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The pre-image problem

in kernel-based machine learning
Paul Honeine, and Cédric Richard

Kernel machines have gained considerable popularity during

the last fifteen years, making a breakthrough in nonlinear

signal processing and machine learning thanks to extraordinary

advances. This increased interest is undoubtedly driven by

the practical goal of being able to easily develop efficient

nonlinear algorithms. The key principle behind this, known

as thekernel trick, exploits the fact that a great number of

data processing techniques do not depend explicitly on the

data itself, but rather on a similarity measure between them,

i.e., an inner product. To provide a nonlinear extension of

these techniques, one can apply a nonlinear transformationto

the data, mapping them into some feature space. According to

the kernel trick, this can be achieved by simply replacing the

inner product with a reproducing kernel (i.e., positive semi-

definite symmetric function), the latter corresponds to an inner

product in the feature space. One consequence is that the

resulting nonlinear algorithms show significant performance

improvements over their linear counterparts, with essentially

the same computational complexity.

While the nonlinear mapping from the input space to the

feature space is central in kernel methods, the reverse mapping

from the feature space back to the input space is also of

primary interest. This is the case in many applications, includ-

ing kernel principal component analysis for signal and image

denoising. Unfortunately, it turns out that the reverse mapping

generally does not exist, and only a few elements in the feature

space have a valid pre-image in the input space. The so-

called pre-image problem consists of finding an approximate

solution, by identifying data in the input space based on

their corresponding features in the high-dimensional feature

space. The pre-image problem is essentially a dimensionality

reduction problem, and both have been intimately connected

in their historical evolution, as studied in this paper.

I. A N INTRODUCTORY EXAMPLE: KERNEL PCA FOR

DENOISING

A. Linear denoising with PCA

In general, some correlations exist among data, thus tech-

niques for dimensionality reduction or so-called feature extrac-

tion provide a way to confine the initial space to a subspace

of lower dimensionality. The principal component analysis

(PCA), also known as the Karhunen-Loève transformation,

is one of the most widely used dimensionality reduction

techniques. Conventional PCA seeks principal directions that

capture the highest variance in the data. Mutually orthonormal,

these directions define the subspace exhibiting information

rather than noise, providing the optimal linear transformation.

Here, the optimality is in the sense of least mean square

reconstruction error. For instance, in data compression and

manifold learning, much information is conserved by project-

ing onto the directions of highest variance, while in denoising,

directions with small variance are dropped. These schemes are

mathematically equivalent, we use here a denoising schema

without loss of generality.

Consider an input spaceX endowed by the inner product

〈·, ·〉, for instance a vectorial space with the Euclidean inner

product 〈xi,xj〉 = x⊤
i xj . Let {x1,x2, . . . ,xn} denotes a

set of available data (observations) fromX . PCA techniques

seek the axes that maximize the mean variance of the projected

data, under the unit-norm constraint, namelyψ1, ψ2, . . . , ψk by

maximizing 1
n

∑n

i=1 |〈xi, ψℓ〉|
2 subject to〈ψℓ, ψℓ′〉 = δℓℓ′ for

all ℓ, ℓ′ = 1, 2, . . . , k. In this expression, the Kronecker delta is

defined asδℓℓ′ = 1 if ℓ = ℓ′, andδℓℓ′ = 0 otherwise. Solving

this constrained optimization problem using the Lagrangian

provides the following problem:

λℓ ψℓ = C ψℓ, (1)

whereλℓ defines the amount of variance captured byψℓ, and

C is the covariance matrix of the data. In other words,(λℓ, ψℓ)

is the eigenvalue-eigenvector of the covariance matrix, data

assumed zero-mean. Furthermore, eigenvectors lie in the span

of the data, since for everyℓ = 1, 2, . . . , k we have

ψℓ =
1

λℓ
C ψℓ =

1

λℓ n

n
∑

i=1

〈xi, ψℓ〉xi.

The eigenvectors associated to the largest eigenvalues pro-

vides a relevant low-dimensional subspace. As a consequence,

we are interested in elements from this relevant subspace.

This is the case, for instance, in data denoising, where the

projection of a given noisy data onto this subspace provides
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its noise-free counterpart. Therefore, the latter can be written

as an expansion of the eigenvectors, namely for a noisy datax̃

we get the denoisedψ =
∑k

i=1〈x̃, ψi〉ψi, and from the above

expression, as a linear expansion in terms of the available data,

by taking the form

ψ =

n
∑

i=1

αi xi.

B. Kernel-PCA for nonlinear denoising

In order to provide a natural nonlinear extension of PCA, a

nonlinear mapping is applied to the data as a pre-processing

stage, prior to applying the PCA algorithm. Letφ(·) be

the nonlinear transformation, mapping data from the input

spaceX to some feature spaceH. Then problem (1) remains

essentially the same, with the covariance matrix associated to

the transformed data. From the linear expansion with respect

to the latter, the resulting principal axes take the form

ψℓ =

n
∑

i=1

〈φ(xi), ψℓ〉H φ(xi), (2)

where〈·, ·〉H denotes the inner product in the feature spaceH.

In this space, each featureψℓ lies in the span of the mapped

input data, with the coefficients given by theℓ-th eigenvector

of the eigen-problem

nλℓαℓ = Kαℓ, (3)

where K is the so-called Gram matrix with entries

〈φ(xi), φ(xj)〉H, for i, j = 1, 2, . . . , n. As illustrated here,

the expansion coefficients require only the evaluation of inner

products. Without the need to exhibit the mapping function,

this information can be easily exploited for a large class of

nonlinearities, by substituting the inner product with a positive

semi-definite kernel function. This argument is the kernel trick,

which provides a nonlinear counterpart of the classical PCA

algorithm, the so-called kernel-PCA [1].

