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Polar interval-based localization
in mobile sensor networks

Farah Mourad, Paul Honeine, and Hichem Snoussi

Abstract—This paper considers the problem of localization in
uncontrolled mobility sensor networks. Based on connectivity
measurements, the problem is solved using polar intervals.
Computation is performed, in several polar coordinate systems,
using both polar coordinates and interval analysis. Position
estimates are thus partial rings enclosing the exact solution of
the problem. Simulation results corroborate the efficiencyof the
proposed method compared to existing methods, especially to
those handling single coordinate systems.

Index Terms—mobile sensor networks, multi-coordinate sys-
tems, polar intervals, state estimation.

I. I NTRODUCTION

M OBILE Sensor Networks (MSN) are networks com-
posed of a large number of wireless devices having

sensing, computing and communication capabilities [1], [2].
Due to their wireless aspect, sensors in MSN are able to move,
either in a controllable or in an uncontrollable manner. In the
first case, sensors are robots having locomotion capabilities
as well [3], [4]. One could here manage the mobility of the
robots to improve the accuracy of the collected data [5], [6].
In the second case, sensors move in a passive manner, due to
external forces, and thus they need to be localized regularly
[7], [8]. Many applications have been considered for MSN in
military, such as target tracking and enemy surveillance, and
in civil domains, such as environment monitoring, healthcare
and so on [9], [10]. In all applications, it is of great importance
to have correct sensors positions, since sensed data are tightly
related to the locations where measurements are made.

Many works have considered the problem of localization
in uncontrolled mobility sensor networks [11], [12]. The
first intuitive solution is to equip all sensors with Global
Positioning Systems (GPS) [13]. However, this solution is
impractical in indoor applications where GPS signals are not
reliable. Alternative solutions define two types of sensors:
anchors and non-anchor nodes. Anchors are sensors having
known positions, whereas non-anchor nodes, or simply nodes,
are unaware of their locations and hence they need to be
localized. Generally, anchors are either static, having pre-
defined positions, or mobile but tracked or moved by the user.
The existing anchor-based algorithms could be divided into
two categories: range-based and range-free algorithms. Range-
based schemes consist of estimating the distances separating
the nodes from anchors, and then combining these distances.
Four distance estimation techniques have been mainly con-
sidered, using Time Of Arrival (TOA) [14], Time Difference
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Of Arrival (TDOA) [15], Angle Of Arrival (AOA) [16], or
Received Signal Strength Indicator (RSSI) [11], [12]. TOA-
based methods measure the travel times of signals exchanged
between the sensors, whereas TDOA and AOA methods mea-
sure the difference of arrival times or the angles at reception
of exchanged signals. While TOA, TDOA and AOA-based
methods need extra hardware such as timers and synchronous
clocks, RSSI-based methods are simpler, inexpensive and less-
energy consuming using only powers of exchanged signals,
but they are more challenging because of the reflection, the
diffraction and the scattering of signals.

The alternative category to range-based localization con-
sists of range-free algorithms. These techniques yield coarse-
grained location estimates, leading to more than one possible
solution to the problem. In this category, one could refer to
connectivity-based techniques, where RSSI is compared to
a strength threshold leading to bounds over distances [8].
Other range-free techniques are based on hop counts between
anchors and nodes. Having per-hop distance, obtained through
anchors communication, one could estimate the distances sep-
arating nodes from anchors [17], [18]. Distances information
are then combined using different computation techniques,
such as the Robust Optimization approach [19], the particle
filter based on Monte-Carlo [7], the variational filter [20],
interval analysis [21], Sigma-Point Kalman Smoothers as in
[22], etc.

This paper considers the problem of localization in uncon-
trolled mobility sensor networks. The proposed technique is
a range-free anchor-based method. Using connectivity mea-
surements, the proposed method also takes advantage of the
mobility of the nodes to set the problem. The novelty of this
method is to use polar intervals to solve the problem. Indeed,
position estimation is performed using polar coordinates in
the interval framework. Estimates are thus partial rings, called
polar boxes, enclosing the exact solution of the problem.
Based on interval analysis [23], computation is handled in four
different polar coordinate systems, leading to four position
estimates at each time-step. Only one polar box is then selected
at a considered step. It corresponds to the estimate having the
smallest area, being the solution encloser presenting the least
incertitude. The three remaining polar boxes are also kept in
the memory to be used in the following time-step computation.
Simulation results using Matlab corroborate the efficiencyof
the proposed method compared to other methods, especially
to those handling computation in a single coordinate system.

The rest of the paper is organized as follows. Section II
introduces the localization problem. Section III describes the
proposed algorithm to solve the problem. Simulation results
are given in Section IV whereas Section V concludes the paper.
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II. PROBLEM STATEMENT

