
HAL Id: hal-01965581
https://hal.science/hal-01965581v1

Submitted on 4 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online kernel principal component analysis: a
reduced-order model

Paul Honeine

To cite this version:
Paul Honeine. Online kernel principal component analysis: a reduced-order model. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (9), pp.1814 - 1826.
�10.1109/TPAMI.2011.270�. �hal-01965581�

https://hal.science/hal-01965581v1
https://hal.archives-ouvertes.fr

1

Online kernel principal component analysis:
a reduced-order model

Paul Honeine, Member, IEEE

Abstract—Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the mostly used data analysis

and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-

PCA. To this end, we examine a kernel-based version of Oja’s rule, initially put forward to extract a linear principal axe. As with most

kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to

control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions

with the reduced-order model. We derive a recursive algorithm to discover the first principal axe, and extend it to multiple axes.

Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic dataset and on images of handwritten

digits, with comparison to classical kernel-PCA and iterative kernel-PCA.

Index Terms—Principal component analysis, online algorithm, machine learning, reproducing kernel, Oja’s rule, recursive algorithm.

✦

1 INTRODUCTION

Principal component analysis (PCA) is a powerful tool
for data analysis and dimensionality reduction [1]. It
consists principally in determining a subspace that ex-
plains most of the variance of the data. By projecting
data into this subspace, one can operate a dimension-
ality reduction procedure and extract the structure of
the data. This is classically achieved by diagonalizing
the covariance matrix of the data, as its eigenvectors
associated to the largest eigenvalues correspond to the
principal axes defining this subspace. With a compu-
tational complexity of order three with the size of the
dataset, this may become cumbersome for largescale
datasets, often required in order to retrieve principal
axes of complex data distributions in high dimensional
spaces. To address this drawback, different incremental
techniques have been proposed, such as [2], [3], or more
recently [4] (and references therein), however still with
high computational cost. Adapted for online learning,
artificial neural network methods gained popularity for
addressing this problem, propelled by the work of Oja
for the first principal axe determination [5], [6] and its
extension by Sanger for multiple axes [7], [8]; the latter
is often known as the generalized Hebbian learning.

Initiated by the pioneering work of Aronszajn [9], the
theory behind reproducing kernel Hilbert space (RKHS)
provided in the last decade new advances in machine
learning. Moreover, it offers an elegant framework to
derive nonlinear techniques based on conventional linear
ones, as long as all operations can be expressed only in
terms of inner products of the data. This is initially mo-
tivated by the fundamental work of Vapnik on support
vector machines (SVM) for regression and classification

• M. Honeine is with the Institut Charles Delaunay (UMR CNRS 6279),
Laboratoire de Modélisation et Sûreté des Systèmes, Université de Tech-
nologie de Troyes, 10000 Troyes, France.

[10], even though the concept of kernel trick was first pub-
lished by Aizerman et al. in [11]. Developed in the last
decade, an armada of techniques takes advantage of this
concept, such as kernel Fisher discriminant analysis [12],
kernel partial least squares regression [13], kernel basis
pursuit [14], to name just a few (see for instance [15] for a
survey of kernel methods for pattern recognition). Based
on this concept, Schölkopf et al. [16] propose a nonlinear
counterpart of PCA, the kernel-PCA. More recently, an
iterative technique for kernel-PCA is elaborated by Kim
et al. in [17], [18] by kernelizing Oja’s and Sanger’s
rules. This is known as the kernel Hebbian algorithm
for iterative kernel-PCA. Still, the number of available
observations should be fixed in advance, and they are
assumed to be known in advance.

Traditional kernel methods are essentially batch opti-
mization problems, with all training data available in
advance. Such techniques are unsuitable for largescale
datasets, and thus unadapted for real-time applications.
To address these drawbacks, online learning in kernel
machines attracted a lot of interest in the last couple of
years. Online learning refers to a paradigm where, at
each time instant, a new observation is available, and
the model needs to be updated according to it without
having to re-explore all previously available data. Most
of the work in that direction has been focused on classifi-
cation and regression problems [19], [20], [21], [22], [23];
only a few attempts have been made for unsupervised
learning. While Oja’s classical rule is initially proposed
for online PCA, its kernelized counterpart is not adapted
such task, since it operates iteratively on batch datasets,
while their number should be finite and fixed in advance
[17]. Unfortunately, this drawback is expected in most
kernel machines, since the order of the model for the
optimal solution corresponds to the number of training
data. This is a consequence of the well-known Repre-
senter Theorem [24], [25]. Its application to the kernel-

2

PCA results in the fact that each principal axe can be
expressed as a linear combination of the kernel functions
associated to the available training data. Therefore, the
number of available observations determines the model
order, i.e., number of elements in the linear combination.

In order to overcome this problem and derive an on-
line kernel-PCA algorithm, we propose in this paper to
control online the order of the model. Since the principal
axes lie within the span by the kernel functions of the
training data in the RKHS, we suggest to restrain this
span to some selected kernel functions. Upon arrival
of a newly available observation, a selection criterion
determines if the corresponding kernel function either
can be discarded from the model, or should be added
to it. In the latter case, this operation will increase the
model order, thus augmenting the spread in the RKHS.
We shall henceforth refer to the selection criterion as
the order control criterion. We examine a distance-based
selection criterion often considered for sparse regression
[26], [27]. Underlying this strategy, it turns out that
the reduced-order model can efficiently approximate
the optimal principal axes with optimality in the sense
of solving kernel-PCA over the whole dataset. To this
end, we study the approximation error and derive an
upper bound which is inversely proportional to the
corresponding eigenvalue, which means that, one can
approximate with small errors principal axes associated
to high eigenvalues, i.e., most relevant principal axes.
Experimental results demonstrate the relevance of the
theoretical study.

The remainder of this paper is organized as follows.
We begin in Section 2 by reviewing briefly Oja’s rule
for PCA analysis, and show its inadaptability for online
kernel-PCA learning. Section 3 is devoted to studying
the order control criterion, as we study some properties
of the resulting model, including approximation errors.
In Section 4, we derive the online kernel-PCA algorithm,
and study in Section 5 some well-known issues such
as the rate of convergence, centering/noncentering the
data and the the denoising scheme with reduced-order
models. We illustrate the relevance of the proposed
method with experimentations on both synthetic and
real datasets in Section 6. But before, we prepare the
grounds by giving some connections relating PCA liter-
ature with our work.

Related (and unrelated) work

The proposed method is an online algorithm for kernel-
PCA. In its traditional linear version, PCA can be solved
with offline batch algorithms [1], as well as online learn-
ing algorithms with Oja’s [5] and Sanger’s [7] rules (also
known as generalized Hebbian algorithms or GHA).
Kernel-PCA [16] and the kernel Hebbian algorithms [18]
are the nonlinear extensions of these algorithms, by em-
bedding data into a high dimensional feature space. As
with kernel machines, they are build on models, linear
in the feature space, with an order equal to the number

TABLE 1
Comparison between several PCA algorithms

Model Setting

Principal component analysis [1] linear batch
Kernel-PCA (kernel machines) [16] nonlinear batch
Oja’s [5] and Sanger’s [7] rules (GHA) linear online
Iterative kernel-PCA (KHA) [18] nonlinear iterative
Online kernel-PCA [this paper] nonlinear online

of available data. Therefore, these kernel machines are
in essence offline algorithms, in batch setting for kernel-
PCA and iterative mode for kernel Hebbian algorithm
(kHA) for iterative kernel-PCA. The number of available
data should be fixed in advance, and they are assumed
to be known in advance. Moreover, to converge to the
PCA solution, the iterative kernel-PCA requires many
passes through the entire dataset.

In this paper, we focus on the online learning scenario,
which consists of a potentially infinite stream of observa-
tions, presented one at a time (a single pass is available).
Such online learning algorithm has space requirements
that are independent on the number of data, and we do
not need to store the entire training dataset in memory.
Table 1 gives connections and differences with other
PCA techniques.