Consider the denoising application using kernel-PCA. For

a givenx̃, its nonlinear transformationφ(x̃) is projected onto

the subspace spanned by the most relevant principal axes,

providing the denoised pattern. The latter can be written asa

linear expansion of thek principal axes,ψ1, ψ2, . . . , ψk, with

ψ =

k
∑

i=1

〈x, ψi〉ψi. (4)

Equivalently, the denoised pattern can also be written as a

linear expansion of then images of the training data, namely

ψ =
∑n

i=1 αi φ(xi), where the expansion in (2) is used. In

practice, one is interested in representing the denoised pattern

in the input space, as illustrated in Figure 2. It turns out that

most elements of the feature space, including the denoised

patterns, are notvalid images, i.e., the result of applying the

map to some input data. To get the denoised counterpart in the

original input space, one needs to operate an approximation

scheme, i.e., estimatex∗ such that its imageφ(x∗) is as close

as possible toψ.

Beyond this kernel-PCA example, the kernel trick is well-

known in the machine learning community. It provides flex-

ibility to derive nonlinear techniques based on linear ones,

data being implicitly mapped into a feature space. This space

is given by the span of the mapped data, i.e., all the linear

expansions of mapped data. The price to pay is that, in general,

not each element of the space is necessary the image of some

data. This is the case of most elements in the feature space,

since they can be written as

ψ =
n
∑

i=1

αi φ(xi),

as illustrated above with either a principal axeψℓ or a denoised

feature ψ. In order to give proper interpretation of these

components, one should define the way back from the feature

into the input space. This is the pre-image problem in kernel-

based machine learning, as illustrated in Figure 1.

II. K ERNEL-BASED MACHINE LEARNING

In the past fifteen years or so, a novel breakthrough to arti-

ficial neural networks has been achieved in the field of pattern

recognition and classification, within the framework of kernel-

based machine learning. They have gained wide popularity,

owing, on the one hand, to theoretical guarantees regarding

performance, and on the other hand to low computational

complexity in nonlinear algorithms. Pioneered by Vapnik’s

Support Vector Machines (SVM) for classification and regres-

sion [2], kernel-based methods are nonlinear algorithms that

can be adapted to an extensive class of nonlinearities. As a

consequence, they have found numerous applications, includ-

ing classification [3], regression [4], time series prediction [5],

novelty detection [6], image denoising [7], and bioengineering

[8], to name just a few (see, e.g., [9] for a review).

A. Reproducing kernels and rkHs

Originally proposed by Aizermanet al. in [10], the kernel

trick provides an elegant mathematical means to derive pow-

erful nonlinear variants of classical linear techniques. Most

well-known statistical (linear) techniques can be formulated

as inner product between pairs of data. Thus, applying any

nonlinear transformation to the data can only impact the values

of the resulting inner products. Therefore, one does not need

to compute such transformation explicitly for a large classof
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x̃ φ(x̃)

ψ
x∗

φ(·)

?

Fig. 1. Schematic illustration of the pre-image problem for pattern denoising with kernel-PCA. While dimensionality reduction through orthogonal projection
is performed in the feature space (right panel), a pre-imagetechnique is required to recover the denoised pattern in theinput space (left panel).

nonlinearities. Instead, one only needs to replace the inner

product operator with an appropriate kernel, i.e., a symmetric

hermitian function. The only restriction is that the latterdefines

an inner product in some space. A sufficient condition for this

is ensured by Mercer’s theorem [11], which may be stated as

follows: Any positive semi-definite kernel can be expressed

as an inner product in some space, where the positive semi-

definiteness of a kernelκ : X ×X → IR is determined by the

property
∑

i,j

αi αj κ(xi,xj) ≥ 0,

for all αi, αj ∈ IR andxi,xj ∈ X . Furthermore, the Moore-

Aronszajn theorem [12] states that to any positive semi-

definite kernelκ corresponds a unique reproducing kernel

Hilbert space (rkHs) whose inner product〈·, ·〉H, usually

called reproducing kernel, isκ itself.

The one-to-one correspondence between rkHs and positive

semi-definite functions has proved to be quite useful in nu-

merous fields (see [13] and references therein). Since the

pioneering work of Aronszajn [12], reproducing kernels and

rkHs formalism have been increasingly used, especially after

being selected for the resolution of interpolation problems by

Parzen [14], Kailath [15] and Wahba [16]. A rkHs is a Hilbert

space of functions for which point evaluations are bounded,

and where the existence and uniqueness of the reproducing

kernel is guaranteed by the Riesz representation theorem. In

fact, let H be a Hilbert space of functions defined on some

compactX , for which the evaluationψ(x) of the function

ψ ∈ H is bounded for allx ∈ X . By this theorem, there exists

a unique functionφ(x) ∈ H such asψ(x) = 〈ψ, φ(x)〉H.

Also denotedκ(·,x), this function has the following popular

property

κ(xi,xj) = 〈φ(xi), φ(xj)〉H, (5)

for any xi,xj ∈ X . Moreover, distances can be easily

evaluated using the kernel trick, since the distance between

two elements can be given using only kernel values, with

‖φ(xi)− φ(xj)‖
2
H = 〈φ(xi)− φ(xj), φ(xi)− φ(xj)〉H

= κ(xi,xi)− 2 κ(xi,xj) + κ(xj ,xj),

(6)

where‖ · ‖H denotes the norm in the rkHs.

The inherent modularity of reproducing kernels allows

scaling up linear algorithms into nonlinear ones, adapting

kernel-based machines to tackle a large class of nonlinear

tasks. Kernels are commonly defined on vectorial spaces,X

endowed with the Euclidean inner product〈xi,xj〉 = x⊤
i xj

and the associated norm‖xi‖. They can be easily adapted to

operate on images, e.g., in face recognition or image denoising.

They are not restricted to vectorial inputs, but can be naturally

designed to measure similarities between sets, graphs, strings,

and text documents [9]. As illustrated in Table I, most of the

kernels used in the machine learning literature can be divided

into two categories: projective kernels are functions of inner

product, such as the polynomial kernel, and radial kernels (also

known by isotropic kernels) are functions of distance, suchas

the Gaussian kernel. These kernels map implicitly the data

into a high dimensional space, even infinite dimensional for

the latter.
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x̃

x1x2

x3

xn

x∗

φ(x1)

φ(x2)

φ(x3)

φ(xn)

φ(x̃)

ψ

?