Assume that the network is composed ofNa anchors and
Nu nodes, deployed in a two-dimensional square area, denoted
by Ω and havingu0 as side lengths. Letai,t, i ∈ {1, ..., Na},
anduj,t, j ∈ {1, ..., Nu}, be the respective positions of these
sensors at timet. The aim of the method is to estimate all
uj,t positions usingai,t information, as well as previous
estimates. In order to reduce the communication costs, one
assumes that nodes exchange information only with anchors.
For this reason and without loss of generality, only one node
ut is considered in this paper and the indexj is withdrawn.
This paper handles computation using polar coordinates of
sensors. In other words, the aim of the method is to estimate
the polar coordinates of the node using the polar coordinates
of some anchors. For this reason, one Polar Coordinate System
(PCS), denoted by PCSx, is first considered. Without loss of
generality, the origin Ox of PCSx is located at the low-left
corner of the surveillance areaΩ. An illustration is shown
in Fig. 1. Here, the sensors polar coordinates are given by
a
x

i,t =
(

ρxi,t, θ
x

i,t

)

and u
x
t = (ρxt , θ

x
t ), whereρx denotes the

distance from the origin Ox to the sensor andθx denotes the
angle measured anticlockwise from the horizontal x-axis to
the line joining Ox to the sensor. According to this definition,
θxi,t ∈ [0, π

2 ], θxt ∈ [0, π
2 ], ρxi,t ∈ [0, ρm] and ρxt ∈ [0, ρm],

where ρm =
√
2.u0 is the length of the diagonal of the

surveillance area. It is worth noting that an infinite numberof
PCSs could be considered to define the localization problem.
In the following, the localization problem is first described in
PCSx, and afterwards, it is reformulated in other PCSs.

A. Problem statement in PCSx

The proposed method takes advantage of the mobility of the
node to estimate nodes positions. The localization problemis
thus defined using a mobility model, in addition to observation
constraints. Any available information about the mobilityof
the node could be used to set the mobility constraints. This
paper considers a general model assuming that the maximal
velocity of the node is known and denoted byvm. If ∆t is
the localization period, then the maximal distance that could
be traveled by the node between two consecutive time-steps is
equal toDm = ∆t.vm. The mobility constraint is then given
by the following,

dt ≤ Dm, (1)

where dt is the value of the distance traveled by the node
between time-stepst − 1 and t. Let u

x
t−1 =

(

ρxt−1, θ
x
t−1

)

be the position of the node in PCSx at time t − 1. Thendt
expressed in PCSx is the length of the sideux

t−1u
x
t of the

triangle having the origin Ox, ux
t andux

t−1 as vertices. In this
triangle, the lengths of Oxux

t and Oxux
t−1 are given byρxt and

ρxt−1 respectively, as shown in Fig. 1. The distancedt could
then be computed using the generalized Pythagorean theorem
as follows,

d2t = ρxt
2 + ρxt−1

2 − 2ρxtρ
x

t−1 cos
(

θxt − θxt−1

)

, (2)

where|θxt −θxt−1| is the angle measured at the vertex Ox in the
considered triangle. The mobility constraint is then rewritten

u
x
t

u0

u0

θx = 0

θx = π
2

u
x
t−1

a
x

i,t

Ox

Ω

ρxi,t

ρxt

ρxt−1

θxi,t θxt

θxt−1

di,t

dt

Fig. 1. Polar coordinates in PCSx.

as follows,

ρxt
2 + ρxt−1

2 − 2ρxtρ
x

t−1 cos
(

θxt − θxt−1

)

≤ D2
m. (3)

Graphically, this constraint yields a disk, called mobility disk,
having the previous position as center andDm as radius.

In addition to the mobility model, the proposed method is
a range-free method based on RSSI information. At each time
step, every anchor broadcasts signals in the network with the
same initial power. According to the Okumura-Hata model
[24], the strengths of the signals decrease monotonically with
the increase of their traveled distances as follows,

ξi,t = ξ0

(

d0
di,t

)α

, (4)

whereξi,t is the strength of the signal emitted by the anchor
i and received by the mobile node at timet, ξ0 is the strength
measured at a reference distanced0 from the anchori, di,t is
the Euclidian distance between the anchori and the node at
time t andα is the path loss exponent. In practice, the RSSI of
a signal could be modified due to the reflection, the diffraction
or the scattering of the signal. Moreover the values ofξ0 and
α may vary from an anchor to the other. This may lead to
inaccurate distances estimates. For this reason, the proposed
method uses connectivity information, instead of using dis-
tances estimates. In other words, received strength valuesare
only used to be compared to a thresholdξr, corresponding to
the sensing ranger of the sensors. Ifξi,t ≥ ξr, the anchori
is assumed to be within the sensing range of the node at time
t. Otherwise, the anchori is assumed to be too far and its
information is not used. Connectivity measurements are then
one-bit information generated as follows,

zi,t =

{

1 if ξi,t ≥ ξr
0 otherwise

, i ∈ {1, ..., Na}. (5)

Let It be the set of indices of all anchors havingzi,t = 1 at
time t. The anchors denoted inIt are assumed to be within
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the sensing range of the node, and thus they are located at
distances from the node less thanr,

∀i ∈ It, di,t ≤ r. (6)

One could obtain the expression of the distancedi,t between
the anchori and the considered node in PCSx by considering
the triangle having the origin Ox, ax

i,t andu
x
t as vertices, as

shown in Fig. 1. The lengths of the sides Ox
u
x
t and Oxax

i,t are
given by ρxt and ρxi,t respectively, whereasdi,t is the length
of the sideux

ta
x

i,t in the triangle.di,t could then be computed
using the generalized Pythagorean theorem as follows,

d2i,t = ρxt
2 + ρxi,t

2 − 2ρxt ρ
x

i,t cos
(

θxt − θxi,t
)

, (7)

with |θxt − θxi,t| being the angle measured at the vertex Ox in
the considered triangle. The observation constraints are thus
rewritten as follows,

ρxt
2 + ρxi,t

2 − 2ρxt ρ
x

i,t cos
(

θxt − θxi,t
)

≤ r2, i ∈ It. (8)

This leads to a set of disks, called observation disks, having
the detected anchors as centers and the communication range
r as radii.

