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Polar interval-based localization
IN mobile sensor networks

Farah Mourad, Paul Honeine, and Hichem Snoussi

Abstract—This paper considers the problem of localization in Of Arrival (TDOA) [15], Angle Of Arrival (AOA) [16], or
uncontrolled mobility sensor networks. Based on connectity Received Signal Strength Indicator (RSSI) [11], [12]. TOA-
measurements, the problem is solved using polar intervals. paseq methods measure the travel times of signals exchanged
Computation is performed, in several polar coordinate systms,
using both polar coordinates and interval analysis. Positin between the sensors, Whgreag TDOA and AOA methods mea—
estimates are thus partial rings enclosing the exact soluin of Sure the difference of arrival times or the angles at reoepti
the problem. Simulation results corroborate the efficiencyof the of exchanged signals. While TOA, TDOA and AOA-based

proposed method compared to existing methods, especiallpt methods need extra hardware such as timers and synchronous

those handling single coordinate systems. clocks, RSSI-based methods are simpler, inexpensive aad le
Index Terms—mobile sensor networks, multi-coordinate sys- energy consuming using only powers of exchanged signals,
tems, polar intervals, state estimation. but they are more challenging because of the reflection, the
diffraction and the scattering of signals.
I. INTRODUCTION The alternative category to range-based localization con-

OBILE Sensor Networks (MSN) are networks comsists of range-free algorithms. These techniques yieldsesa

posed of a large number of wireless devices ha\,irgjained location estimates, leading to more than one plessib
sensing, computing and communication capabilities [1], [250lution to the problem. In this category, one could refer to
Due to their wireless aspect, sensors in MSN are able to mogennectivity-based techniques, where RSSI is compared to
either in a controllable or in an uncontrollable manner.Ha t @ strength threshold leading to bounds over distances [8].
first case, sensors are robots having locomotion capabilitOther range-free techniques are based on hop counts between
as well [3], [4]. One could here manage the mobility of th@nchors and nodes. Having per-hop distance, obtainedghrou
robots to improve the accuracy of the collected data [5], [BRnchors communication, one could estimate the distanges se
In the second case, sensors move in a passive manner, dui@@ng nodes from anchors [17], [18]. Distances inforomati
external forces, and thus they need to be localized regulai® then combined using different computation techniques,
[7], [8]. Many applications have been considered for MSN ifuch as the Robust Optimization approach [19], the particle
military, such as target tracking and enemy surveillance, afilter based on Monte-Carlo [7], the variational filter [20],
in civil domains, such as environment monitoring, healtacainterval analysis [21], Sigma-Point Kalman Smoothers as in
and so on [9], [10]. In all applications, it is of great impamte [22], etc.
to have correct sensors positions, since sensed data htlg tig 1his paper considers the problem of localization in uncon-
related to the locations where measurements are made. trolled mobility sensor networks. The proposed technicaie i

Many works have considered the problem of localizatiop fange-free anchor-based method. Using connectivity mea-

in uncontrolled mobility sensor networks [11], [12]. Thesurements, the proposed method also takes advantage of the
first intuitive solution is to equip all sensors with Globamobility of the nodes to set the problem. The novelty of this
Positioning Systems (GPS) [13]. However, this solution fethod is to use polar intervals to solve the problem. Indeed
impractical in indoor applications where GPS signals are nosition estimation is performed using polar coordinates i
reliable. Alternative solutions define two types of sensorfe interval framework. Estimates are thus partial ringtied
anchors and non-anchor nodes. Anchors are sensors havingPolar boxes, enclosing the exact solution of the problem.
known positions, whereas non-anchor nodes, or simply nodB&sed on interval analysis [23], computation is handleaun f
are unaware of their locations and hence they need to @&erent polar coordinate systems, leading to four positi
localized. Generally, anchors are either static, having- piestimates at each time-step. Only one polar box is thentsellec
defined positions, or mobile but tracked or moved by the us@f. @ considered step. It corresponds to the estimate haweng t
The existing anchor-based algorithms could be divided ingnallest area, being the solution encloser presentingeths |
two Categories: range_based and range_free a|gorithnm@a incertitude. The three remaining pOIar boxes are also kept i
based schemes consist of estimating the distances segardfie memory to be used in the following time-step computation
the nodes from anchors, and then combining these distanceigiulation results using Matlab corroborate the efficienty
Four distance estimation techniques have been mainly céde proposed method compared to other methods, especially

sidered, using Time Of Arrival (TOA) [14], Time Differencet0 those handling computation in a single coordinate system
The rest of the paper is organized as follows. Section I

