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Abstract

This paper proposes nonlinear autoregressive (AR) models for time series, within the

framework of kernel machines. Two models are investigated. In the first proposed model,

the AR model is defined on the mapped samples in the feature space. In order to predict

a future sample, this formulation requires to solve a pre-image problem to get back

to the input space. We derive an iterative technique to provide a fine-tuned solution

to this problem. The second model bypasses the pre-image problem, by defining the

AR model with an hybrid model, as a tradeoff considering the computational time and

the precision, by comparing it to the iterative, fine-tuned, model. By considering the

stationarity assumption, we derive the corresponding Yule-Walker equations for each

model, and show the ease of solving these problems. The relevance of the proposed

models is studied on several time series, and compared with other well-known models in

terms of accuracy and computational complexity.
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1. Introduction

The autoregressive (AR), or linear predictive, model is pervasive in science and tech-

nology, with an essential role in the analysis of time series in applications ranging from

financial forecasting, to meteorological analysis, to speech processing. For instance to

maintain a phone conversation, every cell phone estimates a linear model every 20 mil-

liseconds [1]. The underlying mathematics that govern the AR model are the Yule-Walker

equations. The scientific community has made an ever-growing investment to master

these equations for the linear prediction [2]. The Yule-Walker equations are the building

block of the linear AR model, connecting its parameters to the covariance function of

the process. The model parameters are therefore estimated from the covariances of the

time series. Forecasting can be considered by applying the resulting predictive model.

However, the linearity assumption is often insufficient to explain nonlinear phenomena.

A first attempt to derive a nonlinear Yule-Walker like procedure for a specific nonlinear,

high-order, model is given in [3]. Nevertheless, up to our knowledge, there is no work

that combine the power of the Yule-Walker equations with the proliferating kernel-based

methods.

Kernel machines are essentially based on a nonlinear transformation of the data, by

using a mapping function from the input space to some feature space, prior to applying a

linear procedure in the latter space [4]. Nevertheless, it is not necessary to explicitly define

the nonlinear transformation, but implicitly by considering a (positive semi-definite)

kernel function. The use of kernel machines has received considerable attention since

Vapnik’s Support Vector Machines (SVM) [5]. Many nonlinear techniques have been

derived, such as the kernel principal component analysis, kernel Fisher discriminant
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analysis, and SVM novelty detection, only to name a few. In the same spirit, some

kernel-based methods were considered for the analysis and prediction of time series data

[6], including the SVM regression and kernel Kalman filter [7].

In this paper, we derive nonlinear prediction models by taking full advantage of the

Yule-Walker equations. This leads to the estimation of the model parameters by using

lagged expected kernels. It is worth noting that the concept of expected kernels has

shown its efficiency in recent research [8, 9]. Two models are under investigation in this

paper.

The first model is based on the underlying concept behind kernel machines, namely

mapping data from an input space to a feature space. By operating an AR model on

the images of the samples, prediction is defined in the feature space. To provide the

predicted sample, one needs to get back to the input space, namely to the space of

samples. This is the pre-image problem, with a solution (sample in the input space) that

has an image as close as possible to the predicted feature (in the feature space). By

following recent developments in the resolution of this ill-posed problem [10], we derive

an iterative technique to provide a fine-tuned solution to this problem. We propose to

bypass the pre-image problem, by deriving another model. In the second model, we

propose an hybrid formulation, as a tradeoff considering the computational time and the

precision, compared to the iterative, fine-tuned, model.

The rest of the paper is organized as follows: In the next section, we introduce

the linear AR model and present the Yule-Walker equations for estimating the model

parameters, and give the main idea behind kernel machines in Section 3. The first model

is derived in 4, by applying the AR model on the images of the samples, and solving the

pre-image problem to interpret the prediction in the input space. Section 5 provides pre-
3



image-free techniques, by deriving an AR model on the kernel values. Finally, section 7

illustrates the efficiency of the proposed models on several time series data, and provides

a comparative study with well-known prediction methods.

2. The Yule-Walker equations of the linear autoregressive model

The linear AR model defines each sample as a linear combination of previous samples.