The localization problem is then defined in the considered
PCS by both the mobility and the observation models as
follows,
∣

∣

∣

∣

∣

∣

ρxt
2 + ρxt−1

2 − 2ρxt ρ
x
t−1 cos

(

θxt − θxt−1

)

≤ D2
m,

ρxt
2 + ρxi,t

2 − 2ρxtρ
x
i,t cos

(

θxt − θxi,t
)

≤ r2, i ∈ It,
ρxt ∈ [0, ρm], θxt ∈ [0, π2 ],

(9)

whereρxi,t, θ
x

i,t, i ∈ It, r, Dm and ρm have known values,
andρxt−1 andθxt−1 are estimated at timet−1. Graphically, the
problem at a given timet consists of overlapping the mobility
disk, centered on the previous position and havingDm as
radius, with a set of observation disks, havingr as radii and
the detected anchors as centers. An example of such a problem
with three detected anchors is shown in Fig. 2. The solution
of the problem is given by the overlapping area of all disks,
as shown in dark gray in the plot.

B. Problem statement in several PCSs

In the previous section, the localization problem is defined
in a specific PCS, denoted by PCSx, having its origin Ox at
the low-left corner ofΩ. In PCSx, all distances to the origin
ρx are included in[0, ρm] and all anglesθx are included in
[0, π2 ]. One could define the localization problem in an infinite
number of PCSs over the surveillance areaΩ. However, only
three PCSs other than PCSx could be set withρ ∈ [0, ρm] and
θ ∈ [0, π2 ]. These PCSs, denoted by PCSy, PCSq and PCSp,
have their respective origins Oy, Oq and Op at the low-right,
the up-right and the up-left corners ofΩ respectively. Also,
they are rotated anticlockwise respectively by angles ofπ

2 , π
and 3π

2 with respect to PCSx. An illustration of these PCSs
is given in Fig. 3. According to this definition, the bounds
over the distances to origins and the angles remain unchanged.
Observation and mobility constraints are also valid, which

u
x
t

u
x
t−1

a
x
1,t

a
x
2,t

a
x
3,t

Ox

Ω

ρxt

θxt

r

r

r

Dm

Fig. 2. An example of a localization problem in PCSx at time t.
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Ω Ω
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Fig. 3. Polar coordinates in four different PCSs.

leads to the following formulation of the localization problem
in any of these PCSs,
∣

∣

∣

∣

∣

∣

ρ⋄t
2 + ρ⋄t−1

2 − 2ρ⋄t ρ
⋄
t−1 cos

(

θ⋄t − θ⋄t−1

)

≤ D2
m,

ρ⋄t
2 + ρ⋄i,t

2 − 2ρ⋄tρ
⋄
i,t cos

(

θ⋄t − θ⋄i,t
)

≤ r2, i ∈ It,
ρ⋄t ∈ [0, ρm], θ⋄t ∈ [0, π2 ],

(10)

where the superindex⋄ ∈ {x, y, q, p}, r andDm are known,
ρ⋄i,t and θ⋄i,t are anchors coordinates expressed differently in
the given PCSs andρ⋄t−1 and θ⋄t−1 are estimated at time
t − 1, each in its corresponding PCS. Assume that anchors
coordinates are given in the first PCS, denoted by PCSx.
One could deduce geometrically the expressions of these
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TABLE I
GLOSSARY OF TERMS.

Terms Definitions

⋄ Designation of the considered PCS,⋄ ∈ {x, y, q, p}

ρ⋄
t 1st polar coordinate of the node in PCS⋄ at timet

θ⋄
t 2nd polar coordinate of the node in PCS⋄ at time t

u
⋄
t Polar coordinates vector of the node in PCS⋄ at time t

ρ⋄
i,t 1st polar coordinate of the anchori in PCS⋄ at timet

θ⋄
i,t 2nd polar coordinate of the anchori in PCS⋄ at time t

a
⋄
i,t Polar coordinates vector of the anchori in PCS⋄ at time t

Dm Maximal distance traveled by the node

r Communication range

ρm Length of the diagonal of the surveillance area

u0 Length of a side of the surveillance area

coordinates in the remaining PCSs as follows,
∣

∣

∣

∣

∣

∣

ρyi,t =
√

ρxi,t
2 + u2

0 − 2ρxi,tu0 cos
(

θxi,t
)

,

θyi,t = arctan
u0−ρx

i,t cos(θx

i,t)
ρx

i,t sin(θx

i,t)
,

∣

∣

∣

∣

∣

∣

ρqi,t =
√

ρxi,t
2 + 2u2

0 − 2ρxi,tu0

(

cos
(

θxi,t
)

+ sin
(

θxi,t
))

,

θqi,t = arctan
u0−ρx

i,t sin(θ
x

i,t)
u0−ρx

i,t cos(θx

i,t)
,

∣

∣

∣

∣

∣

∣

ρpi,t =
√

ρxi,t
2 + u2

0 − 2ρxi,tu0 sin
(

θxi,t
)

,

θpi,t = arctan
ρx

i,t cos(θ
x

i,t)
u0−ρx

i,t sin(θx

i,t)
.

