) = —= Y i exp(—|lx — z;||?/20?) (x — ;). . 1 2
7 2 (@ =) I, = argmin = 3 [fail ~ PO + 1[I0
i=1

We get the pre-image by setting this gradient to zero, whigfis gptimization problem can be easily solved by a matrix

results into the fixed-point iterative expression inversion scheme, in analogy to the ridge regression proble

o S k() ) T (@) and its linear systeni](9). This learning approach is fur-
t+l S k() ) ther investigated in the literature, incorporating neigtiwod
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information [27] and regularization with a penalized léagn where X = [x; z2 --- «,] and diad-) is the diagonal
[28]. All these methods are based on a set of available dafaerator with diagX ' X) the column vector with entries
in the input space and the associated images in the rkHis,;, ;). The unknown pre-image is obtained using the least
The method discussed next carries this concept further, $yuares solution, namely

exploring pairwise distances in both spaces. 2 — %(XXT)le (diag(XTX) 62 82 - 52]T) 7

where the term(X X ")~ Xe goes to zero thanks to the
assumption of centered data.

As illustrated in the above pre-image learning approach,tq keep this technique tractable in practice, only a certain
the pre-image map seeks data in the input space basedn@hnorhood is considered in the pre-image estimation, in
their associated images in the rkHs. Essentially, this ®& | {ha same spirit as the locally linear embedding scheme in
dimensional embedding ajbjects from a high-dimensional gimensjonality reduction [30]. This approach opened therdo

space. This problem has received a lot of attention in Myls 5 range of other techniques, borrowed from dimensignalit
tivariate statistics, under the framework of Multidimes®l o4, ction and manifold learning literature [31].

Scaling (MDS) [29]. MDS techniques mainly embed data in
a low-dimensional space, by preserving pairwise distancés Conformal map approach

This approach has been applied with success to solve th@esides the distance preserving method of MDS, one may
pre-image problem [23]. Consider each distance in the rkidfso propose a pre-image method by preserving inner product
d; = |l — é(x)|[», and its counterpart in the input spaceneasures. Using such a strategy, the angular measure is
|z* — ;| Ideally, these distances are preserved, namely a|so preserved, since] z;/||z;||||=;|| defines the cosine of
Iz* — zil]? = | — d(z)|I2,, (12) the angle benNeeFu:i_and x; in the Euclidean input space.
For this reason, it is called the conformal map approach.
for everyi = 1,2,...,n. Itis easy to verify that if there exists A recent technique to solve the pre-image problem based
ai such that) = ¢(x;), then we get the pre-image’ = ;. on the conformal map has been presented in [32]. To this
One way to solve this problem is to minimize the meaend, a coordinate system in the rkHs is constructed with an

E. MDS-based technique

square error between these distances, with isometry with respect to the input space. We emphasize the
) fact that the model is not coupled with any constraint on the
* : 2 2 . . .
T =arg mmmz |||m —zil|” = v - ¢(mz‘)|\%‘ : coordinate functions, as opposed to the orthogonality betw
1=1

the functions resulting from the kernel-PCA.
To solve this optimization problem, a fixed-point iteration By virtue of TheorenflL, each of the coordinate functions
method is proposed by setting the gradient of the aboyg, pe written as a linear expansion of the available images,

expression to zero, resulting into the expression namely O, = Y7 6, ¢(x;), for £ = 1,2,...,n, with
o (e = ]| = 67) unknown weights to be determined, rearranged in a matrix
S (e — |2 —62) ©. Therefore, the coordinates of any element of the rkHs can

Another approach to solve this problem is to consig@e obtained by a projection onto these coordinate functions
separately the identitieE{12), resulting intoequations thus any¢(x,;) can be represented with thecoordinates in
Uy, = (U1, 0(xi)) (U2, (i) -+ (Vg p(z:))] " Ideally,
2(z", ;) = (x*, &") + (i, i) — 57, the inner products are preserved in both this coordinatesys
and the Euclidean input space, nhamely

fori =1,2,...,n. In these expressions, the unknown appear
also on the nght-hand side, witke*, z*). This unknown \III\II:C] =z, (13)
guantity can be easily identified in the case of centered, dait& alli,j = 1,2 n. This can be solved by minimizing
since taking the average of both sides results into the fitnéss err(;r 7ove; all pairs,
* * 1 . 2
(x*,2") = EZ;(&- — (i, z:)) Z E2ETES 20 2 +”Z|\‘I’4Hw
= Lo ¥ "ij=1 /=1