The proposed approach can be regarded as jointly a
sparsification technique followed by a recursive updat-
ing scheme, both adapted for online processing. Thus
it is related to sparse techniques for kernel-PCA (be-
yond naive random selection), but often inconvenient
for online learning. For instance, sparsification technique
based on [26] are studied in [28] to derive a greedy
spectral embedding algorithm. However, it requires a
matrix inversion and an eigen-decomposition at each
iteration, rendering it computational expensive and thus
untractable for online learning. The sparse kernel-PCA
algorithm proposed in [29] approximates the covariance
matrix from a (weighted) subset of available data. The
subset is determined by a maximum likelihood criterion,
based on a probabilistic formulation of PCA. Such ap-
proach suffers from many drawbacks, mainly for relying
on a probabilistic model for the data. Moreover, an
online version of this technique seems to be impractical.
This is also the case for ℓ1-norm penalization with high
computational cost. To circumvent this difficulty, the
authors of [30], [31] derive a projection pursuit scheme
to maximize a contrast function, rather than the variance
and thereby dropping the concept of principal compo-
nents.

Before proceeding, an important issue needs to be clar-
ified. In classical PCA, one often discards some dimen-
sions of the data, in order to improve the interpretability
of the results. This is the essence of principal variables
selection [32]. In this spirit, a sparse PCA is derived
either by incorporating an ℓ1-norm penalization in the
classical formulation [33], or by solving a semidefinite
programming problem [34]. This is fundamentally differ-

3

ent from our approach (and the ones described above),
as we seek representatives that describe well the data
(samples), and not determining the redundant features
or proceeding in a feature selection purpose.

2 PCA AND OJA’S RULE

Let X ⊂ IRp be a vector space, with the conventional in-
ner product 〈xi ,xj〉 = x

⊤
i xj for any xi,xj ∈ X . The (or-

thogonal) projection of any x ∈ X onto some vector w ∈
X is given by the real-value y = 〈w ,x〉 = w⊤x and the
direction (or axe) defined by w. Conventional PCA seeks
the axe that captures most of the variance of the data.
This is obtained by solving the eigen-decomposition
problem Cw = λw, where C = 1

n

∑n

i=1 xix
⊤
i is the

covariance of the data (assumed centered). The optimal
principal axe, denoted w∗, is given by the eigenvector
associated to the largest eigenvalue. Since C is a p-by-p
matrix, the computational complexity of such operation
is O(p3).

Consider a set of observations {x1,x2, . . . ,xt, . . .},
with xt available at time instant t. Oja proposes in [5] to
learn iteratively the first principal axe with the updating
rule

wt+1 = wt + ηt(xtyt − y2twt), (1)

where ηt is the stepsize parameter and yt = w⊤
t xt =

x⊤
t wt. By examining the incremental change in this ex-

pression, the term xtyt leads to the vector that maximizes
the projection, while the second term constrains its norm.
This learning rule converges to the first principal axe
w∗. To prove this, we observe that when wt converges
to some state w, we have xtyt = y2tw, or equivalently
xtx

⊤
t w = w⊤xtx

⊤
t ww. Averaging over the whole data,

we get the expression Cw = w⊤Cww. This is the well-
known eigen-decomposition problem of the covariance
matrix, with the eigenvalue w⊤Cw corresponding to the
squared output y that one wishes to maximize. Therefore
the resulting vector from (1) converges to the largest
eigenvector of C, namely w∗.

Now let us apply these techniques in an RKHS, lead-
ing to nonlinear PCA analysis. Let H be the RKHS
induced by the reproducing kernel κ(·, ·), and 〈· , ·〉H its
inner product. This means that for all functions ψ(·) ∈ H,
we have the evaluation property ψ(x) = 〈ψ(·), κ(x, ·)〉H
for any x ∈ X , leading to the reproducing property
〈κ(xi, ·), κ(xj , ·)〉H = κ(xi,xj). Examples of kernel func-
tions include

• the Gaussian kernel κ(xi,xj)=exp(−‖xi−xj‖
2/2σ2)

• the exponential kernel κ(xi,xj) = exp(−‖xi−xj‖/σ)
• and the quadratic kernel κ(xi,xj) = |〈xi,xj〉+ 1|2,

where σ is a positive parameter defining the kernel
bandwidth.

By representing each x of X by a kernel func-
tion κ(x, ·) in H, one can apply PCA techniques
in the latter space, to the n kernel functions,
κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·). As proved by Schölkopf et
al. [16], the principal axes lie into the span of of the

kernel functions associated to the available data. In other
words, these principal axes (or principal functions to be
more precise since we are working in a functional space,
RKHS) take the form

ψ(·) =
n
∑

k=1

αk κ(xk, ·), (2)

for n available observations x1,x2, . . . ,xn. Thus the
projection of κ(x, ·) onto ψ(·) is given by

ψ(x) = 〈ψ(·), κ(x, ·)〉H =

n
∑

k=1

αk κ(xk,x),

where we use both the evaluation and the reproducing
properties. Without getting into details1, the optimal co-
efficients α1, α2, . . . αn, for any arbitrary principal func-
tion, are obtained by diagonalizing the n-by-n so-called
Gram matrix K whose (i, j)-th entry is κ(xi,xj). These
coefficients are normalized such that

n
∑

k=1

α2
k =

1

nλr
, (3)

where λr is the corresponding eigenvalue of the matrix
C. The computational complexity to solve such eigen-
decomposition problem is O(n3), which can be reduced
to O(n2) with recursive techniques, however still un-
adapted for online learning.

In order to kernelize Oja’s rule, one wishes to apply
it to the kernel functions in the RKHS. By operating
the update rule (1) in H, the principal function at time
instant t is given by the expression

ψt+1(·) = ψt(·) + ηt (ytκ(xt, ·)− y2t ψt(·)), (4)

where yt = ψt(xt) is the value of the projection of κ(xt, ·)
onto ψt(·). This is the essence of the iterative approach
proposed by Kim et al. in [17], [18], where the model (2)
is considered, namely at instant t

ψt(·) =

n
∑

k=1

αk,t κ(xk, ·). (5)

By injecting this model in (4) and from yt = ψt(xt), we
get an update rule of the coefficients α1,t, α2,t, . . . , αn,t,
with

αt+1 = αt + ηt yt(βt − ytαt), (6)

where αt = [α1,t α2,t · · · αn,t]
⊤. In this expression, βt =

[0 0 · · · 0 1 0 · · · 0 0]⊤ is the sparse n-by-1 column vector
of zeros except for the (t mod n)-th entry which is set to
1. To achieve convergence, it is put forward in [17], [18]
that this operation needs to be repeated, up to 800 times,
over the entire available dataset, randomly permuted at
each sweep.

This algorithm clearly needs not to evaluate the Gram
matrix, and is therefore adapted for largescale training
datasets. However, as illustrated in the updating rule (6),

1. See Section 5.2 for a discussion on centering the data in the feature
space.

4

αt+1 and βt are vectors of n entries, n being the number
of observations. Therefore, the number of observations
must be known in advance, and of fixed size, leading
to an iterative technique unadapted for online learning,
i.e., infinite stream of data. This is due to the fact that
the model order corresponds to the number of available
data, namely n. To circumvent this drawback, one has
to control the order of the model, as we propose in the
following section.

3 SELECTION CRITERION FOR SUBSPACE

CONTROL

Reducing the model order is a very active research area
within the community of researchers in kernel machines
[35], as well as Gaussian processes [36] [37, Chapter 4],
since the underlying models of these methods have the
form (2) as proven by the well-known Representer Theo-
rem [25]. Thus, the computational cost of evaluating this
model (on a new observation) is linear with the number
of available training data. The popularity of SVM is in
part ascribed to cut down this burden, since the resulting
model is constituted of only a small fraction of the
training data, the support vectors. While this still remains
expensive for largescale datasets compared to neural
networks, bringing down additionally the model order
may often be required. Many methods are elaborated for
this purpose, following the work initiated by Burges [38]
as well as the wide literature on sparse representations
(see for instance [39], [40]). For instance, Downs et al.
propose in [41] a pruning technique, by removing ker-
nel functions if they can be approximated by a linear
combination of the remaining ones. In [42], incremental
techniques are derived for controlling the complexity in
SVM for classification. For this task, a selection criterion
is considered to determine at each instant if the newly
available kernel function must be included to the model,
and thus incrementing its order, or it is discarded. Var-
ious criteria for quantifying the relevance of a kernel
function in SVM are put forward by Keerthi et al. in
the more recent work [43]. Most selection criteria are
inappropriate for the online kernel-PCA, since they are
either computational expensive and thus unadapted for
online learning, or they are often applied to supervised
learning with training data consisting of input-output
couples, by roughly solving a cost functional in order
to determine the resulting improvement. In this paper,
we examine a distance-based selection criterion, initially
investigated for sparse regression [26], [27], and we show
its appropriateness for the online kernel-PCA algorithm.