F. Mourad, P. Honeine and H. Snoussi are with the Institutrlesa jntroduces the localization problem. Section Ill descsiliee
Delaunay (ICD, UMR STMR CNRS 6279), Université de Techg@ode

Troyes, 12, rue Marie Curie, CS 42060, 10004 Troyes cedende; e-mail: propqsed_algorit_hm to solve the pff_’b'em- Simulation result
{farah.mourad,paul.honeine,hichem.snoj@aitt.fr. are given in Section IV whereas Section V concludes the paper



Il. PROBLEM STATEMENT - =7 uo

Assume that the network is composed¥f anchorsand [ —~————————— 7 ]
N, nodes, deployed in a two-dimensional square area, denoted Q
by © and havingu, as side lengths. Lei; ¢, i € {1, ..., N,},
andu;,, j € {1,..., N, }, be the respective positions of these
sensors at time. The aim of the method is to estimate all
u;; positions usinga;, information, as well as previous
estimates. In order to reduce the communication costs, one
assumes that nodes exchange information only with anchors.

For this reason and without loss of generality, only one node 4 [ ] ug
u, IS considered in this paper and the indgis withdrawn. a;,

This paper handles computation using polar coordinates of O oL i

sensors. In other words, the aim of the method is to estimate P

the polar coordinates of the node using the polar coordénate Pi_q ou;

of some anchors. For this reason, one Polar Coordinater8yste & oF

(PCS), denoted by PCSis first considered. Without loss of o,

generality, the origin © of PCS is located at the low-left o :
corner of the surveillance are@. An illustration is shown

in Fig. 1. Here, the sensors polar coordinates are given by

a’;t _ (p;“e;t) and utL _ (p\t_79\t_), WherepL denotes the Fig. 1. Polar coordinates in PES
distance from the origin ©to the sensor and- denotes the

angle measured anticlockwise from the horizontal x-axis to

the line joining O to the sensor. According to this definition,aS follows,

05, € 10,5 0; € [0,3], p¢ € [0,pm]) and p; € [0, pra], P52+ ps % —2p5ps | cos (0; —0;_,) <DZ. (3
where p,, = V2.ug is the length of the diagonal of the ) ) o )
surveillance area. It is worth noting that an infinite numogr Graphically, this constraint yields a disk, called mobikiisk,
PCSs could be considered to define the localization problef{@ving the previous position as center afig, as radius.

In the following, the localization problem is first describia In addition to the mobility model, the proposed method is
PCS . and afterwards, it is reformulated in other PCSs. & range-free method based on RSSI information. At each time

step, every anchor broadcasts signals in the network wéh th
) same initial power. According to the Okumura-Hata model
A. Problem statement in PCS- [24], the strengths of the signals decrease monotonicatly w
The proposed method takes advantage of the mobility of thiee increase of their traveled distances as follows,
node to estimate nodes positions. The localization proliéem do \®
thus defined using a mobility model, in addition to obsensati & =% (d- ) , (4)
constraints. Any available information about the mobildy bt
the node could be used to set the mobility constraints. Thidere¢; ; is the strength of the signal emitted by the anchor
paper considers a general model assuming that the maxirahd received by the mobile node at tihe&, is the strength
velocity of the node is known and denoted by,. If At is measured at a reference distargefrom the anchot, d; ; is
the localization period, then the maximal distance thaticouthe Euclidian distance between the anch@nd the node at
be traveled by the node between two consecutive time-ssepéiine ¢t anda is the path loss exponent. In practice, the RSSI of
equal toD,,, = At.v,,,. The mobility constraint is then given a signal could be modified due to the reflection, the difficti
by the following, or the scattering of the signal. Moreover the valuegoand
d; < Dy, (1) « may vary from an anchor to the other. This may lead to
] . inaccurate distances estimates. For this reason, the ggdpo
where d; is the value of the distance traveled by the nodgethod uses connectivity information, instead of using dis
between time-steps — 1 and 7. Let u;_; = (Pi-1.05-1) tances estimates. In other words, received strength valtees
be the position of the node in PC€&t timet — 1. Thend;  only used to be compared to a threshejd corresponding to
expressed in PCSis the length of the side:;_,u; of the he sensing range of the sensors. It ; > ¢, the anchori
triangle having the origin § u; andwu;_, as vertices. In this 5 a5sumed to be within the sensing range of the node at time
triangle, the lengths of Q.; and O u;_, are given byp; and ;  otherwise, the anchar is assumed to be too far and its

pi—1 respectively, as shown in Fig. 1. The distangecould information is not used. Connectivity measurements ara the
then be computed using the generalized Pythagorean theogga_pit information generated as follows

as follows,

_ Lif fi,t Z g'r .
di = pi* + pr_1” = 2p5prrcos (0 —05,),  (2) Zit = { 0 otherwise @ | € e Nk )

where|0; —0;_,| is the angle measured at the vertexi@the Let I; be the set of indices of all anchors having = 1 at
considered triangle. The mobility constraint is then rén time ¢. The anchors denoted ify are assumed to be within



the sensing range of the node, and thus they are located at 4
distances from the node less than