(11)
Once the localization problem is set in PCSx, PCSy, PCSq

and PCSp, one could choose a single PCS among these four
PCSs to solve the problem. Another way to handle the problem
consists of performing computation in all the defined PCSs
and then select the best resulting solution, as it is shown inthe
following section. A glossary of all terms is given in TABLE I.

III. POLAR-INTERVAL LOCALIZATION ALGORITHM

Solving the localization problem consists of estimating the
coordinates of the considered node at each time step, given
the constraints of (10). One could choose a single PCS, for
instance PCSx, to compute the solution. In a different manner,
this paper proposes to handle the problem in all defined PCSs
and then choosing the best solution between the resulting ones.
Computation is thus performed in each PCS of PCSx, PCSy,
PCSq and PCSp, leading to four estimates of the position of
the node at each time-step. In the following, the proposed
method, based on interval analysis [23], is first described,and
then the localization algorithm is presented.

A. Description of the method

The solution of the problem is proposed using interval
analysis [23]. Instead of computing an exact position estimate
at each time step, the method consists of performing an outer
estimation of the solution. In other words, it aims at bounding
the coordinates of the node, in the way to cover all possible so-
lutions of the problem. Consider that computation is performed
in a specific PCS, denoted by PCS⋄ with ⋄ ∈ {x, y, q, p}. The

solution is then given by a two-dimensional interval, denoted
by [u⋄

t ]. Also called polar box,[u⋄
t ] is defined by the cartesian

product of two real intervals[ρ⋄t ] and [θ⋄t ], defined over the
polar coordinatesρ⋄t andθ⋄t respectively,

[u⋄
t ] = [ρ⋄t ]× [θ⋄t ] = [ρ⋄

t
, ρ⋄t ]× [θ⋄t , θ

⋄

t ], (12)

whereρ⋄
t
= inf ([ρ⋄t ]) andρ⋄t = sup ([ρ⋄t ]) denote respectively

the lower and the higher endpoints of the real interval[ρ⋄t ]
andθ⋄t = inf ([θ⋄t ]) andθ

⋄

t = sup ([θ⋄t ]) denote respectively the
lower and the higher endpoints of the real interval[θ⋄t ]. Having
the localization problem of (10) at timet, solving the problem
consists of finding the minimal polar box[u⋄

t ] including
all possible solutions. Starting with an initial box[u]0, the

proposed method aims at minimizing the widths
(

ρ⋄t − ρ⋄
t

)

and
(

θ
⋄

t − θ⋄t

)

of [ρ⋄t ] and [θ⋄t ] respectively according to the

constraints of (10). The initial polar box[u]0 could be defined
by [0, ρm]×[0, π2 ], sinceρ⋄t ∈ [0, ρm] andθ⋄t ∈ [0, π2 ] as shown
in Section II.

Graphically, the solution box is a partial ring, having the
origin O⋄ of the considered PCS as center andρ⋄

t
and ρ⋄t

as inner and outer radii respectively. Moreover, it is defined
between the lines starting at the origin and havingθ⋄t andθ

⋄

t as
angles. The best solution box corresponding to the problem of
Fig. 2 is given in thick black line in Fig. 4. Here the illustration
is shown in PCSx and the previous estimate is assumed to be
exact. In fact, according to the proposed method, the previous
estimate is a polar box denoted by[ux

t−1]. Propagating[ux
t−1]

using the mobility disk leads to a larger domain, defined by
the union of all the disks obtained by the propagation of each
point of [ux

t−1] with the mobility model. An illustration of this
domain, called mobility domain, is given in Fig. 5. Actually,
instead of using the mobility disk as in Fig. 4 and since the
previous solution is a box, one should overlap the mobility
domain with the observation disks to define the solution polar
box in the considered PCS. An illustration of the solution
box of PCSx is given in black in Fig. 6. It is clear that this
box is larger than the one illustrated in Fig. 4. This way the
resulting box is guaranteed to contain the exact solution of
the problem since it takes previous and actual incertitude into
consideration.

Fig. 7 illustrates the polar boxes obtained in PCSx, PCSy,
PCSq and PCSp. Here the previous estimates are assumed to
be exact for simplicity of illustration. In fact, for each PCS of
superindex⋄ ∈ {x, y, q, p}, the corresponding previous polar
box [u⋄

t−1] should be employed to compute the actual estimate
[u⋄

t ]. Once the four estimates are obtained, areas of these
estimates are computed as follows,

Ar ([u⋄
t ]) =

(

θ
⋄

t − θ⋄t

)(

ρ⋄t
2 − ρ⋄

t

2
)

2
, (13)

where [u⋄
t ] = [ρ⋄

t
, ρ⋄t ] × [θ⋄t , θ

⋄

t ]. The values of these areas
represent the incertitude obtained while computing the min-
imal encloser of the solution in the corresponding PCS. For
this reason, and since all computed boxes include the solution
area of the problem, the polar box having the minimal area
is selected to be the solution box at the considered time-step.
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t−1
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1,t

a
x
2,t

a
x
3,t
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Ω

ρx
t
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x
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r

Fig. 4. Polar box obtained in PCSx for the problem of Fig. 2 with an exact
previous estimate.

*

*
*

*
*

*
*

*

[ux
t−1]

Ox

Ω

Dm

Fig. 5. Propagation of the previous polar box using the mobility model.

The three remaining boxes are also kept in the memory to be
used with the mobility model in the following time-step.