Let e be the vector having all its entries equal}lt@?zl(éf— where the second term incorporates regularization. This ca
(x;, x;)) then, in matrix form, we have be written in matrix form as

B - T T
2X 2" = diag(X ' X) — [62 62 --- 6%] +¢, min 5| X' X - K®'O K| +1t(0'OK),
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()

Fig. 3. Schematic illustration of the MDS-based technique whbeespre-image is identified from pairwise distances in boffuirand feature spaces.

where t(-) denotes the trace of a matrix afid||» the Frobe- based on another Gram matrix, here the matrix of kernel
nius norm, i.e., the root of sum of squared (absolute) valueslues.
of all its elements, or equivalentlyM ||, = tr(M " M). By

taking the derivative of this expression with respecBl0®, V. SCOPE OF APPLICATION OF THE PREMAGE PROBLEM

one obtains In this section, we present some application examples that

0'e=K!' (XTX — anl) K1 (14) involve solving the pre-image problem. Our first experinsent
are with kernel-PCA on toy data, and are mainly intended

Now we arf In a position to dzt.ermme the Pre-l(;nageh% illustrated the pre-image problem. Then, we provide a
somet) = >y i ¢(:). lts coordinates associated o t ecomparative study of several methods presented in thisrpape

system of coordinate functiong,, ¥, ..., ¥ are given by on an image denoising problem. Finally, we show how the pre-
(b, W)y = zn: 00y (s, ;) image can be required in other applications, beyond kernel-
’ ij=1 T PCA. To this end, we consider a problem of auto-localization
for ¢ = 1,2,...,n. By preserving the inner products inOf sensors in wireless sensor networks.
both spaces, ideally the model in{13) can be extended, to
resulting into A. Some applications of kernel-PCA with pre-image
X'z =K0'0Ka. 1. Feature extraction

By combining this expression with (114), we get the simplified A first illustration considered here is the use of kernel-PCA
expressionX ' z* = (XTX—anl) a, whose least squareson a synthetic data to provide a visual illustration of PCA vs
solution is kernel-PCA for feature extraction. The data distributiakets
the form of a ring in 2D, with an inner diameter 8fand an
outer diameter o8. Within this region,n = 600 training data
It is worth noting that this expression is independent of theere generated, as illustrated in Figlite 4 with blue dots. In
kernel type under investigation. order to extract the most relevant feature, two methods were
Furthermore, this technique can be easily extended to idersed: on the one hand the conventional PCA and on the other
tify the pre-images of a set of elements in the rkHs, since thand kernel-PCA with a pre-image step. The PCA technique
term between parentheses needs to be computed only oncerbvided linear axes by solving the eigenvector problend, an
fact, this is a matrix completion scheme, as the one studiedthus did not capture the circular shape of the data. This is
[33]. This corresponds to completing an inner-product iRatrillustrated by projecting data onto the first principal axjsen

= (XX ' X(X'X-nK Ha.
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Fig. 4. Denoising data distributed on a ring, using classical P@&#t)(and kernel-PCA with pre-image (right). The extracteadture is linear in the first
case, and circular in the second.

by red dots in Figurél4 (left). The kernel-PCA was applied
using a Gaussian kernel with bandwidth= 2, the principal
axes being defined by a sum afGaussian functions in an
infinite dimensional feature space. A pre-image method w
required to derive the axes, or representations of thesg, a
within the input space. As shown in Figuré 4 (right), thi
technique captured the nonlinear feature in the originatep

As described at the beginning of this paper, when w
introduced the pre-image problem with the Gaussian kern
each data is mapped into a Gausdiamp centered around it.
By taking the sum of theses Gaussians, with some optimiz
weighting coefficients, we get the principal distributiohase
mean, if it exists, provides the pre-image. It is worth noting
that the definition of a mean only exists and makes sense
Gaussian-like curves, and not for a sum-of-Gaussians reghte
at different points. A schematic illustration of the preaige
problem is given in Figurgl5, taking only a (one-directignal
radial cut in the ring-distributed data. The data obtaingd IFig. 5. Schematic illustration of the pre-image problem with thau€sian
solving the pre-image problem can be interpreted as thecerhemel, where the profile corrgsponds to a radial cut irT thg-distributed

. . . . data. From the sum-of-Gaussians (red curve), the pre-intsagesponds to

of the distribution Gaussian which best approximates te-SUy.o mean value of the distribution (red dot).
of-Gaussians.