Let x1, x2, . . . , xn be a time series, the p-order AR model is described by

xi =

p
∑

j=1

αj xi−j + εi, (1)

for i = p + 1, . . . , n, and where εi is the unfitness error, often assumed white Gaussian

with zero mean. Figure 1 illustrates the concept of the AR model. The parameters

α1, α2, . . . , αp are directly connected with the covariance function of the process. One

can therefore determine these parameters from the autocorrelation function. This is the

essence of the Yule-Walker equations, as illustrated here.

[Figure 1 about here.]

Let the data be centered, thus let µ be the expectation of xi, namely,

µ = IE[xi],

where IE[·] is the expectation1. If we apply the expectation on each side of (1), we get

that (1−
∑p

j=1 αj)µ = IE[εi]. For any positive lag τ , we can evaluate the autocorrelation

function of each time series. Let r be the empirical counterpart of the autocorrelation

function of the time series, then r(τ) =
∑p

j=1 αj r(τ − j), for any lag τ ≥ 1. Since the

1In this paper, all expectations are taken on the index i.
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autocorrelation function is even, i.e., r(−τ) = r(τ), we obtain the matrix form of the

Yule Walker equations

r = Rα,

where r = [r(1) r(2) · · · r(p)]>, α = [α1 α2 · · · αp]
>, and

R =

























r(0) r(1) . . . r(p− 1)

r(1) r(0) . . . r(p− 2)

...
...

. . .
...

r(p− 1) r(p− 2) . . . r(0)

























.

Assuming that the p×p symmetric matrixR is invertible, the coefficients α are estimated

by α = R−1r. Once the coefficients are estimated, the AR model can be applied to

predict future samples, with xk =
∑p

j=1 αj xk−j .

While this technique is easy to implement, it is not adapted for nonlinear systems.

Next, we derive Yule-Walker-like equations for nonlinear models, within the framework

of kernel machines. But before, we prepare the ground by briefly describing the main

idea behind the kernel machines.

3. Kernel machines

A kernel is a symmetric and continuous function defined by κ : X × X 7→ IR, where

X is an input space. If the kernel verifies
∑

i,j αi αj κ(xi, xj) ≥ 0 for all αi, αj ∈ IR and

all xi, xj ∈ X , then the kernel is positive semi-definite. The Moore-Aronszajn theorem

[11] states that each positive semi-definite kernel defines a unique (up to an isometry)

feature space and vice-versa. This feature space H is obtained using a mapping function
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Φ: X 7→ H from the input space, such that

κ(xi, xj) = 〈Φ(xi), Φ(xj)〉,

for any xi, xj ∈ X , where 〈· , ·〉 denotes the corresponding inner product in H.

Table 1 summarizes some of the most commonly used kernel functions, grouped into

two classes: projective kernels written in terms of dot product xi · xj and radial kernels

in terms of Euclidean distance ‖xi − xj‖. It is worth noting that some kernels induce

infinite-dimensional feature spaces, such as the Gaussian kernel.

[Table 1 about here.]

4. Autoregressive Φ-model

To derive a nonlinear autoregressive model, a straightforward approach consists of

applying a nonlinear transformation on the samples, prior to the autoregressive model.

This is illustrated in Figure 2, where the samples are mapped from the input space to

a feature space using a nonlinear transformation. An AR model is applied to predict a

feature in the feature space. Finally, to predict a future sample, one needs to get back

to the input space, by solving the so-called pre-image problem. These two stages are

derived next.

[Figure 2 about here.]

4.1. Autoregressive model in feature space

Let us start by evaluating the autoregressive model in the feature space. To this end,

let κ(·, ·) be a (reproducing) kernel, defining a nonlinear map Φ(·) from the input space

X to some feature space H. Thus, each sample xi is mapped to its corresponding Φ(xi).
6



Therefore, to a time series, given by the samples x1, x2, . . . , xn ∈ X , corresponds the

samples Φ(x1),Φ(x2), . . . ,Φ(xn) in H. By applying the AR model (1) for the latter, we

can write

Φ(xi) =

p
∑

j=1

αj Φ(xi−j) + εΦi , (2)

where these terms are given in the feature space, including εΦi ∈ H which represents the

unfitness of the model. While the samples xi’s are assumed zero-mean in the input space,

this is not the case for the Φ(xi)’s in the feature space.