φ(·)

X
H

Fig. 2. Kernel machines map the input space (blue region in the leftpanel) into a higher-dimensional space (blue region in the right panel). The rkHsH is
defined as the completion of the span of the mapped input data,with elements written as a linear expansion of mapped data. However, not each element of
H is necessary the image of some input data. The pre-image problem consists of going back to the input space, e.g., to represent in the input space elements
of the rkHs (e.g., the effect of projecting onto a subspace, as illustrated here).

TABLE I

COMMONLY USED KERNELS IN MACHINE LEARNING, WITH PARAMETERS

c > 0, p ∈ IN+ , AND σ > 0.

Kernels Expressions

P
ro

je
ct

iv
e monomial (〈xi,xj〉)

p

polynomial (c+ 〈xi,xj〉)p

exponential exp(〈xi,xj〉/2σ2)

sigmoid (perceptron) tanh(〈xi,xj〉/σ + c)

R
ad

ia
l Gaussian exp(−‖xi − xj‖

2/2σ2)

Laplacian exp(−‖xi − xj‖/2σ2)

multiquadratic
√

‖xi − xj‖2 + c

inverse multiquadratic 1/
√

‖xi − xj‖2 + c

B. The representer theorem

In machine learning, inferences are focused on the estima-

tion of the structure of some data, based on a set of available

data. Givenn observations,x1,x2, . . . ,xn, and eventually the

corresponding labels,y1, y2, . . . , yn, one seeks a function that

minimizes a fitness error over the data, with some control

of its complexity (i.e., functional norm). To this end, we

consider the rkHs associated to the reproducing kernel as the

hypothesis space from which the optimal is determined. The

rkHs associated toκ can be identified, modulo certain details,

with a space of functions defined by a linear combination of

the functionsφ(x1), φ(x2), . . . , φ(xn). Its flexibility allows to

solve efficiently optimization problems, owing to the (gener-

alized) representer theorem. Originally derived by Kimeldorf

and Wahba for splines in [17], it was recently generalized to

kernel-based machine learning in [18], including SVM and

kernel-PCA, as follows:

Theorem 1 (Representer theorem): For any functionψ ∈ H

minimizing a regularized cost function of the form
n
∑

i=1

f
(

yi, ψ(xi)
)

+ η g(‖ψ‖2H),

with f(·, ·) some loss function andg(·) a strictly monotonic

increasing function onIR+, can be written as an image

expansion in terms of the available data, namely

ψ =

n
∑

i=1

αi φ(xi). (7)

This theorem shows that, even in an infinite dimensional rkHs,

one only needs to work in the subspace spanned by then

images of the training data.

Before we proceed further, we examine the effectiveness

of this theorem on two machine learning techniques: First,

consider the kernel-PCA, where the projected variance is max-

imized, namelyψ1, ψ2, . . . , ψk = argmaxψ
1
n

∑

i |〈xi, ψ〉|
2,

under the orthonormality constraint,〈ψℓ, ψℓ′〉H = δℓℓ′ for all

ℓ, ℓ′ = 1, 2, . . . , k. As derived in the introductory example, one

only needs to solve the eigen-problem (3), involving onlyn

unknowns for each principal axe. These unknowns correspond

to the weighting coefficients in the expansion (7). Second, we

consider a regression problem, known as the ridge regression.

In this case, the mean squared error is minimized, with

min
ψ

1

n

n
∑

i=1

|yi − ψ(xi)|
2 + η‖ψ‖2H, (8)
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where the first term is the fitness error while the second one

controls the complexity of the solution (known as Tikhonov

regularization). By substituting (7) into (8), we get the opti-

mization problem

min
α

‖y −Kα‖2 + ηα⊤Kα,

with α = [α1 α2 · · · αn]
⊤ and y = [y1 y2 · · · yn]

⊤.

The optimal weighting coefficients are obtained by solving

the linear system

(K + ηI)α = y, (9)

whereI is the identity matrix.

Such models as a sum of basis functions have been exten-

sively studied in the literature, for instance in interpolation

problems [19] and more recently in machine learning [20].

To illustrate this theorem, take for instance the Gaussian ker-

nel, investigated in [21] for interpolation in two-dimensions.

For this kernel, we can think about the mapφ(xi) : xi 7→

exp(−‖ · −xi‖
2/2σ2) that transforms each input data into a

Gaussianbump centered on that point. Clearly, the representer

theorem (Theorem 1) states that the optimal solution is a linear

combination of Gaussians centered on the available input data.

However, it is well known that a sum-of-Gaussians centered

at different points, cannot be written as a single Gaussian.

Thus, the solutionψ in (7) cannot be a Gaussian sitting on

some arbitrary data; in other words, it is not a valid image of

somex ∈ X , using the mapφ(·) associated to the Gaussian

kernel. Finding an inputx∗ whose image can approximate the

functionψ is the pre-image problem.

III. SOLVING THE PRE-IMAGE PROBLEM

A problem is ill-posed if at least one of the following

three conditions, which characterize well-posed problemsin

the sense of Hadamard, is violated: (i) a solution exists, (ii) it

is unique, and (iii) it depends continuously on the data (also

known as the stability condition). Unfortunately, identifying

the pre-image is generally an ill-posed problem. This is an

outcome of the higher dimensionality of the feature space

compared to the input space. As a consequence, most elements

ψ in the rkHs might not have a pre-image in the input space,

i.e., there may not exist anx∗ such thatφ(x∗) = ψ. Moreover,

even ifx∗ exists, it may not be unique. In order to circumvent

this difficulty, one seeks an approximate solution, i.e.,x∗

whose mapφ(x∗) is as close as possible toψ.