Vi € I, diﬂg <. (6)

One could obtain the expression of the distardge between
the anchori and the considered node in PCBy considering
the triangle having the origin ‘Q a;, andu; as vertices, as
shown in Fig. 1. The lengths of the sides«#) and O a;, are
given by p; and p;, respectively, whereag, ; is the length
of the sideu;ay;, in the triangle.d; ; could then be computed
using the generalized Pythagorean theorem as follows,

d?, = ps% + 5,0 —205p5 cos (05 —05,) . (7)

with |0; — 65 ,| being the angle measured at the vertexi®
the considered triangle. The observation constraints tare t
rewritten as follows,

o &

pi*+piat = 2pipicos (B —O) <1 i€ @)

This leads to a set of disks, called observation disks, lgavin

the detected anchors as centers and the communication rarfge
r as radii.

The localization problem is then defined in the considere

PCS by both the mobility and the observation models a

follows,

pi- + iy = 20ipiy cos (6 — 0;1) < Di,
pi? + Py’ = 2p5py g cos (0F — 05,) < 1% i€ L, (9)
p; €10, pm], 0p €0, 3],

where p;,, 054, i € I, v, Dy, and p,,, have known values,
andp;_, andf;_, are estimated at time— 1. Graphically, the
problem at a given time consists of overlapping the mobility
disk, centered on the previous position and having as
radius, with a set of observation disks, havings radii and
the detected anchors as centers. An example of such a problg
with three detected anchors is shown in Fig. 2. The solution
of the problem is given by the overlapping area of all disks,
as shown in dark gray in the plot.

B. Problem statement in several PCSs O- PCS o-=0 ol=3 PCS’ O

In the previous section, the localization problem is definggyy 3. pojar coordinates in four different PCSs.
in a specific PCS, denoted by PC$aving its origin O at
the low-left corner of2. In PCS, all distances to the origin
p- are included in[0, p,,,] and all angleg)- are included in leads to the following formulation of the localization ptein
[0, 5]. One could define the localization problem in an infiniten any of these PCSs,
number of PCSs over the surveillance afeaHowever, only o2 o 2 o o o po 9
three PCSs other than PE€8ould be set witlp € [0, p,,,] and Pt + Pt—y 722& Pi—1 COZﬁot ;ﬁti) Qg DWI 10
¢ € [0,Z]. These PCSs, denoted by PC®CS' and PCS, Pt TP PePit Coi( PO <% iel, (10)
have their respective origins"QO" and O at the low-right, P €10, pml, 07 €10, 5],
the up-right and the up-left corners ©6f respectively. Also, where the superindex € {., 2,7, }, » and D,,, are known,
they are rotated anticlockwise respectively by angle§ ofr  p7, and 67, are anchors coordinates expressed differently in
and 2T with respect to PCS An illustration of these PCSs the given PCSs angy_, and 6;_; are estimated at time
is given in Fig. 3. According to this definition, the boundg — 1, each in its corresponding PCS. Assume that anchors
over the distances to origins and the angles remain uncdangmordinates are given in the first PCS, denoted by ‘PCS
Observation and mobility constraints are also valid, whicBne could deduce geometrically the expressions of these



TABLE |

GLOSSARY OF TERMS solution is then given by a two—di_mens_ional interval, deqbt
by [u$]. Also called polar boxjus] is defined by the cartesian
[ Terms [ Definitions | product of two real interval$py] and [07], defined over the
o | Designation of the considered PGS {v, 1, "} polar coordinateg; and@; respectively,
py 1% polar coordinate of the node in P€%t timet o
0 2" polar coordinate of the node in PE%t time ¢ [ug] = [p7] x [07] = [Ej,ﬁf] x [07,0,], (12)
uy Polar coordinates vector of the node in PC& timet .
(o 3 (o (o i
pS, | 1% polar coordinate of the ancharin PCS” at timet Where;_)t = inf ([pf]) andp; = sup ([p7]) denote respectively
62, | 2" polar coordinate of the ancharin PCS” at time the lower and the hlg_fger endpoints of the real interfyél
a?, | Polar coordinates vector of the anchioin PCS’ at timet al’]dQ;> = inf ([#7]) andd, = sup ([#;]) denote respectively the
Dy, | Maximal distance traveled by the node lower and the higher endpoints of the real interfggl]. Having
r Communication range _ the localization problem of (10) at timig solving the problem
pm__| Length of the diagonal of the surveillance area consists of finding the minimal polar bok] including
ug Length of a side of the surveillance area