In this application, the fixed-point iterative techniqueswa
used. Next, we give a comparative study of several techsique
given in this paper, by considering an image denoising propeint iterative method, the MDS-based technique, and the

lem. conformal map approach. The images were consisting of the
MINST database of handwritten digits [34], corresponding t
2. Image denoising handwritten digits, from “0” to “9”, in (almost) binarg8-

In this section, we illustrate the results obtained in a fmwb by-28 pixels. From a machine learning point of view, each
of real image denoising, using three techniques: the fixeidhage can be represented apaint in a 28 x 28 dimensional
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Conformal method

Fig. 6. Application to handwritten digit denoising with kerneGR, using several pre-image methods presented in this paper

space. The original images were corrupted by adding a zehmur. The MDS-based and the conformal algorithms required
mean white Gaussian noise with variaric®. In the training 5 minutes andl.5 seconds, respectively.
stage, a set of 000 images,100 of each digit, were used

to train the kernel-PCA, retaining only00 leading principal g aAuto-localization in wireless sensor networks

axes. We used the Gaussian kernel for the three algorithms, . . .
, ) 5 With recent technological advances in both electronics and
with bandwidth set tar = 10°.

wireless communications, low-power and low-cost tiny sesis

To illustrate the ability of this method for image denoisinghave peen developed for monitoring physical phenomena
another set ofl0 images, one for each digit, was considereg,,q tracking applications. Densely deployed in the insmbct
under the same noise conditions. These images are illedtrat,ironment with efficiently designed distributed alglonis,
in Figure[6 (first row), with results obtained with the fixedyireless ad-hoc networks seem to offer several opporasiti
point iterative (second row), the MDS-based (third row) anflhey were successfully employed in many situations, rapgin
the conformal (fourth row) methods. For such applications, om military applications such as battleground supeovisto
fixed-point iterative algorithm was found to be inapprof#ia cjyilian applications such as habitat monitoring and Hete
even with a large number of iterations (hei®000 iterations g, veillance (see [35], [36] and references therein). Whil
were used). To take advantage of prior knowledge, the safpa@se sensors are often randomly deployed, e.g., for morgto
training dataset was used for learning the reverse map- R§ahogspitable habitats and disaster areas, informatiotuceg
istic results were obtained using the MDS-based method. Itld'y each sensor remains obsolete as long as it stays unaware
obvious that the conformal algorithm achieved better d&wi «f jis |ocation. Implementing a self-localization deviich
results. For this simulation, the regularization paramet@s a5 4 GPS receiver, at each sensor device may be too expensive
set ton = 1077 and too power hungry for the desired application with bgitter

In an attempt to provide a measure of computationpbwered devices. As a consequence, only a small fraction of
requirements, we considered the (average) total CPU tifle sensors may be location aware, the so-called anchors or
of each algorithm. These algorithms were implemented @eacons. The other sensors have to estimate their locdtjons
a Matlab running on a MacBook Pro Duo Core, to offeexchanging some information with its neighbors.
a comparative study. Witlh0000 iterations, the fixed-point  For this purpose, each sensor determines a ranging (dis-
iterative algorithm required a total CPU time of up to lance) with other sensors, from inter-sensor measurements
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such as the received signal strength indication (RSSI), the
connectivity, the hop count, the time difference of arrjval

Most methods used for auto-localization in sensor networks
are based on either MDS techniques or semidefinite program- 08

0.9

ming (for a survey, see [37], [38]), identifying a function 50-7
that links the ranging between sensors to their locations. Eo.e
However, if the data are not inter-sensor distances or are .Sos
linked to coordinates by an unknown nonlinear function,,e.g 60_4
using the RSSI measurements or the estimated covariance §0.3

sensor data [39], linear techniques such as MDS and PCA fail

to accurately estimate the locations. Once again, the kerne

machines provide an elegant way to overcome this drawback. .
Here, we describe the method proposed in [40]. The main 0 10 20

idea can be described in three stages. In the first stage, we

construct the reproducing kernel and its associated rkHshwh _ _ ) _

. . o Fig. 7. Profile of the spherical model, as a function of the distance.

best describes the anchor pairwise similarities. In th@sec 1 . . t-off distance is set 16— 60.