Consider a patternψ in the feature spaceH, obtained by

any kernel-based machine, e.g., a principal axe or a denoised

pattern obtained from kernel-PCA. By virtue of the Theorem 1,

letψ =
∑n

i=1 αi φ(xi). The pre-image problem consists of the

following optimization problem:

x∗ = argmin
x∈X

∥

∥

∥

n
∑

i=1

αi φ(xi)− φ(x)
∥

∥

∥

2

H

. (10)

Equivalently, from the kernel trick,x∗ minimizes the objective

function

Ξ(x) = κ(x,x)− 2

n
∑

i=1

αi κ(x,xi), (11)

where the term independent ofx has been dropped.

As opposed to this functional formalism, one may also

adopt a vector-wise representation, with elements in the rkHs

given by their coordinates with respect to an orthogonal

basis. Taking for instance the basis defined by the kernel-

PCA, as given in (4), eachψ ∈ H is represented vector-

wise with [〈ψ, ψ1〉 〈ψ, ψ2〉 · · · 〈ψ, ψk〉]
⊤, thus defining a

k-dimensional representation. In such a case, the Euclidean

distance between the latter and the one obtained from the

image of x∗ is minimized. This is essentially a classical

dimensionality reduction problem, connecting the pre-image

problem to the historical evolution of dimensionality reduction

techniques. This is emphasized next, providing a survey on a

large variety of methods.

A. The exact pre-image, when it exists

Suppose for now that there exists an exact pre-image ofψ,

i.e., x∗ such thatφ(x∗) = ψ, then the optimization problem

in (10) results into that pre-image. Furthermore, the pre-

image can be easily computed when the kernel is an invertible

function of〈xi,xj〉, such as some projective kernels including

the polynomial kernel with odd degree and the sigmoid kernel

(see Table I). Leth : IR → IR defines the inverse function such

that h(κ(xi,xj)) = 〈xi,xj〉. Then, given any orthonormal

basis in the input space{e1, e2, . . . , eN}, every elementx ∈

X can be written as

x =
N
∑

j=1

〈ej ,x〉 ej =
N
∑

j=1

h
(

κ(ej ,x)
)

ej .

As a consequence, the exact pre-imagex∗ of some pattern

ψ =
∑n

i=1 αi φ(xi), namelyφ(x∗) = ψ, can be expanded as

x∗ =

N
∑

j=1

h
(

n
∑

i=1

αi κ(ej ,xi)
)

ej .

Likewise, when the kernel is an invertible function of the

distance, such as radial kernels, a similar expression can

be derived by using the polarization identity4 〈x∗, ej〉 =

‖x∗ + ej‖
2 − ‖x∗ − ej‖

2 [22].

Clearly, such a simple derivation for the pre-image is

only valid under the crucial assumption that the pre-image
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x∗ exists. Unfortunately, for a large class of kernels, there

are no exact pre-images. Rather than seeking the exact pre-

image, we consider an approximate pre-image by solving the

optimization problem in (10). In what follows, we present

several strategies for solving this problem. We first review

techniques based on classical optimization schemes. We then

present learning-based techniques, incorporating additional

prior information.

B. Gradient descent techniques

Gradient descent is one of the simplest optimization tech-

niques. It requires computing the gradient of the objective

function (11), denoted∇xΞ(x
∗). In its simplest form, the

current guessx∗
t is updated intox∗

t+1 by stepping into the

direction opposite to the gradient, with

x∗
t+1 = x∗

t − ηt∇xJ(x
∗
t )

whereηt is a step size parameter, often optimized using a line-

search procedure. As an alternative to the gradient descent,

one may use more sophisticated techniques, such as Newton’s

method. Unfortunately, the objective function is inherently

nonlinear and clearly non-convex. Thus, a gradient descent

algorithm must be run many times with several different

starting values, in hope that a feasible solution will be amongst

the local minima obtained over the runs.

C. Fixed-point iteration method

The structure of kernel functions provides useful insights

to derive more appropriate optimization techniques, beyond

classical gradient descent. More precisely, the gradient of

expression (11) has a closed-form expression for most kernels.

By setting this expression to zero, this greatly simplifies

the optimization scheme, resulting into a fixed-point iterative

technique. Taking for instance the Gaussian kernel [7], the

objective function in (11) becomes

−2

n
∑

i=1

αi exp(−‖x− xi‖
2/2σ2),

with its gradient

∇xΞ(x) = −
2

σ2

n
∑

i=1

αi exp(−‖x− xi‖
2/2σ2)

(

x− xi
)

.

We get the pre-image by setting this gradient to zero, which

results into the fixed-point iterative expression

x∗
t+1 =

∑n

i=1 αi κ(x
∗
t ,xi) xi

∑n

i=1 αi κ(x
∗
t ,xi)

,

with κ(x∗
t ,xi) = exp(−‖x∗

t−xi‖
2/2σ2). Similar expressions

can be derived for most kernels, such as the polynomial kernel

of degreep [23] with

x∗
t+1 =

n
∑

i=1

αi

(

〈x∗
t ,xi〉+ c

〈x∗
t ,x

∗
t 〉+ c

)p−1

xi.

Unfortunately, the fixed-point iterative technique still suffers

from local minima and tends to be unstable. The numerical

instability occurs especially when the value of the denominator

decreases to zero. To prevent this situation, a regularized

solution can be easily formulated, as studied in [24].

An interesting fact about the fixed-point iterative method is

that the resulting pre-image lies in the span of the available

data, taking the formx∗ =
∑

i βi xi for some coefficients

β1, β2, . . . , βn to be determined. Thus, the search space is

controlled, as opposed to gradient descent techniques that

explore the entire space. We further exploit information from

available training data, and their mapped counterparts, as

discussed next.