B. Proposed algorithm

Consider the problem of (10) defined in one PCS, denoted
by PCS⋄, ⋄ ∈ {x, y, q, p}. In order to compute the solution box
[u⋄

t ] at a given timet, one should set all available constraints
on ρ⋄t and θ⋄t according to (10). The first general constraints
to be set are given by the dimensions of the surveillance area,

0 ≤ ρ⋄t ≤ ρm and 0 ≤ θ⋄t ≤ π

2
. (14)

Moreover, since the cosine of an angle is always less than
1 and ρ⋄t and ρ⋄i,t are always positive fori ∈ It, then
(

ρ⋄t − ρ⋄i,t
)2 ≤ ρ⋄t

2 + ρ⋄i,t
2 − 2ρ⋄t ρ

⋄
i,t cos

(

θ⋄t − θ⋄i,t
)

. Hence,
each observation constraint of (10), fori ∈ It, leads to the
following constraint,

(

ρ⋄t − ρ⋄i,t
)2 ≤ r2 ⇔ ρ⋄i,t − r ≤ ρ⋄t ≤ ρ⋄i,t + r. (15)

[ux
t ]

[ux
t−1]

a
x
1,t

a
x
2,t

a
x
3,t

Ox

Ω

ρx
t

ρxt

θxt θ
x

t

Dm

r

Fig. 6. Polar box obtained in PCSx for the problem of Fig. 2 taking the
previous polar box into consideration.

Ω Ω

ΩΩ

PCSx

[ux

t ]

Ox

PCSy

[uy

t ]

Oy

PCSq

[uq
t ]

Oq

PCSp

[up

t ]

Op

t − 1

t − 1

t − 1t − 1

Dm

Dm

DmDm

r r

r

r

Fig. 7. Solutions of the problem in the four predefined PCSs.

In the same manner, the mobility constraint leads to the
following,

ρ⋄t−1 −Dm ≤ ρ⋄t ≤ ρ⋄t−1 +Dm, (16)

where the exact value ofρ⋄t−1 is unknown, but according to the
previous description,ρ⋄t−1 ∈ [ρ⋄t−1] with [ρ⋄t−1] = [ρ⋄

t−1
, ρ⋄t−1].

Then,

ρ⋄
t−1

−Dm ≤ ρ⋄t ≤ ρ⋄t−1 +Dm. (17)
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Combining all constraints overρ⋄t leads then to the following,

max
(

0, ρ⋄
t−1

−Dm,maxi∈It

(

ρ⋄i,t − r
)

)

≤ ρ⋄t 99K

≤ min
(

ρm, ρ⋄t−1 +Dm,mini∈It

(

ρ⋄i,t + r
))

.
(18)

On the other hand,

ρ⋄t
2 + ρ⋄i,t

2 − 2ρ⋄t ρ
⋄
i,t cos

(

θ⋄t − θ⋄i,t
)

=99K
(

ρ⋄t − ρ⋄i,t cos
(

θ⋄t − θ⋄i,t
))2

+ ρ⋄i,t
2 sin2

(

θ⋄t − θ⋄i,t
)

.
(19)

Then each observation constraint of (10) leads inevitably to
the following,

ρ⋄i,t
2 sin2

(

θ⋄t − θ⋄i,t
)

≤ r2 ⇔ − r

ρ⋄i,t
≤ sin

(

θ⋄t − θ⋄i,t
)

≤ r

ρ⋄i,t
.

(20)
If r

ρ⋄
i,t

≤ 1, for i ∈ It, and since
(

θ⋄t − θ⋄i,t
)

∈ [−π
2 ,

π
2 ] where

the sine function is monotonically increasing, the previous
constraint leads to

θ⋄i,t − arcsin∗

(

r

ρ⋄i,t

)

≤ θ⋄t ≤ θ⋄i,t + arcsin∗

(

r

ρ⋄i,t

)

, (21)

wherearcsin∗ (x) = arcsin (min (1, x)). In the same manner,
the mobility constraint leads to the following,

θ⋄t−1 − arcsin∗
(

Dm

ρ⋄t−1

)

≤ θ⋄t ≤ θ⋄t−1 + arcsin∗
(

Dm

ρ⋄t−1

)

.

(22)
Since ρ⋄t−1 ∈ [ρ⋄t−1] and θ⋄t−1 ∈ [θ⋄t−1] with [ρ⋄t−1] =

[ρ⋄
t−1

, ρ⋄t−1] and [θ⋄t−1] = [θ⋄t−1, θ
⋄

t−1], and since the arcsine
function is monotonically increasing on the considered do-
main, then

θ⋄t−1 − arcsin∗

(

Dm

ρ⋄
t−1

)

≤ θ⋄t ≤ θ
⋄

t−1 + arcsin∗

(

Dm

ρ⋄
t−1

)

.

(23)
Combining all constraints overθ⋄t leads then to the following,

max

(

0, θ⋄t−1 − arcsin∗

(

Dm
ρ⋄
t−1

)

,maxi∈It

(

θ⋄i,t − arcsin∗

(

r
ρ⋄
i,t

)))

≤ θ⋄t 99K

≤ min

(

π
2

, θ⋄t−1 + arcsin∗

(

Dm
ρ⋄
t−1

)

,mini∈It

(

θ⋄i,t + arcsin∗

(

r
ρ⋄
i,t

)))

.