Let µΦ denote the expectation of the latter, namely

µΦ = IE[Φ(xi)].

On the one hand, by applying the expectation on both sides of (2), we get (1 −

∑p

j=1 αj)µΦ = IE[εΦi ], where the process is assumed stationary. On the other hand,

we have

Φ(xi)− µΦ =

p
∑

j=1

αjΦ(xi−j) + εΦi − µΦ

=

p
∑

j=1

αj
(

Φ(xi−j)− µΦ

)

+ εΦi −
(

1−

p
∑

j=1

αj

)

µΦ.

By combining these results, and by taking the inner product (in the feature space) of

both sides of the above equation with (Φ(xi−τ )− µΦ), for some positive lag τ , we get

〈Φ(xi)− µΦ, Φ(xi−τ )− µΦ〉 = 〈εΦi − IE[εΦi ], Φ(xi−τ )− µΦ〉

+

p
∑

j=1

αj〈Φ(xi−j)− µΦ, Φ(xi−τ )− µΦ〉. (3)

By analogy with the linear AR case, we assume that the noise εΦi and Φ(xi−τ ) are

uncorrelated for every positive lag τ . Therefore, taking the expectations of expression
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(3) and assuming a stationarity sequence, we get for any τ ≥ 1:

IE[κc(xi, xi−τ )] =

p
∑

j=1

αj IE[κc(xi−j , xi−τ )], (4)

where κc(·, ·) is the centered version of the kernel κ(·, ·), defined with

κc(xi, xj) = 〈Φ(xi)− µΦ, Φ(xj)− µΦ〉.

Finally, we considered all the lag values, and write the expression (4) in matrix form,

rκc
= Rκc

α,

where

rκc
=
[

IE[κc(xi, xi−1)] IE[κc(xi, xi−2)] · · · IE[κc(xi, xi−p)]
]>

,

and Rκc
is the matrix described by the expected kernels with

Rκc
=

























IE[κc(xi, xi)] IE[κc(xi, xi−1)] · · · IE[κc(xi, xi−p+1)]

IE[κc(xi, xi−1)] IE[κc(xi, xi)] · · · IE[κc(xi, xi−p+2)]

...
...

. . .
...

IE[κc(xi, xi−p+1)] IE[κc(xi, xi−p+2)] · · · IE[κc(xi, xi)]

























.

The vector of coefficients α is obtained by inverting the matrix Rκc
, with

α = R−1
κc

rκc
.

In practice, the expectations are estimated over a set of n available samples (See [12] for

a recent review). The centered version of the kernel is evaluated using

κc(xi, xj) = κ(xi, xj)−
1

n

n
∑

k=1

κ(xi, xk)−
1

n

n
∑

k=1

κ(xj , xk) +
1

n2

n
∑

k,k′=1

κ(xk′ , xk).
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4.2. A prediction scheme by solving the pre-image problem

Once the model parameters are determined on a set of n available samples, one can

predict by

ψi =

p
∑

j=1

αj Φ(xi−j), (5)

where the predicted ψi lies in the feature space. Still, one is more interested in the

predicted sample in the original input space. Thus, we need to map back ψi from the

feature space to the input space, namely to the so-called pre-image.

The exact pre-image may not exist in general, and even if it exists, it may not be

unique. This is the ill-posed pre-image problem, where one identifies the best x∗i in the

input space whose image Φ(x∗i ) is as close as possible to ψi. See [10] for a recent re-

view. We propose to solve the optimization problem by minimizing the distance between

elements in the feature space, in the same spirit as in [13], namely

x∗i = argmin
x

‖ψi − Φ(x)‖2.

We propose to use the iterative fixed-point method. By injecting the autoregressive

model (5) into the above expression, we obtain the following optimization problem for

any xi:

x∗i = argmin
x

∥

∥

∥

p
∑

j=1

αj Φ(xi−j)− Φ(x)
∥

∥

∥

2

.

This optimization problem can be written as

x∗i = argmin
x
Ji(x),

where Ji(x) is the cost function defined by

Ji(x) = −

p
∑

j=1

αj κ(xi−j , x) +
1

2
κ(x, x), (6)
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where the term independent of x has been removed.