D. Learning the pre-image map

To find the pre-image map, a learning machine is con-

structed with training elements from the feature space and esti-

mated values in the input space, as follows: we seek to estimate

a functionΓ∗ with the property thatΓ∗(φ(xi)) = xi, for i =

1, 2, . . . , n. Then, ideally,Γ∗(ψ) should givex∗, the pre-image

of ψ. In order to make the problem computationally tractable,

two issues are considered in [25], [26]. First, the functionis

defined on a vector space. This can be done by representing

vector-wise anyψ ∈ H with [〈ψ, ψ1〉 〈ψ, ψ2〉 · · · 〈ψ, ψk〉]
⊤,

using an orthogonal basis obtained from kernel-PCA. Second,

the pre-image mapΓ∗ is decomposed intodim(X ) functions

to estimate each component ofx∗. From these considerations,

we seek functionsΓ∗
1,Γ

∗
2, . . . ,Γ

∗

dim(X ), with Γ∗
m : IRk → IR.

Each of these functions is obtained by solving the optimization

problem

Γ∗
m = argmin

Γ

n
∑

i=1

f
(

[xi]m,Γ(ψ)
)

+ η g(‖Γ‖2)

wheref(·, ·) is some loss function, and[ · ]m denotes them-th

component operator. By taking for instance the distance as a

loss function, we get

Γ∗
m = argmin

Γ

1

n

n
∑

i=1

∣

∣[xi]m − Γ(ψ)
∣

∣

2
+ η ‖Γ‖2.

This optimization problem can be easily solved by a matrix

inversion scheme, in analogy to the ridge regression problem

(8) and its linear system (9). This learning approach is fur-

ther investigated in the literature, incorporating neighborhood
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information [27] and regularization with a penalized learning

[28]. All these methods are based on a set of available data

in the input space and the associated images in the rkHs.

The method discussed next carries this concept further, by

exploring pairwise distances in both spaces.

E. MDS-based technique

As illustrated in the above pre-image learning approach,

the pre-image map seeks data in the input space based on

their associated images in the rkHs. Essentially, this is a low-

dimensional embedding ofobjects from a high-dimensional

space. This problem has received a lot of attention in mul-

tivariate statistics, under the framework of Multidimensional

Scaling (MDS) [29]. MDS techniques mainly embed data in

a low-dimensional space, by preserving pairwise distances.

This approach has been applied with success to solve the

pre-image problem [23]. Consider each distance in the rkHs

δi = ‖ψ − φ(xi)‖H, and its counterpart in the input space

‖x∗ − xi‖. Ideally, these distances are preserved, namely

‖x∗ − xi‖
2 = ‖ψ − φ(xi)‖

2
H, (12)

for everyi = 1, 2, . . . , n. It is easy to verify that if there exists

a i such thatψ = φ(xi), then we get the pre-imagex∗ = xi.

One way to solve this problem is to minimize the mean

square error between these distances, with

x∗ = argmin
x

n
∑

i=1

∣

∣‖x− xi‖
2 − ‖ψ − φ(xi)‖

2
H

∣

∣

2
.

To solve this optimization problem, a fixed-point iteration

method is proposed by setting the gradient of the above

expression to zero, resulting into the expression

x∗ =

∑n

i=1

(

‖x∗ − xi‖
2 − δ2i

)

xi
∑n

i=1 (‖x
∗ − xi‖2 − δ2i )

.

Another approach to solve this problem is to consider

separately the identities (12), resulting inton equations

2〈x∗,xi〉 = 〈x∗,x∗〉+ 〈xi,xi〉 − δ2i ,

for i = 1, 2, . . . , n. In these expressions, the unknown appears

also on the right-hand side, with〈x∗,x∗〉. This unknown

quantity can be easily identified in the case of centered data,

since taking the average of both sides results into

〈x∗,x∗〉 =
1

n

n
∑

i=1

(

δ2i − 〈xi,xi〉
)

Let ǫ be the vector having all its entries equal to1
n

∑n

i=1(δ
2
i −

〈xi,xi〉) then, in matrix form, we have

2X⊤x∗ = diag
(

X⊤X
)

−
[

δ21 δ
2
2 · · · δ2n

]⊤
+ ǫ,

where X = [x1 x2 · · · xn] and diag(·) is the diagonal

operator with diag(X⊤X) the column vector with entries

〈xi,xi〉. The unknown pre-image is obtained using the least

squares solution, namely

x∗ = 1
2 (XX⊤)−1X

(

diag(X⊤X)− [δ21 δ
2
2 · · · δ2n]

⊤

)

,

where the term(XX⊤)−1Xǫ goes to zero thanks to the

assumption of centered data.

To keep this technique tractable in practice, only a certain

neighborhood is considered in the pre-image estimation, in

the same spirit as the locally linear embedding scheme in

dimensionality reduction [30]. This approach opened the door

to a range of other techniques, borrowed from dimensionality

reduction and manifold learning literature [31].

F. Conformal map approach

Besides the distance preserving method of MDS, one may

also propose a pre-image method by preserving inner product

measures. Using such a strategy, the angular measure is

also preserved, sincex⊤
i xj/‖xi‖‖xj‖ defines the cosine of

the angle betweenxi and xj in the Euclidean input space.

For this reason, it is called the conformal map approach.

A recent technique to solve the pre-image problem based

on the conformal map has been presented in [32]. To this

end, a coordinate system in the rkHs is constructed with an

isometry with respect to the input space. We emphasize the

fact that the model is not coupled with any constraint on the

coordinate functions, as opposed to the orthogonality between

the functions resulting from the kernel-PCA.