We propose a m-order model for the (first) principal
function at instant t, with2

ψt(·) =

m
∑

k=1

αk,t κ(xωk
, ·), (7)

2. With a slight abuse of notation, the order is denoted m, while it
depends on time t, and thus one should read m(t).

where the m kernel functions κ(xωk
, ·) are selected

from the t kernel functions available so far, namely
{ω1, ω2, . . . , ωm} ⊂ {1, 2, . . . , t}. At each instant t, upon
arrival of xt, we consider a selection criterion for adding
the kernel function κ(xt, ·) to the expansion of ψt(·),
thus incrementing its order. Next, we derive the selection
criterion, and study properties of the resulting model,
such as an upper bound on the error of approximating
the exact, full-order, principal functions.

3.1 The subspace control criterion

The reduced-order model (7) defines a subspace,
spanned by the m kernel functions. The error of approx-
imating any element κ(xt, ·) by this model is given by
the norm of the residual error function. Let Pm denotes
the projection operator onto the subspace spanned by
κ(xω1

, ·), κ(xω2
, ·), . . . , κ(xωm

, ·). Then the (squared) ap-
proximation error of κ(xt, ·) by a linear combination of
these kernel functions is given by

ǫt =
∥

∥(I − Pm)κ(xt, ·)
∥

∥

2

H
,

where I is the identity operator. Let
∑m

k=1 βk κ(xωk
, ·)

denotes the projection of κ(xt, ·) onto this subspace,
namely Pmκ(xt, ·), then

ǫt = min
β

∥

∥

∥
κ(xt, ·)−

m
∑

k=1

βk κ(xωk
, ·)
∥

∥

∥

2

H
.

By expanding this norm, we get a matrix notation in
terms of β = [β1 β2 · · ·βm]⊤, with

ǫt = min
β

m
∑

k,l=1

βkβlκ(xωk
,xωl

)− 2

m
∑

k=1

βkκ(xωk
,xt) + κ(xt,xt)

=
⊤

min
β
βKm β − 2β⊤ κ(xt) + κ(xt,xt). (8)

where Km is the m-by-m Gram matrix of the m kernel
functions, with entries κ(xωi

,xωj
). In this expression,

κ(·) is a column vector whose i-th entry is κ(xωi
, ·); this

is known in machine learning literature as the empirical
kernel map [39], [44]. By taking the derivative of the
above cost function with respect to β, and setting it to
zero, we get the optimal solution

βt =K
−1
m κ(xt). (9)

By substituting this expression in (8), we get

ǫt = κ(xt,xt)− κ(xt)
⊤K−1

m κ(xt). (10)

This expression defines the (squared) distance of κ(xt, ·)
to the subspace spanned by the m kernel functions.

Definition 1 (the distance criterion). Upon arrival of the
xt at instant t, we increment the model order by including
the kernel function κ(xt, ·) to the model if

ǫt > ν, (11)

for a given threshold ν; otherwise the kernel function is
discarded and the model order remains unchanged.

5

This criterion is considered for instance in [26], [27]
for sparse regression. From these papers (see also [23]),
we give the following lemma.

Lemma 2. Let κ(·, ·) be a reproducing kernel defined on a
compact subspace X . For any sequence x1,x2, . . . ,x∞, the
model resulting from the distance criterion has a finite order.

Sketch of proof: On the one hand, from the
compactness of the subspace X and the continu-
ity of κ(x, ·), the resulting set of kernel functions,
κ(x1, ·), κ(x2, ·) . . . , κ(x∞, ·), is compact. Therefore, for
any ε > 0, there exists a finite set of ℓ2-balls of radius
ε that covers these kernel functions. On the other hand,
by construction, we have ‖κ(xωi

, ·)−κ(xωj
, ·)‖2H > ν. By

combining both statements, we get the desired result.
Whilst this selection criterion seems unrelated to the

eigen-decomposition problem, we study next the proper-
ties of the retained elements, and derive an upper bound
on the approximation error of the principal functions.

3.2 Properties of the dictionary: the Gaussian kernel

In order to take advantage of the literature of dic-
tionaries in sparse approximation [23], [45], [46], we
consider the case of positive kernels with unit-norm3,
i.e., κ(xi,xi) = 1 for any xi ∈ X . This is the case of
the well-known Gaussian and exponential kernels. Next,
we study some properties of the collection of m kernel
functions, {κ(xω1

, ·), κ(xω2
, ·), . . . , κ(xωm

, ·)}, henceforth
called dictionary.

A dictionary is c-coherent when the inner product
between any pair of its elements does not exceed c, in
absolute value, namely for any pair of elements

|κ(xωi
,xωj

)| ≤ c,

where the reproducing property 〈κ(xωi
, ·), κ(xωj

, ·)〉H =
κ(xωi

,xωj
) is used.

Lemma 3. The dictionary obtained by the distance criterion
is (1 − ν/2)-coherent.

Proof: By construction, we have ‖κ(xωi
, ·) −

κ(xωj
, ·)‖2H > ν, for any i 6= j. By expanding this norm,

we get 2κ(xωi
,xωj

) < κ(xωi
,xωi

) + κ(xωj
,xωj

)− ν.
This result provides the relation between the threshold

ν, the bandwidth σ of the Gaussian kernel, and the
spread of the data, since the expression |κ(xωi

,xωj
)| ≤

1− ν/2 gives the relation

‖xωj
− xωj

‖2 ≥ −2σ2 ln(1 − ν/2).

Let Km denotes the m-by-m Gram matrix associated
with the dictionary, i.e., with entries κ(xωi

,xωj
). The

following theorem provides an upper and lower bounds
on its eigenvalues. The following result is essentially due
to [47], [48].

3. If the unit-norm is violated, such as for the quadratic kernel,
one may substitute each κ(xωi

, ·) by its normalized counterpart
κ(xωi

, ·)/‖κ(xωi
, ·)‖.

Theorem 4. The eigenvalues of the dictionary Gram matrix
satisfy the inequalities

1− (m− 1)(1− ν/2) ≤ λKm
≤ 1 + (m− 1)(1− ν/2).

Proof: The Geršgorin discs theorem, applied to ma-
trix Km, states that the eigenvalues belong to the union
of m discs. For i = 1, 2, . . . ,m, the i-th disc is centered
on κ(xωi

,xωi
), a diagonal entry of Km, and has a radius

of
∑m

k=1,k 6=i |κ(xωk
,xωi

)|. Thus, all eigenvalues should
satisfy

|λKm
−κ(xωi

,xωi
)| ≤

m
∑

k=1
k 6=i

|κ(xωk
,xωi

)| ≤ (m−1)(1−ν/2),

for each i = 1, 2, . . . ,m, where the last inequality is due
to Lemma 3. By taking each case, eigenvalue greater or
lower than κ(xωi

,xωi
), we get the desired bounds.

These bounds are sharp, in the sense that equality
is attained for any dictionary of orthonormal kernel
functions. By setting the threshold to ν = 2, we get
such dictionary, namely an incoherent dictionary since
κ(xωi

,xωj
) = 0 for any i 6= j. These results can be used

for instance to give an upper bound on the correspond-
ing condition number.

This theorem provides an upper bound on the eigen-
values captured by the Gram matrix of the dictionary.
Still, we show next that such dictionary allows a good
approximation of the exact, full-order, principal func-
tions.