all possible solutions. Starting with an initial bdx],, the
proposed method aims at minimizing the widt6ﬁ§ _Ef)

coordinates in the remaining PCSs as follows, and (5: — Qf) of [pg] and [9?] respective|y according to the

o, = \/p!-‘ 2 1 w2 — 20t yug cos (65,) constraints of (10)._ The initial polar bdx), could be defined
bt it 0 Tt be ) by [0, prm] X [0, Z], sinceps € [0, p,,,] andéf € [0, Z] as shown
07, = arctan %CE;(Q)‘), in Section II.
Pae ot Graphically, the solution box is a partial ring, having the
. - origin O° of the considered PCS as center and 5y
Piy = \/P%,tQ + 2ug — 29} yuo (cos (0,) +sin (65,)), as inner and outer radii respectively. Moreovg}ﬁit is dpéfine
07 — arctan “0=Fis sin (0, ) between the lines starting at the origin and havif@ndd, as
bt uo—pf , cos(05,)’ angles. The best solution box corresponding to the probfem o
Fig. 2 is given in thick black line in Fig. 4. Here the illuticn
Pis = \/p;,f +ug — 2p5 yugsin (65,), is shown in PCS and the previous estimate is assumed to be
07— arct pt 4 cos(0%,) exact. In fact, according to the proposed method, the pusvio
A (R estimate is a polar box denoted hy;_,]. Propagatindu’ ]

(11) using the mobility disk leads to a larger domain, defined by
Once the localization problem is set in PC®CS, PCS  the union of all the disks obtained by the propagation of each
and PCS, one could choose a single PCS among these fostint of [us_, ] with the mobility model. An illustration of this
PCSs to solve the problem. Another way to handle the problef®main, called mobility domain, is given in Fig. 5. Actually
consists of performing computation in all the defined PCS8stead of using the mobility disk as in Fig. 4 and since the
and then select the best resulting solution, as it is showinen previous solution is a box, one should overlap the mobility
following section. A glossary of all terms is given in TABLE | domain with the observation disks to define the solutionpola
box in the considered PCS. An illustration of the solution
[1l. POLAR-INTERVAL LOCALIZATION ALGORITHM box of PCS is given in black in Fig. 6. It is clear that this

Solving the localization problem consists of estimating thP0X is larger than the one illustrated in Fig. 4. This way the
coordinates of the considered node at each time step, givggulting box is guaranteed to contain the exact solution of
the constraints of (10). One could choose a single PCS, #€ problem since it takes previous and actual incertitogt® i
instance PCS to compute the solution. In a different manneionsideration.
this paper proposes to handle the problem in all defined PCS$ig. 7 illustrates the polar boxes obtained in PCBCS,
and then choosing the best solution between the resultiag,orPCS and PCS. Here the previous estimates are assumed to
Computation is thus performed in each PCS of PasCs, be exact for simplicity of illustration. In fact, for each Bof
PCS' and PCS, leading to four estimates of the position ofuperindex> € {., ., ","}, the corresponding previous polar
the node at each time-step. In the following, the propos®@x[u{_,] should be employed to compute the actual estimate
method, based on interval analysis [23], is first descrilbed, [u7]. Once the four estimates are obtained, areas of these

then the localization algorithm is presented. estimates are computed as follows,
50 o 60 —o2 o o2
A. Description of the method Ar ([u?)) = ( t —t) (pt Ly ), (13)
The solution of the problem is proposed using interval . 2
analysis [23]. Instead of computing an exact position estigm where [ug] = [p?, 7] ¥ [07,0,]. The values of these areas

at each time step, the method consists of performing an outepresent the incertitude obtained while computing the-min
estimation of the solution. In other words, it aims at bomgdi imal encloser of the solution in the corresponding PCS. For
the coordinates of the node, in the way to cover all possitie ghis reason, and since all computed boxes include the ealuti
lutions of the problem. Consider that computation is perfed area of the problem, the polar box having the minimal area
in a specific PCS, denoted by PC®ith o € {L, 1, 7,7 }. The is selected to be the solution box at the considered time-ste
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The three remaining boxes are also kept in the memory to be/\ " = S
. ™ . . . o
used with the mobility model in the following time-step. / ° N
/0 1-\‘ " \‘\\ N
B. Proposed algorithm |Z&EAR X
o PCS - = PCS o