By virtue of Theorem 1, each of then coordinate functions

can be written as a linear expansion of the available images,

namely Ψℓ =
∑n

i=1 θℓ,i φ(xi), for ℓ = 1, 2, . . . , n, with

unknown weights to be determined, rearranged in a matrix

Θ. Therefore, the coordinates of any element of the rkHs can

be obtained by a projection onto these coordinate functions,

thus anyφ(xi) can be represented with then coordinates in

Ψxi
= [〈Ψ1, φ(xi)〉 〈Ψ2, φ(xi)〉 · · · 〈Ψk, φ(xi)〉]

⊤. Ideally,

the inner products are preserved in both this coordinate system

and the Euclidean input space, namely

Ψ
⊤

xi
Ψxj

= x⊤
i xj , (13)

for all i, j = 1, 2, . . . , n. This can be solved by minimizing

the fitness error over all pairs,

min
Ψ1,...,Ψn

n
∑

i,j=1

∣

∣x⊤
i xj −Ψ

⊤

xi
Ψxj

∣

∣

2
+ η

n
∑

ℓ=1

‖Ψℓ‖
2
H,

where the second term incorporates regularization. This can

be written in matrix form as

min
Θ

1

2
‖X⊤X −KΘ

⊤
ΘK‖2F + η tr(Θ⊤

ΘK),
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x∗

δ1δ2
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X
H

?

φ(·)

Fig. 3. Schematic illustration of the MDS-based technique where the pre-image is identified from pairwise distances in both input and feature spaces.

where tr(·) denotes the trace of a matrix and‖ · ‖F the Frobe-

nius norm, i.e., the root of sum of squared (absolute) values

of all its elements, or equivalently‖M‖2F = tr(M⊤M ). By

taking the derivative of this expression with respect toΘ
⊤
Θ,

one obtains

Θ
⊤
Θ = K−1

(

X⊤X − ηK−1
)

K−1. (14)

Now we are in a position to determine the pre-image of

someψ =
∑n

i=1 αi φ(xi). Its coordinates associated to the

system of coordinate functionsΨ1,Ψ2, . . . ,Ψn are given by

〈ψ,Ψℓ〉H =

n
∑

i,j=1

θℓ,i αj κ(xi,xj),

for ℓ = 1, 2, . . . , n. By preserving the inner products in

both spaces, ideally the model in (13) can be extended toψ,

resulting into

X⊤x∗ = KΘ
⊤
ΘKα.

By combining this expression with (14), we get the simplified

expressionX⊤x∗ = (X⊤X−ηK−1)α, whose least squares

solution is

x∗ = (XX⊤)−1X(X⊤X − ηK−1)α.

It is worth noting that this expression is independent of the

kernel type under investigation.

Furthermore, this technique can be easily extended to iden-

tify the pre-images of a set of elements in the rkHs, since the

term between parentheses needs to be computed only once. In

fact, this is a matrix completion scheme, as the one studied in

[33]. This corresponds to completing an inner-product matrix

based on another Gram matrix, here the matrix of kernel

values.

IV. SCOPE OF APPLICATION OF THE PRE-IMAGE PROBLEM

In this section, we present some application examples that

involve solving the pre-image problem. Our first experiments

are with kernel-PCA on toy data, and are mainly intended

to illustrated the pre-image problem. Then, we provide a

comparative study of several methods presented in this paper,

on an image denoising problem. Finally, we show how the pre-

image can be required in other applications, beyond kernel-

PCA. To this end, we consider a problem of auto-localization

of sensors in wireless sensor networks.

A. Some applications of kernel-PCA with pre-image

1. Feature extraction

A first illustration considered here is the use of kernel-PCA

on a synthetic data to provide a visual illustration of PCA vs.

kernel-PCA for feature extraction. The data distribution takes

the form of a ring in 2D, with an inner diameter of2 and an

outer diameter of3. Within this region,n = 600 training data

were generated, as illustrated in Figure 4 with blue dots. In

order to extract the most relevant feature, two methods were

used: on the one hand the conventional PCA and on the other

hand kernel-PCA with a pre-image step. The PCA technique

provided linear axes by solving the eigenvector problem, and

thus did not capture the circular shape of the data. This is

illustrated by projecting data onto the first principal axis, given
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Fig. 4. Denoising data distributed on a ring, using classical PCA (left) and kernel-PCA with pre-image (right). The extractedfeature is linear in the first
case, and circular in the second.

by red dots in Figure 4 (left). The kernel-PCA was applied

using a Gaussian kernel with bandwidthσ = 2, the principal

axes being defined by a sum ofn Gaussian functions in an

infinite dimensional feature space. A pre-image method was

required to derive the axes, or representations of these axes,

within the input space. As shown in Figure 4 (right), this

technique captured the nonlinear feature in the original space.

As described at the beginning of this paper, when we

introduced the pre-image problem with the Gaussian kernel,

each data is mapped into a Gaussianbump centered around it.

By taking the sum of theses Gaussians, with some optimized

weighting coefficients, we get the principal distribution whose

mean, if it exists, provides the pre-image. It is worth noting

that the definition of a mean only exists and makes sense for

Gaussian-like curves, and not for a sum-of-Gaussians centered

at different points. A schematic illustration of the pre-image

problem is given in Figure 5, taking only a (one-directional)

radial cut in the ring-distributed data. The data obtained by

solving the pre-image problem can be interpreted as the center

of the distribution Gaussian which best approximates the sum-

of-Gaussians.

In this application, the fixed-point iterative technique was

used. Next, we give a comparative study of several techniques

given in this paper, by considering an image denoising prob-

lem.

2. Image denoising

In this section, we illustrate the results obtained in a problem

of real image denoising, using three techniques: the fixed-

Fig. 5. Schematic illustration of the pre-image problem with the Gaussian
kernel, where the profile corresponds to a radial cut in the ring-distributed
data. From the sum-of-Gaussians (red curve), the pre-imagecorresponds to
the mean value of the distribution (red dot).

point iterative method, the MDS-based technique, and the

conformal map approach. The images were consisting of the

MINST database of handwritten digits [34], corresponding to

handwritten digits, from “0” to “9”, in (almost) binary28-

by-28 pixels. From a machine learning point of view, each

image can be represented as apoint in a 28× 28 dimensional



10 IEEE SPM, SPECIAL ISSUE ON DIMENSIONALITY REDUCTION VIA SUBSPACE AND MANIFOLD LEARNING

10 digits corrupted by noise

Fixed-point iterative method

MDS-based method

Conformal method

Fig. 6. Application to handwritten digit denoising with kernel-PCA, using several pre-image methods presented in this paper.

space. The original images were corrupted by adding a zero-

mean white Gaussian noise with variance0.2. In the training

stage, a set of1 000 images,100 of each digit, were used

to train the kernel-PCA, retaining only100 leading principal

axes. We used the Gaussian kernel for the three algorithms,

with bandwidth set toσ = 105.