3.3 Error of approximating the principal functions

Let ψr(·) be the r-th principal function associated with
the r-th largest eigenvalue λr, obtained from the whole
t available data, say ψr(·) =

∑t

i=1 αr,i κ(xi, ·). The co-
efficients αr,i correspond to the components of the r-
th eigenvector of the Gram matrix K , normalized such
that

∑t

i=1 α
2
r,i = 1/tλr. In practice, the exact principal

function is not known within an online setting. How-
ever, its approximation error with our approach and the
subspace that we construct can be done with low error.
The following theorem is essentially due to [26, Theorem
3.3] (with a slightly different proof).

Theorem 5. The reduced-order model defined by the distance
criterion can approximate the exact principal function ψr(·),
with a (squared) approximation error upper bounded by

ν

λr
,

which is inversely proportional to its associated eigenvalue λr.

Proof: The norm of the residual approximation of the
r-th principal function ψr(·) by the m kernel functions
is defined as

∥

∥(I − Pm)ψr(·)
∥

∥

2

H
=
∥

∥

∥

t
∑

i=1

αr,i(I − Pm)κ(xi, ·)
∥

∥

∥

2

H
,

6

where the equality follows from the linearity of the
operator. To provide an upper bound for this expression,
we write

∥

∥(I − Pm)ψr(·)
∥

∥

2

H
=

∥

∥

∥

t
∑

i=1

αr,i (I − Pm)κ(xi, ·)
∥

∥

∥

2

H

≤
(

t
∑

i=1

|αr,i|
∥

∥(I − Pm)κ(xi, ·)
∥

∥

H

)2

≤

t
∑

i=1

|αr,i|
2

t
∑

i=1

∥

∥(I − Pm)κ(xi, ·)
∥

∥

2

H

≤
(

t
∑

i=1

α2
r,i

)

t ν

=
ν

λr
,

where the first inequality follows from the generalized
triangular inequality, the second one is due to Cauchy-
Schwarz inequality, the last inequality is due to the
selection criterion, while the last equality follows from
the normalization in the classical kernel-PCA.

This result states that we can upper bound the error of
approximating a principal function by a value inversely
proportional to its associated eigenvalue. In other words,
principal functions associated to high eigenvalues can be
approximated with small errors.

4 ONLINE KERNEL-PCA

Motivated by the theoretical results derived in the pre-
vious section, and more precisely the approximation
bounds with Theorem 5, we consider a subspace ap-
proach to solve the kernelized Oja’s updating rule, as
studied next.

4.1 Learning the principal function

At instant t upon arrival of a new observation xt, the
distance criterion is applied, leading to either case: the
model-order is left unchanged or it is incremented. In
both cases, the coefficients of the model are adapted
appropriately, in a recursive scheme.

Case 1: ǫ < ν

In this case, the kernel function κ(xt, ·) needs not to
belong to the reduced-order model, since it can be
approximated by its projection, κp(·). By substituting
κ(xt, ·) with κp(·) in expression (4), we get

ψt+1(·) = ψt(·) + ηt (ytκp(·)− y2t ψt(·)).

Since κp(·) = β
⊤
t κ(·), where βt is defined with equation

(9), this leads to the following updating rule

αt+1 = αt + ηt (ytβt − y2t αt). (12)

This updating rule is essentially the kernelized version
of Oja’s updating rule (4), with the main difference being

in the vector βt which no longer is the sparse vector. In
this expression, the output is computed from

yt = ψt(xt) =
m
∑

k=1

αk,tκ(xωk
,xt),

which also corresponds to the output of the projected
component4. It turns out that this is the reduced-order
version (7) of the model defined by the kernelized Oja’s
rule, as in (5).

Case 2: ǫ > ν

In this case, the kernel function cannot be efficiently ap-
proximated by the model, and thus should be included
to the model. This leads to a scheme similar to Oja’s (4)
with the model order incremented to m+1 and ωm+1 = t.

The updating rule is given by

αt+1 =

[

αt
0

]

+ ηt yt

(

βt − yt

[

αt
0

])

, (13)

where αt+1 = [α1,t+1 · · · αm,t+1 αm+1,t+1]
⊤, and

βt = [0 0 0 · · · 0 0 1]⊤ (14)

is the sparse column vector of m zeros with the last entry
set to 1, which we write βt = [0⊤

m 1]⊤. In the expression
above, the output is defined as

yt = ψt(xt) =
m+1
∑

k=1

αk,t κ(xωk
,xt) = α

⊤
t κ(xt), (15)

which is similar to the previous case.
The Gram matrix of the model and its inverse need to

be updated only at the order-incrementation case, while
they are required in the approximation case (Case 1)
which often occurs. This can be seen with the β’s in the
projection expression. The Gram matrix is updated by
adding a column and a row to the previous one, with

Km+1 =

[

Km κ(xt)

κ(xt)
⊤

κ(xt,xt)

]

.

One needs the inverse of this matrix in the computation
of the approximation, by the evaluation of expression
(9). For this, we invoke the well-known matrix identity
[

A B

C D

]−1

=

[

A−1
0

0 0

]

+

[

−A−1B

I

]

×

(D −CA−1B)−1
[

−CA−1 I
]

.

4. The output at any element corresponds to output of its projected
component. This can be shown by decomposing κ(xt, ·) into κ⊥(·),
a component orthogonal to the subspace of the m retained kernel
functions, and κp(·), its projection onto the subspace. Then, the output
is given as

yt = 〈ψt(·), κ(xt, ·)〉H = 〈ψt(·), κp(·)〉H + 〈ψt(·), κ⊥(·)〉H

Since κ⊥(·) is orthogonal to the subspace of ψt(·), i.e.,
〈ψt(·), κ⊥(·)〉H = 0, we get

yt = 〈ψt(·), κp(·)〉H.

Another way to see this, is to consider the output of the projected
component (the right-hand-side of the above expression), namely
α⊤

t Kmβt, where βt = K−1
m κ(xt) from (9), thus 〈ψt(·), κp(·)〉H =

α⊤
t κ(xt).

7

By applying this equation to the above definition of
Km+1, we get the following recursive expression

K−1
m+1 =

[

K−1
m 0
0 0

]

+
1

ǫ2t

[

−β
1

]

[

−β⊤ 1
]

. (16)

Therefore, we get the Gram matrix and its inverse
without the need to recompute from scratch the whole
matrices at each order-incrementation.

The resulting algorithm is summarized in Table 2.
Next, we consider the problem estimating multiple prin-
cipal functions.

4.2 Multiple principal functions

The proposed rule extracts online the first principal
kernel function, with ψ(·) = α⊤ κ(·). The extension
to multiple principal functions is straightforward, us-
ing the generalized Hebbian algorithm as proposed by
Sanger for the linear principal component analysis [7],
[8]. Let {ψ1,t(·), ψ2,t(·), . . . , ψr,t(·)} denotes the collection
of r principal functions to be determined, listed in de-
scending order of eigenvalues. Then, the j-th principal
function is given with

ψj,t+1(·) = ψj,t(·) + ηt

(

yj,t κ(xt, ·)− yj,t

j
∑

i=1

yi,t ψi,t(·)
)

,

(17)
where yj,t = ψj,t(xt), for j = 1, 2, . . . , r. This corresponds
to a Gram-Schmidt orthonormalization process, since the
above expression can be written as

ψj,t+1(·) = ψj,t(·) + ηt

(

yj,t
(

κ(xt, ·)−

j−1
∑

i=1

yi,t ψi,t(·)
)

− y2j,t ψj,t(·)
)

,

which is nothing but Oja’s rule for ψj,t(·) with a modified
input κ(xt, ·)−

∑j−1
i=1 yi,t ψi,t(·), i.e., the component of the

data outside the span of previous principal functions.
This condition restricts the principal functions to be
orthogonal to each others. In matrix form, this leads to
an expression of the form

ψt+1(·) = ψt(·) + ηt

(

yt κ(xt, ·)− LT(yty
⊤
t)ψt(·)

)

, (18)

where ψt(·) is a vector of functions, y⊤
t =

[y1,t y2,t · · · yr,t], and LT(·) makes its argument
lower triangular by setting to zero the entries above
its diagonal. Now, we are in a position to derive the
“multiple” version of the online kernel-PCA algorithm.