Consider the problem of (10) defined in one PCS, denoted
by PCS, ¢ € {L, 4,7, }. In order to compute the solution boxrig. 7. Solutions of the problem in the four predefined PCSs.
[ug] at a given timet, one should set all available constraints
on py and @y according to (10). The first general constraints

to be set are given by the dimensions of the surveillance arg o same manner, the mobility constraint leads to the

following,
0<p®<pn and ogeggg. (14) 9

Moreover, since the cosine of an angle is always less than Pi—1 = D < pi < pi_y + D, (16)
1 and p;y and p;, are always positive fori € I;, then

(pf — pf’t)2 < P2+ 08, — 2p8p3, cos (67 — 63,). Hence, where the exact value @f _, is unknown, but according to the

each observation constraint of (10), forc I;, leads to the previousdescriptiom;_; € [p7_,| with [pf_;] = [p |, D7 4].
following constraint, Then,

(pf — PZt)2 <rPepl,—r<p<pl (15) £y = Dm < p} <Ppi_1+ Dim. 17)



- . . 9 arcsin® ! Dm
Combining all constraints over; leads then to the following, LT (L,; 1)
:git ;'éi‘cSinf‘(p; )
o

max (0, g7, — Dyn, maxier, (o5, — 7)) < f -

< min (p’m, ﬁ§71 + Dm7 minie]t (p?t + 7“) . P3¢ T 921 + arcsin (E)
. 18) et ol SN " +d( . )
! N .
On the other hand, i1 + Do i FoIR P3¢
P22+ P, = 2p7 5, cos (05 — 07,) =--» et \
(<>7<> (90790)) +<>2-2(9<>79<>) . <%‘“—)
Pt — Pi COS Uy it P S Uy i,t(ig) Pt — 251
. . . . "'L,, - — arcsin™® -
Then each observation constraint of (10) leads inevitably t _ Epz,zg
the following, 2, Cem e,
2 . 9 2 r . r Pt —
P74 sin (92} - 9215) St ——— <sin (92} - 9215) S = s : Lo ey, 7amm*( E )
Pit Pit e N DY T N “ Zw
(20) V oot ] ] | iy
If -t <1, forie€ I, and since(d; — 07,) € [, 5] where
the sine function is monotonically increasing, the presiolFig. 8. First solution box obtained for the localization iplem of Fig. 2 in
constraint leads to PCS.

LT LT
07, — arcsin <P_°t> <07 <07, +arcsin <Tt> , (21) On the first hand, observation constraints of (10) and
" " equation (19) lead to the following constraints witke I;,
wherearcsin® (x) = arcsin (min (1, z)). In the same manner,

the mobility constraint leads to the following, p3 (1) cos (07 —0,) — \/T2 — 9, 2sin? (07 = 02,) < p} >
D D S? ~9<>_9;> +\/2_;>2,~2 90_9? .
0y, — arcsin” ( o > <6y <67, + arcsin” ( - > . Pis COb( ¢ ’t> T Py S ( ¢ (,2152)
pt_l pt—l e .
(22) In the same manner, the mobility constraint leads to the
Since py , € [pf_4] and 0y, € [07_,] with [pf_,] = following,

lp; | Pi-1] and [67_,] = [Qf_l,ﬁf_l], and since the arcsine ;
—t— 1, . . . N . a2

function is monotonically increasing on the considered do#f-1cos (97 —67_1) — \/D%ﬁpﬁ_l sin (92}*9?_1) < pf -
main, then

< pj_; cos (Gf - 9?—1) + \/D%L - P§712 sin” (91? - 9?71>=

0% . — arcsin® & << ?0 + arcsin® & i o o o o (28)
[} 0 SO S0y P - with py_; € [py_,] and@y_; € [07_4].
—t=l ==l (23) On the second hand, observation constraints of (10) could

Combining all constraints ove¥, leads then to the following, he reformulated as follows,

o2 o 2 2
piT P T

29
20707, (9)

max (0,09 1 — arcsin® [ Bm- ) max;cr, (09, — arcsin® (£ <69 - CcoSs (9? — 9<.>t) >
Pi_1 Pit 2,
< min (%,5271 + arcsin* %L) cminger, (09, + arcsin® ;fr))) .