stage, a nonlinear manifold is designed from similarities

between anchor-sensors measurements, by applying a kernel

PCA technique. The final stage consists of estimating tr'fé* nel-PCA upon anchors

coordinates of non-anchor sensors by applying a pre-imageifter identifying the reproducing kernel adapted to the

technique on their projections onto the manifold. Next, w&easurements, a kernel-PCA approach is applied to provide

describe these three stages, before presenting expeaikne‘i"i'ﬁ most relevant subspace of the associated rkHs. Clhassica

results. kernel-PCA is computed by a diagonalization scheme, which
Consider a network ofV sensor nodes, with location- mMay be computational expensive for in-network processing.

aware anchors an¥ — n sensors of unknown location, living An alternative approach can be done using an iterative sehem
in a p-dimensional space, e.gp, = 2 for localization in a Such as thé&ernel-Hebbian algorithm[42] (we refer the reader

hed
o

30, 40 50 60 70
distance

plane. Letz; € IR? be the coordinates of théth sensor, to [40] for its implementation in wireless sensor networks)
rearranged such that indicés= 1,2,...,n correspond to
anchors. LetK (i,j) be the inter-sensor similarity betweerPre-image for location estimation

sensorg andj, such as the RSSI. For each sensor, we represent its image in the rkHs as-
sociated to the kernel maximizing the alignment criterion.

S ~The image is projected onto the manifold obtained using
As a model of the similarity measurements, the approprigigne|-.pca with anchor pairwise similarities. The problem

reproducing kernel should be chosen, and tuned up, whighegtimating the coordinates from that representatiornés t
allows a physical meaning of the results obtained from ”b‘?e-image problem.

kernel-PCA (next stage). The alignment criterion [41] pdes
a measure.of similarity between a reproducmg kernel andE?(perinEntal results
target function, e.g., between a Gaussian kernel and thé RSS

measurements. Maximizing the alignmeti R’) provides A first batch of experiments was carried out on simulated
the optimal reproducing kernel, faithful to the inter-aach measurements. For this purpose, we considered a network of

measurements, where sensors measuring some physical phenomena, e.g., temper-
) (K, K)p ature, atmospheric pressure or luminance. In a static field,
AK,K) = —_—, we assumed that measurements were jointly generated from
\/<K7K>F<KaK>F a normal distribution, with decreasing correlations betwe
with (-, -} is the Frobenius inner product between two matrineasurements as a function of the distance between sensors.
ces. Taking for instance the Gaussian kernel, the optimizat This information was used as a local similarity measure
problem is reduced to finding the optimal bandwidth. Ibetween sensors [39]. More precisely, we considered the
practice, this optimization problem is solved at each anchapherical model, commonly used in environmental and geo-
using only information from its neighborhood. logical sciences [43], and defined by a covariance of the form

Kernel selection from inter-anchor similarities
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| biased), having a root-mean-square location error2dR
1007 / | meters.
Yoo, W, f
. A K, Je* Y ] V. FINAL REMARKS
e * . e X This article presented the pre-image problem in machine
- 3§ % \\,:/ ¥ % 8 learning, providing an overview of the state-of-the-artimogls
s r and approaches for solving such a problem. Our aim was to
- e x . show how this problem is intimately related to dimensiayali
= * - % R—— reduction issues, borrowing and enhancing ideas derived fr
L // . ; \ — ] dimensionality reduction and manifold learning. Througho
— :;*/ LI } this paper, we studied this problem for kernel-PCA, and
ol # i provided a comparative study of several methods for image
‘ ‘ denoising. We extended the range of application of the pre-

0 100 : o
image problem to another context, sensor auto-localizatio

Fig 8. Estimated locations 080 sensors £) based or20 anchors Wireless sensor networks.
of known positions i), with error to real position represented by a By interpreting in the original input space the processing

line (). performed in the feature space, this strategy opens the ovay t
a range of diverse signal processing problems. These pngble
C(||; — x54]) with are nonlinear kernel-based formulations of classical aign

processing methods, including the independent component
analysis [45] and the Kalman filter [46]. Another area of
application is the pre-image problem on structured spaces,
where d denotes the cut-off distance, and fixeddo= 60 including biological sequence analysis in bioinforma{i4g]
in our experiments. The profile of the spherical model ignd string analysis in natural language [48]. In the lattee,
illustrated in Figure[ 7. The experiments consisted of 1QQuthors derived a pre-image solution for a string kernéhgis
sensors, from whicf20 were anchors with known locations,a graph-theoretical formulation. All these promising ared
randomly spread over &00-by-100 square region. For eachappjication of the pre-image problem open an avenue fordutu
sensor,200 measurements were collected, and the Gaussiggrk.
kernel was considered. Figufé 8 illustrates the localirati
results obtained with this method. REFERENCES
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