Upon arrival of any new observation xt at instant t,
two cases may arise depending if the distance criterion
(11) is satisfied or not.

• If ǫt < ν, the model order remains unchanged, say
ψj,t(·) =

∑m

k=1 αj,k,t κ(xωk
, ·) for j = 1, 2, . . . , r. In

(18), κ(xt, ·) is substituted by its projection κp(·) =
β⊤
t κ(·). The resulting updating rule can be written

as

At+1 = At + ηt

(

yt βt − LT(yty
⊤
t)At

)

, (19)

where At = [α1,t α2,t · · · αr,t] is the m-by-
r matrix whose j-th column corresponds to the
coefficients of the j-th principal function with
αj,1,t, αj,2,t, . . . , αj,m,t.

• If ǫt > ν, the model order is incremented by
adding κ(xt, ·) to each of the r models with
ψj,t(·) =

∑m+1
k=1 αj,k,t κ(xωk

, ·) for j = 1, 2, . . . , r,
where ωm+1 = t. This leads to the matrix-form
recursion

At+1 =

[

At

0
⊤
r

]

+ ηt

(

ytβt − LT(yty
⊤
t)

[

At

0
⊤
r

])

,

with 0r a column vector of r zeros, and βt =
[0⊤
m 1]⊤.

The resulting algorithm is similar to the one proposed
in Table 2, with the following modifications: The coeffi-
cients are given by the matrix At, and in the incremental
step 4. it is given by [A⊤

t 0r]
⊤. The output step 5. is

substituted by yt = A⊤
t κ(xt), and the updating step is

given by expression (19). The centering expressions are
identical to the ones presented in Appendix.

The choice of the appropriate number of retained com-
ponents is not studied in this paper. One can still identify
the optimal number of retained principal components r
by studying the distribution of the eigenvalues, as often
investigated in the conventional linear PCA algorithms.
Moreover, the choice of r depends on the value of the
threshold parameter ν. In fact, the latter determines
the model order m, i.e., the number of retained kernel
functions in the span. Thus one should have r much
smaller than m in order to define a relevant subspace of
the span.

5 DISCUSSIONS

Next, we study some issues in online learning with
kernel-PCA: the choice of an appropriate stepsize,
whether or not to center the data, and denoising with a
pre-imag in a reduced-order model. Experimental results
corroborate this theoretical analysis, as highlighted in
next section.

5.1 Rate of convergence

To study the rate of convergence of multiple principal
functions, we consider expression (17). It is obvious
that principal functions associated with small eigenval-
ues cannot mature properly until after those of larger
eigenvalues have. Moreover, since the effect of sub-
tracting largest-variance directions from the data is to
decrease the variance, this will slow learning of principal
functions which mature later (see [49, page 52] for the
convergence of the linear Hebbian learning algorithm).
Since the generalized Hebbian algorithm is essentially a
multi-Oja’s rule, one often studies the convergence of a
single Oja’s updating rule.

In order to guarantee convergence, the authors of [50]
derive implicit conditions on the stepsize parameter for

8

TABLE 2
Pseudocode and summary of the online kernel-PCA algorithm

Initialization m = 1, ω1 = 1,K1 = κ(x1,x1),β1 = 1

At each instant t ≥ 2, upon acquisition of xt

1. Compute κ(xt) κ(xt) = [κ(xω1
,xt) · · · κ(xωm ,xt)]⊤

2. Subspace representation of κ(xt, ·) βt = K−1
m κ(xt).

3. Compute (square) distance to subspace ǫ2t = κ(xt,xt)− κ(xt)⊤βt

4. IF the distance criterion is satisfied : ǫ2t ≥ ν

Increment the model order m = m+ 1, ωm = t, αt = [α⊤
t 0]⊤

Update the inverse of the Gram matrix, K−1
m =

[

K
−1

m−1
0

0 0

]

+
1

ǫ2t

[

−βt

1

]

[

−βt
⊤ 1

]

and the empirical kernel map κ(xt) κ(xt) = [κ(xt)⊤ κ(xt,xt)]⊤

Update subspace representation of κ(xt, ·) βt = [0⊤
m−1 1]⊤

5. Output ψt(xt) yt = α⊤
t κ(xt)

6. Update the coefficients αt+1 = αt + ηt yt(βt − yt αt)

Principal coordinate of any x ψ(x) = α⊤ κ(x)

iterative linear PCA. These results can be easily extended
from the linear to the kernel-based PCA algorithms. For
instance to get the expected convergence, the stepsize
parameter should be smaller than the inverse of the
largest eigenvalue. However, the eigenvalues are usually
unknown. One needs therefore to estimate their values,
and update them adaptively, as studied in [51] for iter-
ative kernel-PCA. Yet, the computational effort for such
calculations is quite expensive, making these techniques
unadapted for online learning.

Back to the conventional Oja’s rule, the convergence
depends on a set of mathematical assumptions. Essen-
tially, the stepsize parameter cannot be a constant, but
has to decrease over time, such as ηt = η0/t where η0
is a positive constant parameter. Such choice is com-
mon in the stochastic approximation literature, with
slow convergence when η0 is small and divergence for
large values. In order to overcome these drawbacks and
achieve convergence, a “search then converge” approach
is investigated in [52], with

ηt =
η0

1 + t/τ
. (20)

The tuning parameter τ determines the duration of the
initial search phase, with ηt ≈ η0 (when t ≪ τ), before
a converge phase where ηt decreases as η0/t (when t≫
τ). This widely used stepsize parameter is presented in
[53] for iterative kernel-PCA, but abandoned in favor of
computational-expensive eigenvalue-aware stepsize (as
above).

In this paper, we consider the stepsize parameter as
defined in (20). The choice of the tuning parameter τ
depends on the application. For a stationary system, we
consider large values of τ , leading to fast convergence.
This is the case of the first series of experiments in
next section. For non-stationary signals, a small value
of τ allows more to track the evolution of the system
with lower convergence. This is illustrated in the second
application in experiments.

5.2 On centering the data in feature space

In conventional PCA and Oja’s rule, data is assumed
centered, i.e., zero-mean. The kernel function maps the
data into, almost always, an uncentered embedding.
Actually, re-centering in the feature space can be done
on the Gram matrix, without ever explicitly computing
the map. For the kernel-PCA algorithm, one simply
substitutes the Gram matrix K by the matrix

K − 1
n
1n1n

⊤K − 1
n
K1n1n

⊤ + 1
n21n1n

⊤K1n1n
⊤, (21)

where 1n is the n-entry 1’s column vector. For the itera-
tive kernel-PCA algorithm, the centering can be carried
out iteratively as long as the number of samples is fixed,
with the so-called semi-online approach [18].

For the proposed online kernel-PCA, the center is esti-
mated in the tracked subspace, thus of the form βt

⊤κ(x),
for a vector βt updated recursively (see Appendix). This
leads to an expression similar to (21), with

Km − 1mβ
⊤

t Km −Kmβt1m
⊤ + 1mβ

⊤

t Kmβt1m
⊤.

The resulting model output is give as yt = α
⊤
t κ

c(xt) for
a single principal function, and

yt = A
⊤
t κ

c(xt),

for multiple principal functions, where the initial vector
κ(xt) in (15) is substituted with

κc(xt) = κ(xt)− 1mβ
⊤

t κ(xt)−Kmβt + 1mβ
⊤

t Kmβt.

The derivation of these expressions is carried out in
Appendix, where we derive an online centering within
the tracked subspace. This leads to two variants of
the proposed approach, an uncentered and a centered
version.

In the uncentered setting, the resulting principal func-
tions are linear combinations of the uncentered ker-
nel functions. This corresponds to an online eigen-
decomposition of the non-central second moment matrix

9

of data in the feature space. In a more statistically
appropriate principle, one considers zero-mean data,
by simply centering at the origin. It remains an open
question whether features should be extracted from a
centered or an uncentered approach, even in the case
of conventional (linear and batch) PCA. In a centered
PCA, the variability about the center of the data is
concerned, as opposed to the variability about the origin
in its uncentered counterpart. Still, the relationships
between both variants are strong, as studied in [54] and
summarized here. The eigenvalues in the uncentered
problem are interlaced with those in the centered one,
and many eigenvectors are commonly similar. It is very
often that the first eigenvector in the uncentered case is
close to the direction that unites the origin and the center
of the data. All these results, derived for linear PCA,
can be easily extended to kernel-PCA and our online
kernel-PCA approach. Experimental results highlights
these results with the proposed algorithm.