e 22y Then,
One could then define the first solution box by

p?2+p?,t277'2

R p924p9 202
07 , — arccos ——5 oo

) <67 <07, 4 arccos ( ¢

) 2"?”1'0,*; 2"?”1'0,*; )
o1(1) _ ,0(1) —o(1) o(1) 7° (30)
u = x [0 0 25 - .
[7] [Bt 1870, (25) In the same manner, the mobility constraint leads to the
with following,
E?(l) = max (072271 = Dm, max;eg, (ﬂ?,t - 7)) ’ 0% . _ arccos (M) < 69 < 6% . + arccos (M ,
5;?(1) = min (p?llvﬁ§71 + Dm, min;cp, (p?yt + 7)) N t—1 2’)?”?—1 S =t 2”?/’?—1 by
©(1) = max (0,09 , — arcsin* | 2 , max O aresin* | =% , .
o (0 b (&4) ien e (W))) with p7_, € [pf_,] and;_; € [07_4].

7 (1) = min (%w?&l + arcsin” (ﬁﬁ) Smingep, (91-% + arcsin” (;o—t))) : One could use bounds éf with (27) and (28) to compute
’ new bounds ofpy and bounds ofpf with (30) and (31) to
Fig. 8 shows in thick black line the first solution b@x¢]("), compute new bounds of?, which might contractw§]™).
obtained for the localization problem of Fig. 2, with= L. Practically, in order to contract the polar bdgu?]™"), the
It is obvious that this box is not minimal. It is indeed largeconstraints of (27), (28), (30) and (31) are iterated in the
than the solution box that should be obtained, as illusirate interval framework using the forward-backward contractor
Fig. 6. For this reason, one could set more constraintgson [23], [8]. This contractor iterates all constraints, whilsing
and#y, with bounds being functions @f andpg respectively. interval notations, without any prior order until no coratian
Once[u?]) is computed, these constraints could be used i® possible. The polar box obtained at timeusing this
contract it at maximal leading to the final solution box. contractor would be at best the box illustrated in Fig. 6egiv



the problem of Fig. 2. It is worth noting that the computation
is performed separately in the four PCSs, in order to select a .l
last the resulting box having the minimal area. The proposed s
algorithm at a considered timeis given in appendix. If an op 5
exact estimate is needed, this estimate would correspond to of | &
the barycenter of the selected polar box at each time-step. € sof
40F - .
IV. SIMULATIONS ok

This section illustrates the performances of the proposed wf 5 E:jh:p':w
method, denoted PIL4 foPolar Interval-based Localization ol . ®_ Estmated posiions |
using 4 PCSs. For this aim, a single mobile node moving e L PO
over 100s in a 100m x 100m square area is considered. The T A

maximal velocity of the node is set to its exact value, equal
to 3.17m/s, Ieading to a maximal distance 6f17m with a Fig. 9. Estimated boxes obtained using PIL4 and PIL1.
localization period ofls. Anchors are assumed to be static
either randomly or uniformly deployed over the surveillanc
area. The sensing area of the sensors is assumed to bercircula
with a 10m sensing range. It is worth noting that connectivity
measurements at a given time step are generated by computing
the distances between the mobile node and all anchors at this

N

o o o
> o ®

Ratios of boxes areas
o
[N

step and then setting to one the measurement corresponding o 2 a0 & % 100

Time-steps (s)

to the anchor having a distance to the node less tifamn In
the following, all simulations are performed on an Intel(R)
Core(TM) i5-2520M CPU (2.5GHz, 4.00GB RAM) using
MATLAB 7.10.0.499.

Ratios of errors

A. Comparison of PIL4 to a one-PCS-based method ’ * Time-steps 5 ® e
This paragraph illustrates the effectiveness of the pregos

method compared to another version of the method denoFéQ:i 10. Ratios of boxes areas PIL4/PIL1 in the top plot. &atf estimation

. - ' errors PIL4/PIL1 in the bottom plot.