To illustrate the ability of this method for image denoising,

another set of10 images, one for each digit, was considered

under the same noise conditions. These images are illustrated

in Figure 6 (first row), with results obtained with the fixed-

point iterative (second row), the MDS-based (third row) and

the conformal (fourth row) methods. For such applications,the

fixed-point iterative algorithm was found to be inappropriate,

even with a large number of iterations (here10 000 iterations

were used). To take advantage of prior knowledge, the same

training dataset was used for learning the reverse map. Real-

istic results were obtained using the MDS-based method. It is

obvious that the conformal algorithm achieved better denoised

results. For this simulation, the regularization parameter was

set toη = 10−9.

In an attempt to provide a measure of computational

requirements, we considered the (average) total CPU time

of each algorithm. These algorithms were implemented on

a Matlab running on a MacBook Pro Duo Core, to offer

a comparative study. With10 000 iterations, the fixed-point

iterative algorithm required a total CPU time of up to 1

hour. The MDS-based and the conformal algorithms required

5 minutes and1.5 seconds, respectively.

B. Auto-localization in wireless sensor networks

With recent technological advances in both electronics and

wireless communications, low-power and low-cost tiny sensors

have been developed for monitoring physical phenomena

and tracking applications. Densely deployed in the inspected

environment with efficiently designed distributed algorithms,

wireless ad-hoc networks seem to offer several opportunities.

They were successfully employed in many situations, ranging

from military applications such as battleground supervision, to

civilian applications such as habitat monitoring and healthcare

surveillance (see [35], [36] and references therein). While

these sensors are often randomly deployed, e.g., for monitoring

inhospitable habitats and disaster areas, information captured

by each sensor remains obsolete as long as it stays unaware

of its location. Implementing a self-localization device,such

as a GPS receiver, at each sensor device may be too expensive

and too power hungry for the desired application with battery-

powered devices. As a consequence, only a small fraction of

the sensors may be location aware, the so-called anchors or

beacons. The other sensors have to estimate their locationsby

exchanging some information with its neighbors.

For this purpose, each sensor determines a ranging (dis-

tance) with other sensors, from inter-sensor measurements



HONEINE AND RICHARD: THE PRE-IMAGE PROBLEM IN KERNEL-BASEDMACHINE LEARNING 11

such as the received signal strength indication (RSSI), the

connectivity, the hop count, the time difference of arrival, ...

Most methods used for auto-localization in sensor networks

are based on either MDS techniques or semidefinite program-

ming (for a survey, see [37], [38]), identifying a function

that links the ranging between sensors to their locations.

However, if the data are not inter-sensor distances or are

linked to coordinates by an unknown nonlinear function, e.g.,

using the RSSI measurements or the estimated covariance

sensor data [39], linear techniques such as MDS and PCA fail

to accurately estimate the locations. Once again, the kernel

machines provide an elegant way to overcome this drawback.

Here, we describe the method proposed in [40]. The main

idea can be described in three stages. In the first stage, we

construct the reproducing kernel and its associated rkHs which

best describes the anchor pairwise similarities. In the second

stage, a nonlinear manifold is designed from similarities

between anchor-sensors measurements, by applying a kernel-

PCA technique. The final stage consists of estimating the

coordinates of non-anchor sensors by applying a pre-image

technique on their projections onto the manifold. Next, we

describe these three stages, before presenting experimental

results.

Consider a network ofN sensor nodes, withn location-

aware anchors andN −n sensors of unknown location, living

in a p-dimensional space, e.g.,p = 2 for localization in a

plane. Letxi ∈ IRp be the coordinates of thei-th sensor,

rearranged such that indicesi = 1, 2, . . . , n correspond to

anchors. LetK̃(i, j) be the inter-sensor similarity between

sensorsi andj, such as the RSSI.

Kernel selection from inter-anchor similarities

As a model of the similarity measurements, the appropriate

reproducing kernel should be chosen, and tuned up, which

allows a physical meaning of the results obtained from the

kernel-PCA (next stage). The alignment criterion [41] provides

a measure of similarity between a reproducing kernel and a

target function, e.g., between a Gaussian kernel and the RSSI

measurements. Maximizing the alignmentA(K, K̃) provides

the optimal reproducing kernel, faithful to the inter-anchor

measurements, where

A(K, K̃) =
〈K, K̃〉F

√

〈K,K〉F 〈K̃, K̃〉F

,

with 〈·, ·〉F is the Frobenius inner product between two matri-

ces. Taking for instance the Gaussian kernel, the optimization

problem is reduced to finding the optimal bandwidth. In

practice, this optimization problem is solved at each anchor,

using only information from its neighborhood.
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Fig. 7. Profile of the spherical model, as a function of the distance.
The cut-off distance is set tod = 60.

Kernel-PCA upon anchors

After identifying the reproducing kernel adapted to the

measurements, a kernel-PCA approach is applied to provide

the most relevant subspace of the associated rkHs. Classical

kernel-PCA is computed by a diagonalization scheme, which

may be computational expensive for in-network processing.

An alternative approach can be done using an iterative scheme,

such as thekernel-Hebbian algorithm [42] (we refer the reader

to [40] for its implementation in wireless sensor networks).

Pre-image for location estimation

For each sensor, we represent its image in the rkHs as-

sociated to the kernel maximizing the alignment criterion.

The image is projected onto the manifold obtained using

kernel-PCA with anchor pairwise similarities. The problem

of estimating the coordinates from that representation is the

pre-image problem.