(24)
One could then define the first solution box by

[u⋄
t ]

(1) = [ρ⋄
t

(1), ρ⋄t
(1)]× [θ⋄t

(1)
, θ

⋄

t

(1)
], (25)

with

ρ⋄
t
(1) = max

(

0, ρ⋄
t−1

− Dm, maxi∈It

(

ρ⋄i,t − r
))

,

ρ⋄t
(1) = min

(

ρm, ρ⋄t−1 + Dm,mini∈It

(

ρ⋄i,t + r
))

,

θ⋄t
(1) = max

(

0, θ⋄t−1 − arcsin∗

(

Dm
ρ⋄
t−1

)

,maxi∈It

(

θ⋄i,t − arcsin∗

(

r
ρ⋄
i,t

)))

,

θ⋄t
(1) = min

(

π
2

, θ⋄t−1 + arcsin∗

(

Dm
ρ⋄
t−1

)

, mini∈It

(

θ⋄i,t + arcsin∗

(

r
ρ⋄
i,t

)))

.

(26)
Fig. 8 shows in thick black line the first solution box[u⋄

t ]
(1),

obtained for the localization problem of Fig. 2, with⋄ = x.
It is obvious that this box is not minimal. It is indeed larger
than the solution box that should be obtained, as illustrated in
Fig. 6. For this reason, one could set more constraints onρ⋄t
andθ⋄t , with bounds being functions ofθ⋄t andρ⋄t respectively.
Once[u⋄

t ]
(1) is computed, these constraints could be used to

contract it at maximal leading to the final solution box.

[ux

t ]
(1)

[ux
t−1]

a1

a2

a3

Ox

Ω

ρm

ρx
t−1

− Dm

ρx1,t − r

ρx2,t − r

ρx3,t − r

ρxt−1 + Dm

ρx1,t + r

ρx2,t + r

ρx3,t + r

θxt−1 − arcsin∗

(

Dm
ρx
t−1

)

θx1,t − arcsin∗

(

r
ρx
1,t

)

θx2,t − arcsin∗

(

r
ρx
2,t

)

θx3,t − arcsin∗

(

r
ρx
3,t

)

θxt−1 + arcsin∗

(

Dm
ρx
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)

θx1,t + arcsin∗

(

r
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1,t
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(
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(

r
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3,t

)
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r

Fig. 8. First solution box obtained for the localization problem of Fig. 2 in
PCSx.

On the first hand, observation constraints of (10) and
equation (19) lead to the following constraints withi ∈ It,

ρ⋄
i
(t) cos

(

θ⋄t − θ⋄
i,t

)

−

√

r2 − ρ⋄
i,t

2 sin2
(

θ⋄t − θ⋄
i,t

)

≤ ρ⋄t 99K

≤ ρ⋄i,t cos
(

θ⋄t − θ⋄i,t

)

+

√

r2 − ρ⋄
i,t

2 sin2
(

θ⋄t − θ⋄
i,t

)

.

(27)

In the same manner, the mobility constraint leads to the
following,

ρ⋄t−1 cos
(

θ⋄t − θ⋄t−1

)

−

√

D2
m − ρ⋄t−1

2 sin2
(

θ⋄t − θ⋄t−1

)

≤ ρ⋄t 99K

≤ ρ⋄t−1 cos
(

θ⋄t − θ⋄t−1

)

+

√

D2
m − ρ⋄t−1

2 sin2
(

θ⋄t − θ⋄t−1

)

,

(28)

with ρ⋄t−1 ∈ [ρ⋄t−1] andθ⋄t−1 ∈ [θ⋄t−1].
On the second hand, observation constraints of (10) could

be reformulated as follows,

cos
(

θ⋄t − θ⋄i,t
)

≥
ρ⋄t

2 + ρ⋄i,t
2 − r2

2ρ⋄t ρ
⋄
i,t

. (29)

Then,

θ⋄
i,t − arccos

(

ρ⋄t
2+ρ⋄i,t

2−r2

2ρ⋄t ρ⋄
i,t

)

≤ θ⋄
t ≤ θ⋄

i,t + arccos

(

ρ⋄t
2+ρ⋄i,t

2−r2

2ρ⋄t ρ⋄
i,t

)

.

(30)

In the same manner, the mobility constraint leads to the
following,

θ⋄t−1 − arccos





ρ⋄t
2+ρ⋄t−1

2−D2
m

2ρ⋄t ρ⋄
t−1



 ≤ θ⋄t ≤ θ⋄t−1 + arccos





ρ⋄t
2+ρ⋄t−1

2−D2
m

2ρ⋄t ρ⋄
t−1



 ,

(31)

with ρ⋄t−1 ∈ [ρ⋄t−1] andθ⋄t−1 ∈ [θ⋄t−1].
One could use bounds ofθ⋄t with (27) and (28) to compute

new bounds ofρ⋄t and bounds ofρ⋄t with (30) and (31) to
compute new bounds ofθ⋄t , which might contract[u⋄

t ]
(1).

Practically, in order to contract the polar box[u⋄
t ]

(1), the
constraints of (27), (28), (30) and (31) are iterated in the
interval framework using the forward-backward contractor
[23], [8]. This contractor iterates all constraints, whileusing
interval notations, without any prior order until no contraction
is possible. The polar box obtained at timet using this
contractor would be at best the box illustrated in Fig. 6, given



7

the problem of Fig. 2. It is worth noting that the computation
is performed separately in the four PCSs, in order to select at
last the resulting box having the minimal area. The proposed
algorithm at a considered timet is given in appendix. If an
exact estimate is needed, this estimate would correspond to
the barycenter of the selected polar box at each time-step.