PIL1, using only one PCS which is PESHere anchors are

first randomly deployed with a density set @015 anchor TABLE Il

per m?, leading to150 anchors randomly deployed over thecomparison oFPIL4 T PIL1WITH RANDOMLY DEPLOYED ANCHORS.

square area, as shown in Fig. 9. With@n circular sensing

range, the node detects at averagﬂ’]chors at each time Step, Methods || Boxes areas| Estimation errors Computation times

with the number of detected anchors going froto 11. Fig. 9 PIL4 64.44m? 1.99m 0.0064s
shows the polar boxes obtained using PIL4 in straight lirk an  PIL1 82.95m? 2.59m 0.0032s
PIL1 in dashed line. The plot also shows the estimated exact

positions with PIL4 given at the centers of the estimatedeisox TABLE Ili

Let the estimation errors be the distances Separating merse COMPARISON OFPIL4 TO PIL1 WITH UNIFORMLY DEPLOYED ANCHORS.

of the estimated boxes from the exact positions. Fig. 10 shcwMethods ” Boxes arcas| Estimation erors | Computation imes

the ratios of the areas of the boxes obtained with PIL4 ovet

those of PIL1 in the top plot and the ratios of estimation erro___P!t4 59.77m? 2.01m 0.0037s

PIL4 over PIL1 in the bottom plot. As illustrated, the esttesn __ PIL1 71.02m? 2.21m 0.0016s

of PIL4 are more accurate than those of PIL10 anchors are

then randomly deployed if different manners. Both methods

are then performed using these distributions and resudts deployed with a density 06.01 anchor perm?, leading to

averaged over thg attempts in the following. TABLE Il shows 100 anchors regularly spaced over the surveillance area as

the average boxes areas, the average estimation errore@ndgthown in Fig. 13. With this configuration, the node detects

average computation times per time-step obtained with Pllad4 average3.13 anchors per time-step with the number of

and PIL1. According to these results, using four PCSs leadsdetected anchors varying betwezand4 anchors. TABLE |l

a decrease of arouriz2% of the boxes areas ara3% of the shows the average boxes areas, the average estimatios error

estimation errors. In other words, performing computation and the average computation times per time-step obtairtbd wi

more than one PCS leads to more accurate estimates with lBdst and PIL1. According to these results, PIL4 remains more

incertitude, at the cost of the computation time that insesa accurate than PIL1 but more time consuming. It is worth

but remains negligible. noting that the computation times here are less than the ones
PIL4 is then compared to PIL1 with a different anchorebtained above since less anchors are detected leadingsto le

configuration. Here anchors are assumed to be uniformdpservation constraints at each time-step.




TABLE IV

95

COMPARISON OFPIL4 TO PIL40 WITH RANDOMLY DEPLOYED ANCHORS. e o
- — g
Methods || Boxes areas| Estimation errors | Computation times = = = PIL4o box
TS - v
PIL4 64.44m? 1.99m 0.0064s 85/ RS- 3
PiL40 85.99m> 2.67m 0.0067s !
Exo
TABLE V A
COMPARISON OFPIL4 7O PIL40 WITH UNIFORMLY DEPLOYED ANCHORS 751 T
Methods || Boxes areas| Estimation errors | Computation times 2ok
PIL4 59.77m? 2.01m 0.0037s
PiL40 74.85m? 2.26m 0.0038s 65, » = " e - = %
X (m)
Fig. 11. Estimated boxes obtained with PIL4 and PIL40 at t§tep 70.

B. Effectiveness of the mobility model
TABLE VI

In this section, the proposed method is compared to anoﬂ%'MPARSON OFPIL4 7O PIL4R WITH RANDOMLY DEPLOYED ANCHORS.

version of the method using only the observation conssaint ;.04s
denoted PIL40.150 anchors are first randomly deployed i

|| Boxes areas| Estimation errors | Computation times

2
the surveillance area i different manners. TABLE IV shows ;'LL; 22'32’”2 ;??m 00'000006;5
the computation results obtained with both methods average sl - R
over theb attempts. As expected, the use of the mobility TABLE VI

model increases the accuracy of the estimatlof.uniformly  comparISON OFPIL4 To PIL4R WITH UNIFORMLY DEPLOYED ANCHORS
deployed anchors are then considered. TABLE V shows the
results obtained with both methods. Here also using theviethods || Boxes areas| Estimation errors
mobility model reduces the incertitude of estimation. lede PIL4 59.77m?2 2.01m
with the mobility model, the mobility domain is overlapped PiL4r 60.17m? 2.02m
with the intersection area of observation disks, which cedu

the resulting box as shown for instance in Fig. 11. While

PIL4o yields the smallest polar box covering the intersecti D. Impact of the anchors density

of the observation disks, PIL4 yields a smaller box reducedys section studies the impact of the anchors density on the
by the mobility domain. It is worth noting that the mobility ggtimation results of the proposed method PIL4r. The number
box illustrated in gray in the plot corresponds to the polaX b ¢ anchors is varied fron25 to 225 and the distribution of
covering the exact mobility domain. anchors is assumed to be uniform. With the increase of the
anchors density in the network, the average number of detect
anchors per time step varies frdn¥8 to 7.1. In other words,
the number of constraints to be considered in the algorigm i
] ] ) increased, leading to an increase of the estimation acgasic