Consider the case of the Radial Basis Functions, with kernels of the form

κ(xj , xj′ ) = f(‖xj − xj′‖
2). (7)

The gradient of the function κ(xi−j , x) with respect to x is given by

∇xκ(xi−j , x) = 2 (xi−j − x) f (1)(‖xi−j − x‖2),

where f ′(z) is the first derivative of f(·) w.r.t z. By combining this expression with the

gradient of the cost function Ji(x), we get

∇xJi(x) = 2

p
∑

j=1

αj (xi−j − x) f (1)(‖xi−j − x‖2).

Such expression simplifies further for several kernel functions, such as the Gaussian kernel

with f(ζ) = exp
(

−1
2σ2 ζ

)

, thus f (1)(ζ) = − 1
2σ2 f(ζ).

Let us now write the pre-image using a linear combination of the available data, that

is x∗i =
∑p

j=1 δ
∗
j xi−j . Many pre-image techniques from the literature [14, 15, 16] have

validated this statement. We prove this statement for the radial and projective kernels.

Theorem 1. Any pre-image x∗i can be written as a linear combination of the available

data, namely

x∗i =

p
∑

j=1

δ∗j xi−j

for some weights δ∗j .

Proof. First, we study the class of radial kernels, defined by expression (7). In such case,

the term ∂κ(x, x)/∂x vanishes. The gradient at the optimum can be written as

p
∑

j=1

αj
∂κ(xi−j , x

∗
i )

∂x∗i
= 0,

10



with the left-hand-side given as

p
∑

j=1

αj
∂κ(xi−j , x

∗
i )

∂x∗i
=

p
∑

j=1

αj
∂f(‖xi−j − x∗i ‖

2)

∂(‖xi−j − x∗i ‖
2)

2(x∗i − xi−j).

As a consequence, the final result can be expressed as

x∗i =

p
∑

j=1

αj
f (1)(‖xi−j − x∗i ‖

2)
∑p

k=1 αk f
(1)(‖xi−k − x∗i ‖

2)
xi−j ,

thus of the form x∗i =
∑p

j=1 δ
∗
j xi−j .

We now study the projective kernels, of the form g(xi · xj). In this case, at the

optimum, the gradient is written as

p
∑

j=1

αj
∂κ(xi−j , x

∗
i )

∂x∗i
=

1

2

∂κ(x∗i , x
∗
i )

∂x∗i
.

We evaluate the right-hand-side and the left-hand-side respectively using the form of the

kernel, and we combine both expressions to get

x∗i =

p
∑

j=1

αj
g(1)(xi−j · x

∗
i )

g(1)(x∗i · x
∗
i )

xi−j ,

of the form x∗i =
∑n

i=1 δ
∗
j xi−j .

5. Autoregressive kernel-based models

The Φ-model proposed above requires to solve the ill-posed pre-image problem, for

each predicted sample. In this section, we propose to overcome this drawback. To this

end, we investigate the estimation of a function defined on X p, where the desired output

is xi and the input xi represents the p previous sample with xi = [xi−1 xi−2 · · · xi−p]
>.

Having X p as the input space, we consider kernels on X p×X p. Taking into consideration

this formulation, we propose two different nonlinear models, and derive the corresponding

Yule-Walker equations.
11



It is worth noting that, for the Gaussian kernel, this approach corresponds to consid-

ering the kernel

κ(xi−j ,xj) = exp
(

−
1

2σ2

∥

∥xi−j − xi
∥

∥

2
)

,

where the distance between two vectors xi−j and xi is given as ‖xi−j − xi‖
2 =

∑p

k=1

(

xi−j−k − xi−k
)2
. It is easy to see that this leads to the following expression

for the Gaussian kernel

κ(xi−j ,xi) =

p
∏

k=1

κ
(

xi−j−k , xi−k
)

,

thus connecting the multivariate kernel to the univariate one.