IV. SIMULATIONS

This section illustrates the performances of the proposed
method, denoted PIL4 forPolar Interval-based Localization
using 4 PCSs. For this aim, a single mobile node moving
over 100s in a 100m× 100m square area is considered. The
maximal velocity of the node is set to its exact value, equal
to 3.17m/s, leading to a maximal distance of3.17m with a
localization period of1s. Anchors are assumed to be static
either randomly or uniformly deployed over the surveillance
area. The sensing area of the sensors is assumed to be circular
with a 10m sensing range. It is worth noting that connectivity
measurements at a given time step are generated by computing
the distances between the mobile node and all anchors at this
step and then setting to one the measurement corresponding
to the anchor having a distance to the node less than10m. In
the following, all simulations are performed on an Intel(R)
Core(TM) i5-2520M CPU (2.5GHz, 4.00GB RAM) using
MATLAB 7.10.0.499.

A. Comparison of PIL4 to a one-PCS-based method

This paragraph illustrates the effectiveness of the proposed
method, compared to another version of the method, denoted
PIL1, using only one PCS which is PCSx. Here anchors are
first randomly deployed with a density set to0.015 anchor
per m2, leading to150 anchors randomly deployed over the
square area, as shown in Fig. 9. With a10m circular sensing
range, the node detects at average5 anchors at each time step,
with the number of detected anchors going from1 to 11. Fig. 9
shows the polar boxes obtained using PIL4 in straight line and
PIL1 in dashed line. The plot also shows the estimated exact
positions with PIL4 given at the centers of the estimated boxes.
Let the estimation errors be the distances separating the centers
of the estimated boxes from the exact positions. Fig. 10 shows
the ratios of the areas of the boxes obtained with PIL4 over
those of PIL1 in the top plot and the ratios of estimation errors
PIL4 over PIL1 in the bottom plot. As illustrated, the estimates
of PIL4 are more accurate than those of PIL1.150 anchors are
then randomly deployed in5 different manners. Both methods
are then performed using these distributions and results are
averaged over the5 attempts in the following. TABLE II shows
the average boxes areas, the average estimation errors and the
average computation times per time-step obtained with PIL4
and PIL1. According to these results, using four PCSs leads to
a decrease of around22% of the boxes areas and23% of the
estimation errors. In other words, performing computationin
more than one PCS leads to more accurate estimates with less
incertitude, at the cost of the computation time that increases
but remains negligible.

PIL4 is then compared to PIL1 with a different anchors
configuration. Here anchors are assumed to be uniformly
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Fig. 9. Estimated boxes obtained using PIL4 and PIL1.
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Fig. 10. Ratios of boxes areas PIL4/PIL1 in the top plot. Ratios of estimation
errors PIL4/PIL1 in the bottom plot.

TABLE II
COMPARISON OFPIL4 TO PIL1 WITH RANDOMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 64.44m2 1.99m 0.0064s

PIL1 82.95m2 2.59m 0.0032s

TABLE III
COMPARISON OFPIL4 TO PIL1 WITH UNIFORMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 59.77m2 2.01m 0.0037s

PIL1 71.02m2 2.21m 0.0016s

deployed with a density of0.01 anchor perm2, leading to
100 anchors regularly spaced over the surveillance area as
shown in Fig. 13. With this configuration, the node detects
at average3.13 anchors per time-step with the number of
detected anchors varying between2 and4 anchors. TABLE III
shows the average boxes areas, the average estimation errors
and the average computation times per time-step obtained with
PIL4 and PIL1. According to these results, PIL4 remains more
accurate than PIL1 but more time consuming. It is worth
noting that the computation times here are less than the ones
obtained above since less anchors are detected leading to less
observation constraints at each time-step.
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TABLE IV
COMPARISON OFPIL4 TO PIL4O WITH RANDOMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 64.44m2 1.99m 0.0064s

PIL4o 85.99m2 2.67m 0.0067s

TABLE V
COMPARISON OFPIL4 TO PIL4O WITH UNIFORMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 59.77m2 2.01m 0.0037s

PIL4o 74.85m2 2.26m 0.0038s

B. Effectiveness of the mobility model

In this section, the proposed method is compared to another
version of the method using only the observation constraints,
denoted PIL4o.150 anchors are first randomly deployed in
the surveillance area in5 different manners. TABLE IV shows
the computation results obtained with both methods averaged
over the 5 attempts. As expected, the use of the mobility
model increases the accuracy of the estimation.100 uniformly
deployed anchors are then considered. TABLE V shows the
results obtained with both methods. Here also using the
mobility model reduces the incertitude of estimation. Indeed,
with the mobility model, the mobility domain is overlapped
with the intersection area of observation disks, which reduces
the resulting box as shown for instance in Fig. 11. While
PIL4o yields the smallest polar box covering the intersection
of the observation disks, PIL4 yields a smaller box reduced
by the mobility domain. It is worth noting that the mobility
box illustrated in gray in the plot corresponds to the polar box
covering the exact mobility domain.