Experimental results

A first batch of experiments was carried out on simulated

measurements. For this purpose, we considered a network of

sensors measuring some physical phenomena, e.g., temper-

ature, atmospheric pressure or luminance. In a static field,

we assumed that measurements were jointly generated from

a normal distribution, with decreasing correlations between

measurements as a function of the distance between sensors.

This information was used as a local similarity measure

between sensors [39]. More precisely, we considered the

spherical model, commonly used in environmental and geo-

logical sciences [43], and defined by a covariance of the form
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Fig. 8. Estimated locations of80 sensors (∗) based on20 anchors
of known positions (�), with error to real position represented by a
line (−).

ζ(‖xi − xj‖) with

ζ(u) =

{

1− 3
2du+ 1

2d3u
3 for 0 ≤ u ≤ d;

0 for d < u,

where d denotes the cut-off distance, and fixed tod = 60

in our experiments. The profile of the spherical model is

illustrated in Figure 7. The experiments consisted of 100

sensors, from which20 were anchors with known locations,

randomly spread over a100-by-100 square region. For each

sensor,200 measurements were collected, and the Gaussian

kernel was considered. Figure 8 illustrates the localization

results obtained with this method.

In a second experiment, real measurements of RSSI were

collected from an indoor experiment, at the Motorola fa-

cility in Plantation, FL. The environment is a14-by-13

meters office area, partitioned by cubicle walls (height =

1.8 meter). The network consisted of40 unknown-location

sensors, and4 anchors near the corners. The experimen-

tal settings are described more in detail in [44] (see also

http://www.eecs.umich.edu/∼hero/localize/). For each sensor

i, we collected the RSSI associated to it in a44-dimensional

vector, denoted byui. The inter-sensor similarity between

sensors is given by the matrix̃K, defined between sensor

i and sensorj by

K̃(i, j) = exp(−‖ui − uj‖
2/200).

The Gaussian kernel was considered, with its bandwidth

optimized by maximizing the alignment. The proposed method

gives a root-mean-square location error, over the 40 sensors,

of 2.13 meters. This should be compared to the maximum-

likelihood estimator studied in [44] (that turned out to be

biased), having a root-mean-square location error of2.18

meters.

V. FINAL REMARKS

This article presented the pre-image problem in machine

learning, providing an overview of the state-of-the-art methods

and approaches for solving such a problem. Our aim was to

show how this problem is intimately related to dimensionality

reduction issues, borrowing and enhancing ideas derived from

dimensionality reduction and manifold learning. Throughout

this paper, we studied this problem for kernel-PCA, and

provided a comparative study of several methods for image

denoising. We extended the range of application of the pre-

image problem to another context, sensor auto-localization in

wireless sensor networks.

By interpreting in the original input space the processing

performed in the feature space, this strategy opens the way to

a range of diverse signal processing problems. These problems

are nonlinear kernel-based formulations of classical signal

processing methods, including the independent component

analysis [45] and the Kalman filter [46]. Another area of

application is the pre-image problem on structured spaces,

including biological sequence analysis in bioinformatics[47]

and string analysis in natural language [48]. In the latter,the

authors derived a pre-image solution for a string kernel, using

a graph-theoretical formulation. All these promising areas of

application of the pre-image problem open an avenue for future

work.

REFERENCES

[1] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear component analysis
as a kernel eigenvalue problem,”Neural Computation, vol. 10, no. 5,
pp. 1299–1319, 1998.

[2] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.
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“Kernel PCA and de-noising in feature spaces,” inProc. of the 1998
conference on advances in neural information processing systems II.
Cambridge, MA, USA: MIT Press, 1999, pp. 536–542.

[8] G. Camps-Valls, J. L. Rojo-Alvarez, and M.-R. M. (Editors), Kernel
Methods in Bioengineering, Signal And Image Processing. Hershey,
PA, USA: IGI Publishing, 2007.



HONEINE AND RICHARD: THE PRE-IMAGE PROBLEM IN KERNEL-BASEDMACHINE LEARNING 13

[9] J. Shawe-Taylor and N. Cristianini,Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[10] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical founda-
tions of the potential function method in pattern recognition learning,”
Automation and Remote Control, vol. 25, pp. 821–837, 1964.

[11] J. Mercer, “Functions of positive and negative type andtheir connec-
tion with the theory of integral equations,”Royal Society of London
Philosophical Transactions Series A, vol. 209, pp. 415–446, 1909.

[12] N. Aronszajn, “Theory of reproducing kernels,”Trans. of the American
Mathematical Society, vol. 68, pp. 337–404, 1950.

[13] D. Alpay, Ed.,Reproducing kernel spaces and applications, ser. Operator
Theory: Advances and Applications. Birkhäuser, 2003, vol. 143.
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[46] L. Ralaivola and F. D’Alché-Buc, “Time series filtering, smoothing and
learning using the kernel Kalman filter,” inProc. International Joint
Conference on Neural Networks, vol. 3, 2005, pp. 1449–1454.

[47] S. Sonnenburg, A. Zien, P. Philips, and G. Ratsch, “Poims: positional
oligomer importance matrices–understanding support vector machine-
based signal detectors,”Bioinformatics, vol. 24, no. 13, pp. i6–14, July
2008.

[48] C. Cortes, M. Mohri, and J. Weston, “A general regression technique
for learning transductions,” inProc. of the 22nd international conference
on machine learning (ICML). New York, NY, USA: ACM, 2005, pp.
153–160.

http://yann.lecun.com/exdb/mnist/

	An introductory example: kernel PCA for denoising
	Linear denoising with PCA
	Kernel-PCA for nonlinear denoising

	Kernel-based machine learning
	Reproducing kernels and rkHs
	The representer theorem

	Solving the pre-image problem
	The exact pre-image, when it exists
	Gradient descent techniques
	Fixed-point iteration method
	Learning the pre-image map
	MDS-based technique
	Conformal map approach

	Scope of application of the pre-image problem
	Some applications of kernel-PCA with pre-image
	Auto-localization in wireless sensor networks

	Final remarks
	References