In this section, the proposed method PIL4 is compared j@u| as an increase of the computation time. Fig. 12 illusta
its relaxed version, denoted PIL4r, yielding the first solut the average number of detected anchors, the estimation erro
box [u]™). In other words, PILAr is a simplified version ofthe poxes areas and the computation time as a function of
PIL4 not performing the contraction phase that iterates tgs number of anchors uniformly deployed in the network.
combined constraints in the forward-backward contradibe as expected, the more we have anchors in the network, the
anchors are first assumed to be randomly deployed withy@yre estimation is accurate and the more the computatia tim
density 0f0.015 anchor perm?. The distribution of anchors jhcreases.
is generated times and all results are averaged over the
cases. TABLE VI shows the average boxes areas, the average ] )
estimation errors and the average computation costs per tifrr COMParison to another interval-based method
step obtained with PIL4 and PIL4r. The use of the contractionIn this section, the proposed method is compared to an
phase in PIL4 leads thus to a slightly higher accuracy, miterval-based method using cartesian coordinates, agnsimo
the cost of a high increase of the computation timé0 [8]. Using both observation and mobility models, this metho
uniformly deployed anchors are then considered. The resudenoted by CIL, yields rectangular boxes estimates cogerin
of both methods are illustrated in TABLE VII. As expectedall possible solutions. 100 uniformly deployed anchors are
PIL4 yields at least as much accuracy as PIL4r, with highérst considered. Fig. 13 shows the boxes obtained using the
computation times due to the iteration of more constrain8IL4r and the CIL methods, whereas TABLE VIl illustrates
In the following, the relaxed version PIL4r of the method ishe computation results. It is obvious that with a uniformly
considered, since it leads to almost the same accuracy ds Pdieployed distribution of anchors, PIL4r yields much higher
with less computation time. accuracy than CIL150 anchors are then randomly deployed

Computation times

0.0037s
0.00055s

C. Effectiveness of the contraction phase



TABLE VIl
COMPARISON OFPIL4R TO CIL WITH UNIFORMLY DEPLOYED ANCHORS.

Det. anch.

o o

Methods || Boxes areas| Estimation errors | Computation times

B PIL4r 60.17m? 2.02m 0.00055s

g 2 CIL 88.80m? 3.01m 0.00165

w
e TABLE IX
g 500 COMPARISON OFPIL4R TO CIL WITH RANDOMLY DEPLOYED ANCHORS.
2 0
<

(167 Methods || Boxes areas| Estimation errors | Computation times
é PIL4r 66.08m> 2.11m 0.00088s
= 25 36 49 64 81 100 121 144 169 196 225 CIL 66.64m2 2.3Tm 0.0028s
Anchor numbers
Fig. 12. Impact of the anchors density. the memory and the computation time consumptions by using

less particles, however with less particles, the soluticeaa
would not be well covered. TABLE XI shows the computation
results obtained with 150 randomly deployed anchors aegrag
over 5 distributions. Here also PIL4r leads to more accurate
estimates with less computation time.
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o V. CONCLUSION

40

This paper proposes an original technique for sensors-local

30r

Node rajeciory ization in wireless sensor networks. The proposed apprizach
20f 0 e sostions ] an anchor-based method using connectivity measurements, a
10} o Erimaeq positons | well as the mobility of the nodes. Based on interval analysis
ol e the solution is provided using polar intervals. An outer rapp
0 10 20 30 40 50 60 70 80 90 100 . . . . . .
xm) imation of the solution is thus performed in four differeiar

coordinate systems. Instead of exact estimates, the pedpos
method yields partial rings including for sure all the pbssi
solutions of the problem. Simulation results corroboréte t
over the surveillance area, fdifferent manners. TABLE Ix €fficiency of the proposed method compared to other methods
shows the computation results averaged overstioases. As baseq on Monte-Carlo or carFeS|an mteryals. Future woiks w
shown in the results table, PIL4r still provide more acoarafOnsider the problem under imperfect circumstances, waere
estimation but here the difference between both results PUSt extension of the proposed method would be proposed.
minor. Indeed, the accuracy of both methods is tightly eslat Realistic simulations based on regl sensors with real RSSI
to the shape of the solution area, which depends on tigasurements would also be considered.

distribution of the anchors in the network.

Fig. 13. Estimated boxes obtained with PIL4r and CIL.
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