5.1. A hybrid autoregressive model

As opposed to the above method, where we apply the autoregressive model to the

Φ-images in the feature space, we consider here an autoregressive model on the kernel

values. The proposed model is defined by predicting the sample x∗i . We investigate the

estimation of a function ϕ(·), with ϕ : X p → X . The proposed model is defined by

ϕ(xi) =

p
∑

j=1

βj κ(xi−j ,xi)xi−j + εi, (8)

such that ϕ(xi) = x∗i is the value of the predicted sample in the input space and xi

represents the p previous samples with xi = [xi−1 xi−2 · · · xi−p]
>. See Section 5.2 for

the motivation behind this model.

Let µx be the expectation of ϕ(xi), and µxj be the expectation of κ(xi−j ,xi)xi−j ,

for any j = 1, 2, . . . , p, namely

µx = IE[ϕ(xi)]

µxj = IE[κ(xi,xi−j)xi−j ].
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By following the developments given in Section 4, and by analogy with expression (4),

we get

IE[〈ϕ(xi)− µx, ϕ(xi−τ )− µx〉] =

p
∑

j=1

βj IE[〈κ(xi,xi−j)xi−j − µxj , ϕ(xi−τ )− µx〉].

(9)

for any lag τ = 1, 2, . . . , p. By considering all the lag values, we get the matrix form

rκ = Rκ x β, where rκ is defined by

rκ=
[

IE[〈ϕ(xi)− µx, ϕ(xi−1)− µx〉] · · · IE[〈ϕ(xi)− µx, ϕ(xi−p)− µx〉]
]>

(10)

and Rκ x is the matrix described by

Rκ x=

























IE[〈κ(xi,xi−1)xi−1 − µx1, ϕ(xi−1)− µx〉] . . . IE[〈κ(xi,xi−p)xi−p − µxp, ϕ(xi−1)− µx〉]

IE[〈κ(xi,xi−1)xi−1 − µx1, ϕ(xi−2)− µx〉] . . . IE[〈κ(xi,xi−p)xi−p − µxp, ϕ(xi−2)− µx〉]

...
. . .

...

IE[〈κ(xi,xi−1)xi−1 − µx1, ϕ(xi−p)− µx〉] . . . IE[〈κ(xi,xi−p)xi−p − µxp, ϕ(xi−p)− µx〉]

























The vector of coefficients β is obtained by inverting the matrix Rκ, with β = R−1
κxrκ.

Once the β parameters are evaluated, the hybrid autoregressive model can predict

future samples by applying x∗i = ϕ(xi), namely

x∗i =

p
∑

j=1

βj κ(xi−j ,xi)xi−j . (11)

With this proposed method, we evaluate directly the predicted value without the

search for a function in the feature space, where the evaluation is in the input space.

To this end, we lose the precision we obtain in the feature space, since we evaluate in

the input space. In this case, we do not obtain a more precise value for the prediction.

However, we gain in time when applying the hybrid technique since we do not need to

solve the pre-image problem in order to obtain the predicted value.
13



5.2. Connecting the hybrid model with the aforementioned model

The main motivation behind the hybrid model is its connection with the aforemen-

tioned model, as illustrated here. We consider the Φ-model, as derived in Section 4.

Theorem 1 states that the predicted sample at instant i takes the form

x∗i =

p
∑

j=1

δ∗j xi−j .

By restricting the solution to δ∗j = βj κ(xi−j ,xi), we get the hybrid model defined in

(11). More precisely, by taking the result of the Theorem 1 for the Gaussian kernel, the

coefficients βj will be βj = αj
1∑p

k=1 αk f(1)(‖xi−k−x∗

i
‖2)

.

5.3. Autoregressive model on the kernel values

One may also consider the autoregressive model to the Φ-images in the feature space.

Therefore, we consider here an autoregressive model on the kernel values. The proposed

model is defined by predicting the sample x∗i , with

ϕ(xi) =

p
∑

j=1

βj κ(xi−j ,xi) + εi, (12)

where xi represents the p previous sample with xi = [xi−1 xi−2 · · · xi−p]
>, and ϕ(·)

is the function defining the prediction of the future sample such as ϕ(xi) = xi.