5.3 Denoising scheme with a pre-image in the

reduced-order model

The denoising in feature space is carried out in three
stages.

First, the principal functions are estimated from a
set of noisy observations, for instance with the method
proposed in this paper. From n available data, let An

denotes the resulting matrix of coefficients whose r
columns define the r principal functions. It is assumed
that these principal functions are noise-free, while noise
is captured by the less relevant ones. Let ψ(·) =
[ψ1(·) ψ2(·) · · · ψr(·)]

⊤ denotes the vector of obtained
functions (as defined for instance in (18)).

Second, to denoise any data x in the feature space, it is
projected into the subspace spanned by the most relevant
principal functions. Since these functions define a basis,
we can write this projection

Pψ(κ(x, ·)) =
r
∑

j=1

〈ψj(·), κ(x, ·)〉ψj(·)

=

m
∑

k=1

r
∑

j=1

ψj(x)αk,j κ(xωk
, ·)

=
m
∑

k=1

[Any]k κ(xωk
, ·),

where y = A⊤
nκ

c(x). While the resulting projection is
still centered, one may decenter by adding µn(·), leading
to

Pψ(κ(x, ·)) + µn(·) = (Any + βn)
⊤ κ(·). (22)

The resulting signature still lives in the feature space,
often of infinite-dimension.

In the third stage, one needs to pre-image the pattern
back to the input space, i.e., find the pattern x∗ in the
input space whose image κ(x∗, ·) is as close as possible
to the denoised signature (22). Several techniques have

been derived to tackle this ill-posed problem. For a
recent review, see [55]. While solving the pre-image
problem is less tractable in full-order models, we show
next how the reduced-order model provide tractable
solutions.

In [56], we show that the pre-image can be roughly
solved using a conformal-map approach, with only ma-
trix inversion. Applied here for the signature (22), the
pre-image solution is given by solving the linear system

X⊤
mx

∗ =
(

Pm − ηK−1
m

)

(Any + βn)

where Xm = [xω1
xω2

· · · xωm
], Pm = X⊤

mXm is the
matrix of inner products in the input space, and η a
regularization parameter (set to 10 in experiments). Note
that the matrix Km is non-singular by construction, as
stated in Theorem 4.

Another way to solve the pre-image problem, is to
consider the minimization of

J(x∗) = ‖(Any + βn)
⊤ κ(·) − κ(x∗, ·)‖2.

The gradient, associated with the gaussian kernel, is
given as

∇xJ(x
∗) =

1

σ2

m
∑

k=1

[Any]k (xωk
−x∗) exp(‖xωk

−x∗‖2/2σ2).

Once again, the use of a reduced-order model provides
a tractable expression with a summation over m entries,
as opposed to the n-order expression for the full-order
model. In [57], a gradient descent algorithm is proposed
with a non-negativity constraint. It is essentially based
the above gradient expression, with a stepsize weighted
by the value of x∗. This leads to a faster convergence
towards zero-intensity pixels in image processing (see
experimentations, where only a single step is applied).

6 EXPERIMENTS

In this section, we illustrate the performance of the
proposed approach, on synthetic and real datasets, and
compare it to kernel-PCA and iterative kernel-PCA.

In order to measure the variance and its evolution, we
consider the variance in the feature space. The variance
explained by each principal function ψj,t(·) is defined at
each instant t by

Varx(ψj,t(x)) = IEx
(

|ψj,t(x)|
2
)

−
∣

∣IEx (ψj,t(x))
∣

∣

2
, (23)

where

IEx
(

ψj,t(x)
)

= IEx

(

m
∑

k=1

αj,k,t κ(xωk
,x)
)

=

m
∑

k=1

αj,k,t IEx
(

κ(xωk
,x)
)

,

and

IEx
(

|ψj,t(x)|
2
)

= IEx

(

∣

∣

∣

m
∑

k=1

αj,k,t κ(xωk
,x)
∣

∣

∣

2
)

.

10

−1 0 1

−0.5

0

0.5

1

−1 0 1

−0.5

0

0.5

1

−1 0 1

−0.5

0

0.5

1

−1 0 1

−0.5

0

0.5

1

−1 0 1

−0.5

0

0.5

1

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

Kernel-PCA (Batch)
full-order model
(m = 500)

j = 1 j = 2 j = 3 j = 4 j = 5

Online kernel-PCA
full-order model
ν = 0;m = 500

j = 1 j = 2 j = 3 j = 4 j = 5

Online kernel-PCA
8-order model
ν = 0.5;m = 8

j = 1 j = 2 j = 3 j = 4 j = 5

Uncentered
online kernel-PCA
ν = 0.5; m = 8

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Fig. 1. Banana data with the contours of the first five principal functions with the Gaussian kernel, from n = 500
samples. The first three rows confronts classical kernel-PCA, iterative kernel-PCA (single pass), and online kernel-
PCA. Results obtained with the uncentered version of our approach (fifth row) show that, besides the first principal

function which captures the center of the data, all next five principal functions are quite similar to those obtained with

the centered version (fourth row). Data points are given in the first row by blue dots (·), while only elements contributing
to the model are illustrated by red circles (◦).

In practice, the expectation is estimated at each instant
t over all available observations, including future sam-
ples xt′ for t′ > t. The instant cumulative variance,
explained by all r principal functions, is defined by
∑r

j=1 Varx(ψj,t(x)).

6.1 Banana-shaped 2-D distribution

In this first series of experiments, we compared the
proposed approach to the classical kernel-PCA algorithm
and the iterative kernel-PCA. A set of n = 500 two-
dimensional data points in a banana-shaped distribution
was used, as illustrated in Figure 1. The Gaussian kernel,
often put forward as a universal kernel, was considered.
The tuning parameters, which depend on the shaper
and scale of the data distribution, were (naively) set
to σ = 0.5 for the bandwidth of the Gaussian kernel,
ν = 0.5 for the selection threshold and η0 = 0.5 for
the asymptotic value of the stepsize parameter. The
convergence parameter was set to τ = 105 (a study of
the convergence is conducted below).

With such value of the threshold, we get an 8-order
model for each of the principal functions, namely 1.6%
of the training data, as opposed to the full-order model
(100%) for both the kernel-PCA and the iterative kernel-
PCA. Essentially, the iterative kernel-PCA algorithm con-
sists of applying our algorithm several times on the
same data and setting ν = 0. Similarities between the
results obtained from these three algorithms are illus-
trated in Figure 1 (first, second and third row), with
contour lines of the first five principal functions, ψj,t(·)
for j = 1, 2, . . . , 5 at t = 500. It is obvious that the
proposed reduced-order model (with order m = 8 here)
with the derived updating rule, captures the structure
of the data, with basically the same performances as the
(batch) kernel-PCA and the iterative kernel-PCA, both
being full-ordered (m = 500).

These results were obtained from the centered versions
of the considered algorithms, as often investigated in the
literature. Still, one may also consider the uncentered
version of our algorithm. As studied in Section 5.2
and illustrated in Figure 1 (last row), the first principal

11

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cumulative variance
order incrementation
first principal function
second principal function
third principal function
fourth principal function
fifth principal function

t

in
st

an
ta

n
eo

u
s

ca
p

tu
re

d
v

ar
ia

n
ce

Fig. 2. Evolution of the variance explained by each principal function, and the cumulative variance explained by all the

r = 6 principal functions. Instances of model incrementation are given by ×+.

function captures the variability about the center of the
data. It is clear that all the other principal functions, ψj,t
for j = 2, 3, . . . , 5 at t = 500, captures essentially the same
structure as the centered version. Still, the last principal
function (j = 6) did not mature enough at t = 500, and
requires more data to converge to the optimal results.
Next we study the convergence issue.