C. Effectiveness of the contraction phase

In this section, the proposed method PIL4 is compared to
its relaxed version, denoted PIL4r, yielding the first solution
box [u⋄

t ]
(1). In other words, PIL4r is a simplified version of

PIL4 not performing the contraction phase that iterates the
combined constraints in the forward-backward contractor.The
anchors are first assumed to be randomly deployed with a
density of0.015 anchor perm2. The distribution of anchors
is generated5 times and all results are averaged over the5
cases. TABLE VI shows the average boxes areas, the average
estimation errors and the average computation costs per time-
step obtained with PIL4 and PIL4r. The use of the contraction
phase in PIL4 leads thus to a slightly higher accuracy, at
the cost of a high increase of the computation time.100
uniformly deployed anchors are then considered. The results
of both methods are illustrated in TABLE VII. As expected,
PIL4 yields at least as much accuracy as PIL4r, with higher
computation times due to the iteration of more constraints.
In the following, the relaxed version PIL4r of the method is
considered, since it leads to almost the same accuracy as PIL4
with less computation time.
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Fig. 11. Estimated boxes obtained with PIL4 and PIL4o at time-step70.

TABLE VI
COMPARISON OFPIL4 TO PIL4R WITH RANDOMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 64.44m2 1.99m 0.0064s

PIL4r 66.08m2 2.11m 0.00088s

TABLE VII
COMPARISON OFPIL4 TO PIL4R WITH UNIFORMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4 59.77m2 2.01m 0.0037s

PIL4r 60.17m2 2.02m 0.00055s

D. Impact of the anchors density

This section studies the impact of the anchors density on the
estimation results of the proposed method PIL4r. The number
of anchors is varied from25 to 225 and the distribution of
anchors is assumed to be uniform. With the increase of the
anchors density in the network, the average number of detected
anchors per time step varies from0.78 to 7.1. In other words,
the number of constraints to be considered in the algorithm is
increased, leading to an increase of the estimation accuracy as
well as an increase of the computation time. Fig. 12 illustrates
the average number of detected anchors, the estimation error,
the boxes areas and the computation time as a function of
the number of anchors uniformly deployed in the network.
As expected, the more we have anchors in the network, the
more estimation is accurate and the more the computation time
increases.

E. Comparison to another interval-based method

In this section, the proposed method is compared to an
interval-based method using cartesian coordinates, as shown in
[8]. Using both observation and mobility models, this method,
denoted by CIL, yields rectangular boxes estimates covering
all possible solutions. 100 uniformly deployed anchors are
first considered. Fig. 13 shows the boxes obtained using the
PIL4r and the CIL methods, whereas TABLE VIII illustrates
the computation results. It is obvious that with a uniformly
deployed distribution of anchors, PIL4r yields much higher
accuracy than CIL.150 anchors are then randomly deployed
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Fig. 13. Estimated boxes obtained with PIL4r and CIL.

over the surveillance area, in5 different manners. TABLE IX
shows the computation results averaged over the5 cases. As
shown in the results table, PIL4r still provide more accurate
estimation but here the difference between both results is
minor. Indeed, the accuracy of both methods is tightly related
to the shape of the solution area, which depends on the
distribution of the anchors in the network.

F. Comparison to a Monte-Carlo-based method

This section compares the proposed method to a Monte-
Carlo-based method [7]. This method, called MCL, yields
at each time step a fixed numberN of positions, called
particles, in the way to best cover the solution area. The
estimated positions using MCL correspond to the centers of
the computed particles.N is first set to50. Fig. 14 shows the
estimated particles using MCL as well as the estimated boxes
using PIL4r with 100 uniformly deployed anchors. Let the
estimation errors of MCL be the distances between the centers
of the particles and the actual positions. TABLE X shows the
average estimation errors and the average computation times
per time-step obtained with PIL4r and MCL while using50
and20 particles. According to these results, the MCL method
leads at some time-steps to particles covering precisely the
solution area but it remains less accurate than PILr4 with
more computation time even with less particles. It is also more
consuming in terms of memory resources. One could reduce

TABLE VIII
COMPARISON OFPIL4R TO CIL WITH UNIFORMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4r 60.17m2 2.02m 0.00055s

CIL 88.80m2 3.01m 0.0016s

TABLE IX
COMPARISON OFPIL4R TO CIL WITH RANDOMLY DEPLOYED ANCHORS.

Methods Boxes areas Estimation errors Computation times

PIL4r 66.08m2 2.11m 0.00088s

CIL 66.64m2 2.37m 0.0028s

the memory and the computation time consumptions by using
less particles, however with less particles, the solution area
would not be well covered. TABLE XI shows the computation
results obtained with 150 randomly deployed anchors averaged
over 5 distributions. Here also PIL4r leads to more accurate
estimates with less computation time.

V. CONCLUSION

This paper proposes an original technique for sensors local-
ization in wireless sensor networks. The proposed approachis
an anchor-based method using connectivity measurements, as
well as the mobility of the nodes. Based on interval analysis,
the solution is provided using polar intervals. An outer approx-
imation of the solution is thus performed in four different polar
coordinate systems. Instead of exact estimates, the proposed
method yields partial rings including for sure all the possible
solutions of the problem. Simulation results corroborate the
efficiency of the proposed method compared to other methods
based on Monte-Carlo or cartesian intervals. Future works will
consider the problem under imperfect circumstances, wherea
robust extension of the proposed method would be proposed.
Realistic simulations based on real sensors with real RSSI
measurements would also be considered.
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