In order to study the convergence of the proposed al-
gorithm (in its centered-version), we studied the instan-
taneous captured variance as defined by expression (23),
where the expectations are estimated over all available
samples. Moreover, we incremented the above set of data
into n = 3 000 samples. The selection criterion yields
a 10-order model for each of the principal functions,
namely 0.3% of the training data. Figure (2) illustrates
the evolution of the variance explained by each of
the five principal functions, as well as the cumulative
variance. As expected, the relevance of each principal
function is illustrated in terms of the explained variance.
The convergence of the instant cumulative variance,
explained by the five principal functions, depends on
the choice of the convergence parameter τ . Figure 3
illustrates this influence, where small values of τ leads
to slow convergence while large values correspond to a
“search without convergence” strategy.

6.2 Image denoising

In this section, we consider an image processing appli-
cation, with the MNIST database of handwritten digits
[58]. This dataset consists of the handwritten digits
“1”, “2” and “3”, given in 28-by-28 images with pixel-
values normalized between 0 and 1. The dataset consists

10
1

10
2

10
3

10
4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

t

IE
x
ψ

j
,
t
(x

)

Fig. 5. Evolution of the mean of each principal function
at each instant t, where IExψj,t(x) is estimated with
1
n

∑n

ℓ=1 ψj,t(xℓ) for n = 22 000.

of 22 008 available images, treated as 784-dimensional
vectors. All images were contaminated with a white
Gaussian noise of zero-mean and variance 0.1. We stud-
ied a denoising scheme, where n = 22 000 images were
considered for learning the principal functions, and the
remaining 8 images for denoising. We emphasize on the
fact that the principal functions are determined from a
collection of noisy images.

With such very largescale problem, the classical
kernel-PCA is no longer tractable since it requires the
diagonalization of a 22 000-by-22 000 Gram matrix. An
online scheme was considered here, where the images
are presented one-by-one to the proposed (centered)
online kernel-PCA algorithm. Each image was selected
randomly from the set of available images, and is used

12

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ = 1
τ = 10
τ = 100
τ = 105

t

in
st

an
ta

n
eo

u
s

ca
p

tu
re

d
v

ar
ia

n
ce

Fig. 3. Evolution of the variance explained by each principal function, for several convergence parameters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

t

in
st

an
ta

n
eo

u
s

ca
p

tu
re

d
v

ar
ia

n
ce

Fig. 4. Evolution of the variance explained by each principal function for the image denoising problem. The legend is
the same as in Figure 2.

only once. The values of the tunable parameters were
set as often recommended in the literature. The Gaussian
kernel was used with its bandwidth set to σ = 8.5, as
recommended in SVM classification task. As given in
[53], the number of eigenvectors was set to 50, and the
stepsize parameters were set to τ = 0.05n and η = 1
(see Section 5.1 for a discussion about the influence of
these parameter). Preliminary experiments on the first
100 images were conducted in order to choose the value
of the threshold in the selection criterion, which was set
to ν = 0.55. This leads to a model of final order m = 90,

thus with only 0.4% of the available data.

Figure 4 gives the evolution of the captured vari-
ance, as defined in (23). As we considered the centered
version of the online kernel-PCA, it turns our that the
second term in right-hand-side converges to zero. This
is illustrated in Figure 5 where, at every instant t, the
principal functions were updated with the mean esti-
mated over the whole dataset, namely 1

n

∑n

ℓ=1 ψj,t(xℓ)
for n = 22 000. The relevance of the resulting principal
functions is studied in a denoising scheme, as illustrated
in Figure 6. As shown using two different pre-image

13

techniques (see Section 5.3), the resulting images are
clean, even though the principal functions were trained
from noisy images. With the iterative gradient technique,
the stepsize was set to 100, and weighted by the value
of x∗, a trick that allows better convergence towards
zero-intensity pixels. This leads to faster convergence,
with the denoised results obtained from only one single
gradient-descent step.

7 CONCLUSION

In this paper, we proposed an online kernel principal
component algorithm. To this end, we studied the adap-
tation of Oja’s rule to kernel machines, by proposing an
appropriate rule to control the model order. We gave
theoretical results on errors of using such reduced-order
model. We derived a recursive algorithm for computing
a principal function, and studied the case of having mul-
tiple functions. In the light of the considered model, we
studied convergence rate, centering in feature space and
denoising by pre-imaging. Experimental results show
the relevance of these functions, on synthetic and real
datasets. This work lay the ground for interesting future
research questions. An adaptive stepsize is still an open
question, and techniques such as Polyak-Ruppert aver-
aging are investigated.

ACKNOWLEDGMENT

The author would like to thank Cédric Richard for the
helpful discussions.

REFERENCES

[1] I. Jolliffe, Principal Component Analysis. New York, NY, USA:
Springer-Verlag, 1986.

[2] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, “Methods
for modifying matrix factorizations,” Mathematics of Computation,
vol. 28, pp. 505–535, Apr. 1974.

[3] J. R. Bunch and C. P. Nielsen, “Updating the singular value de-
composition,” Numerische Mathematik, vol. 31, pp. 111–129, 1978.

[4] P. Hall, D. Marshall, and R. Martin, “Merging and splitting
eigenspace models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 9, pp. 1042–1049, 2000.

[5] E. Oja, “A simplified neuron model as a principal component
analyzer,” J. Math. Biology, vol. 15, pp. 267–273, 1982.

[6] E. Oja and J. Karhunen, “On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random
matrix,” Journal of Mathematical Analysis and Applications, vol. 106,
pp. 69–84, 1985.

[7] T. D. Sanger, “Optimal unsupervised learning in a single-layer
linear feedforward neural network,” Neural Networks, vol. 2,
pp. 459–473, 1989.

[8] T. D. Sanger, “Two iterative algorithms for computing the sin-
gular value decomposition from input/output samples,” in Proc.
Advances in Neural Information Processing Systems 6 (J. D. Cowan,
G. Tesauro, and J. Alspector, eds.), pp. 144–151, 1993.

[9] N. Aronszajn, “Theory of reproducing kernels,”
Trans. Amer. Math. Soc., vol. 68, pp. 337–404, 1950.

[10] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[11] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foun-
dations of the potential function method in pattern recognition
learning,” Automation and Remote Control, vol. 25, pp. 821–837,
1964.

[12] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. Müller, “Fisher
discriminant analysis with kernels,” in Advances in neural networks
for signal processing (Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas,
eds.), (San Mateo, CA, USA), pp. 41–48, Morgan Kaufmann, 1999.

[13] R. Rosipal and L. Trejo, “Kernel partial least squares regression
in reproducing kernel hilbert space,” Journal of Machine Learning
Research, vol. 2, pp. 97–123, 2002.

[14] V. Guigue, A. Rakotomamonjy, and S. Canu, “Kernel basis
pursuit,” in Proc. 16th European Conference on Machine Learning
(J. Gama, R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, eds.),
Lecture Notes in Computer Science, pp. 146–157, Springer, 2005.

[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[16] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation,
vol. 10, no. 5, pp. 1299–1319, 1998.

[17] K. Kim, M. Franz, and B. Schölkopf, “Kernel Hebbian algorithm
for iterative kernel principal component analysis,” Tech. Rep.
109, Max-Planck-Institut für Biologische Kybernetik, Tübingen,
Germany, 06 2003.

[18] K. Kim, M. Franz, and B. Schölkopf, “Iterative kernel principal
component analysis for image modeling,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1351–1366,
2005.

[19] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning
with kernels,” IEEE Trans. Signal Processing, vol. 52, Aug 2004.

[20] S.Smale and Y. Yao, “Online learning algorithms,” Found. Comput.
Math., vol. 6, no. 2, pp. 145–170, 2006.

[21] S. V. Vishwanathan, N. N. Schraudolph, and A. J. Smola, “Step
size adaptation in reproducing kernel hilbert space,” Journal of
Machine Learning Research, vol. 7, pp. 1107–1133, 2006.

[22] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res.,
vol. 7, pp. 551–585, 2006.

[23] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction
of time series data with kernels,” IEEE Trans. Signal Processing,
vol. 57, pp. 1058–1067, March 2009.

[24] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian
spline functions,” Journal of Mathematical Analysis and Applications,
vol. 33, pp. 82–95, 1971.

[25] B. Schölkopf, R. Herbrich, and R. Williamson, “A generalized
representer theorem,” Tech. Rep. NC2-TR-2000-81, NeuroCOLT,
Royal Holloway College, University of London, UK, 2000.

[26] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least
squares algorithm,” IEEE Trans. Signal Processing, vol. 52, no. 8,
pp. 2275–2285, 2004.

[27] L. Csató and M. Opper, “Sparse representation for gaussian pro-
cess models,” in Advances in Neural Information Processing Systems
13 (T. K. Leen, T. G. Dietterich, and V. Tresp, eds.), pp. 444–450,
MIT Press, 2001.

[28] M. Ouimet and Y. Bengio, “Greedy spectral embedding,” in Proc.
10th International Workshop on Artificial Intelligence and Statistics
(R. G. Cowell and Z. Ghahramani, eds.), pp. 253–260, 2005.

[29] M. E. Tipping, “Sparse kernel principal component analysis,” in
Advances in Neural Information Processing Systems 13 (T. K. Leen,
T. G. Dietterich, and V. Tresp, eds.), (Denver, CO, USA), pp. 633–
639, MIT Press, 2001.

[30] A. Smola, O. Mangasarian, and B. Schölkopf, “Sparse kernel
feature analysis,” Tech. Rep. 99-04, University of Wisconsin, Data
Mining Institute, Madison, 1999.

[31] Z. K. Gon, J. Feng, and C. Fyfe, “A comparison of sparse kernel
principal component analysis methods.,” in Proc. Knowledge-Based
Intelligent Engineering Systems and Allied Technologies (R. J. Howlett
and L. C. Jain, eds.), pp. 309–312, IEEE, 2000.

[32] G. P. McCabe, “Principal variables,” Technometrics, vol. 26,
pp. 137–144, May 1984.

[33] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of Computational & Graphical Statistics, vol. 15,
pp. 265–286, June 2006.

[34] A. d’Aspremont, F. R. Bach, and L. E. Ghaoui, “Full regularization
path for sparse principal component analysis,” in Proc. 24th
international conference on Machine learning, (New York, NY, USA),
pp. 177–184, ACM, 2007.

[35] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller,
G. Rätsch, and A. J. Smola, “Input space versus feature space
in kernel-based methods,” IEEE Trans. Neural Networks, vol. 10,
pp. 1000–1017, 1999.

14

Fig. 6. The collection of 8 images, contaminated by noise (first row) and denoised by a our approach, using a matrix-
inversion technique (second row) or an gradient descent technique (third row).

[36] L. Csató and M. Opper, “Sparse online gaussian processes,”
Neural Computation, vol. 14, pp. 641–668, 2002.

[37] M. Seeger, Bayesian Gaussian Process Models: PAC-Bayesian Generali-
sation Error Bounds and Sparse Approximations. PhD thesis, Institute
of Adaptive and Neural Computation, University of Edinburgh,
Scotland, 2003.

[38] C. Burges, “Simplified support vector decision rules,” in Proc. 13th
International Conference on Machine Learning, pp. 71–77, 1996.

[39] M. Wu, B. Schölkopf, and G. Bakır, “A direct method for building
sparse kernel learning algorithms,” Journal of Machine Learning
Research, vol. 7, pp. 603–624, 2006.

[40] S. Agarwal, V. V. Saradhi, and H. Karnick, “Kernel-based online
machine learning and support vector reduction,” Neurocomputing,
vol. 71, no. 7-9, pp. 1230–1237, 2008.

[41] T. Downs, K. E. Gates, and A. Masters, “Exact simplification of
support vector solutions,” Journal of Machine Learning Research,
vol. 2, pp. 293–297, 2001.

[42] E. Parrado-Hernández, I. Mora-Jiménez, J. Arenas-Garcı́a, A. R.
Figueiras-Vidal, and A. Navia-Vázquez, “Growing support vector
classifiers with controlled complexity,” Pattern Recognition, vol. 36,
no. 7, pp. 1479–1488, 2003.

[43] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support
vector machines with reduced classifier complexity,” J. Mach.
Learn. Res., vol. 7, pp. 1493–1515, 2006.

[44] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge,
MA, USA: MIT Press, 2002.

[45] J. A. Tropp, A. C. Gilbert, S. Muthukrishnan, and M. Strauss, “Im-
proved sparse approximation over quasi-incoherent dictionaries,”
in International Conf. on Image Processing, vol. 1, pp. 37–40, 2003.

[46] A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss, “Approxima-
tion of functions over redundant dictionaries using coherence,” in
Proc. 14th ACM-SIAM symposium on Discrete algorithms, (Philadel-
phia, PA), pp. 243–252, SIAM, 2003.

[47] J. A. Tropp, “Greed is good: algorithmic results for sparse approx-
imation,” IEEE Trans. Information Theory, vol. 50, no. 10, pp. 2231–
2242, 2004.

[48] P. Honeine, C. Richard, and J. C. M. Bermudez, “On-line nonlinear
sparse approximation of functions,” in Proc. IEEE International
Symposium on Information Theory, (Nice), pp. 956–960, June 2007.

[49] T. D. Sanger, “Optimal unsupervised learning in feedforward
neural networks,” tech. rep., MIT, Cambridge, MA, USA, 1989.

[50] L.-H. Chen and S. Chang, “An adaptive learning algorithm
for principal component analysis,” IEEE Trans. Neural Networks,
vol. 6, pp. 1255 –1263, sep 1995.

[51] N. N. Schraudolph, S. Günter, and S. V. N. Vishwanathan, “Fast
iterative kernel pca,” in Advances in Neural Information Processing
Systems, MIT Press, 2007.

[52] C. Darken, J. Chang, and J. Moody, “Learning rate schedules for
faster stochastic gradient search,” in Proc. IEEE Workshop on Neural
Networks for Signal Processing, (Piscataway, NJ), IEEE, 1992.

[53] S. Günter, N. N. Schraudolph, and S. V. N. Vishwanathan, “Fast
iterative kernel principal component analysis,” J. Mach. Learn.
Res., vol. 8, pp. 1893–1918, December 2007.

[54] J. Cadima and I. Jolliffe, “On relationships between uncentred and
column-centred principal component analysis,,” Pakistan Journal of
Statistics, vol. 25, no. 4, pp. 473–503, 2009.

[55] P. Honeine and C. Richard, “Preimage problem in kernel-based
machine learning,” IEEE Signal Processing Magazine, vol. 28, no. 2,
pp. 77–88, 2011.

[56] P. Honeine and C. Richard, “Solving the pre-image problem in
kernel machines: a direct method,” in Proc. 19th IEEE workshop on
Machine Learning for Signal Processing, (Grenoble), Sept. 2009.

[57] M. Kallas, P. Honeine, C. Richard, C. Francis, and H. Amoud,
“Non-negative pre-image in machine learning for pattern recog-
nition,” in Proc. 19th European Conference on Signal Processing,
(Barcelona, Spain), 29 Aug. - 2 Sept. 2011.

[58] Y. Lecun and C. Cortes, “The mnist database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/, 1998.

PLACE
PHOTO
HERE

Paul Honeine (M’07) was born in Beirut,
Lebanon, on October 2, 1977. He received the
Dipl.-Ing. degree in mechanical engineering in
2002 and the M.Sc. degree in industrial control
in 2003, both from the Faculty of Engineering,
the Lebanese University, Lebanon. In 2007, he
received the Ph.D. degree in Systems Optimisa-
tion and Security from the University of Technol-
ogy of Troyes, France, and was a Postdoctoral
Research associate with the Systems Model-
ing and Dependability Laboratory, from 2007 to

2008. Since September 2008, he has been an assistant Professor at
the University of Technology of Troyes, France. His research interests
include nonstationary signal analysis and classification, nonlinear signal
processing, sparse representations, machine learning, and wireless
sensor networks. He is the co-author (with C. Richard) of the 2009 Best
Paper Award at the IEEE Workshop on Machine Learning for Signal
Processing.