Let µj the expectation of κ(xi−j ,xi), for each j = 1, 2, . . . , p, namely

µj = IE[κ(xi,xi−j)],

and µx = IE[ϕ(xi)]. By following the developments given in Section 4, and by analogy

with expression (4), we get, for any lag τ = 1, 2, . . . , p

rκ = Rκ β,

14



where rκ defined by (10) and Rκ is the matrix described by the expected kernels with

Rκ =

























IE[〈κ(xi,xi−1)− µ1, ϕ(xi−1)− µx〉] . . . IE[〈κ(xi,xi−p)− µp, ϕ(xi−1)− µx〉]

IE[〈κ(xi,xi−1)− µ1, ϕ(xi−2)− µx〉] . . . IE[〈κ(xi,xi−p)− µp, ϕ(xi−2)− µx〉]

...
. . .

...

IE[〈κ(xi,xi−1)− µ1, ϕ(xi−p)− µx〉] . . . IE[〈κ(xi,xi−p)− µp, ϕ(xi−p)− µx〉]

























.

The vector of coefficients β is obtained by inverting the matrix Rκ, with

β = R−1
κ rκ.

This model provides a coarse representation of the kernel values and does not require

any pre-image solving technique. In practice, this AR model performs poorly. For this

reason, it will be discarded from the experimental part of this paper.

6. Study on the complexity for each of the aforementioned techniques

In this section, we study the complexity of the AR methods described in this paper.

We consider a set of n samples for the training stage and another set of n samples for the

testing stage. For both models, we have to evaluate the centered version of the version,

the computational complexity needed to center such kernel remains low, and it can be

determined as in iterative/online methods with low computational cost, see Annexe A.3

in [17] for more details.

Let us first start with the AR model in the feature space. In order to evaluate the

coefficients, we have to invert a matrix Rκx and multiply it by the vector rκ. The

dimension of the matrix is p × p, where p is usually a small. The complexity of the

inversion is p3. Once the parameters are estimated, and the coefficients are evaluated,

we have to estimate the pre-image using an iterative technique.
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We now consider the hybrid model. In order to evaluate the coefficients, we have

to invert a matrix Rκx and multiply it by the vector rκ. The dimension of the matrix

is p × p, where p is usually a small. The complexity of the inversion is p3. Once the

parameters are estimated, and the coefficients are evaluated. We can directly predict

future samples by applying the equation (11). To this end, we have to evaluate the

kernel and multiply it by a vector of the p previous sample. Therefore, the complexity

here is n× p.

7. Experiments

In this section, we study the relevance of the different models proposed in this paper.

We compare them with the classical linear AR model and nonlinear models such as

the multilayer perceptron and the support vector regression. To provide a benchmark

study, we considered the same experimental settings as in [7]. Four time series are under

investigation: two chaotic time series2 [18], an electrocardiogram (ECG) signal3 and an

electromyogram (EMG) signal having a neuropathy problem4.

The Mackey-Glass univariate time series models the blood cells production evolution.

It is defined by the delay differential equation

dx(t)

dt
= −0.1 x(t) +

0.2 x(t− τ ′)

1 + x(t− τ ′)10

which, for values of τ ′ greater than 16.8, shows some highly nonlinear chaotic behavior.

In our case, we set τ ′ = 30, and denote the time series by MG30.

2The time series are available at http://www.bme.ogi.edu/∼ericwan/data.html.
3The electrocardiogram signal is taken from the MIT-BIH Normal Sinus Rhythm Database, and is

available at http://physionet.org/physiobank/database/nsrdb/
4The electromyogram signal is taken from the Examples of Electromyograms, and is available at

http://http://physionet.org/physiobank/database/emgdb/
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A Lorenz attractor is the solution of the system defined by the following differential

equations






























dx(t)
dt

= −ax+ ay

dy(t)
dt

= −xz + rx − y

dz(t)
dt

= xy − bz

For our simulations, we set a = 10, r = 28 and b = 8/3. This multivariate system is

decomposed into the estimation of three models, for x, y, and z, separately.

The ECG signal is ECG recordings of subjects referred to the Arrhythmia Laboratory

where subjects included in this database were found to have had no significant arrhyth-

mias. The ECG signals are considered to be stationary, for they are taken in a 1 minute

of time.

The EMG signal is EMG recording taken from a clinical test used to assess func-

tion of muscles and the nerves that control them. The EMG studies are used to help

in the diagnosis and management of disorders such as the muscular dystrophies and

neuropathies. Nerve conduction studies that measure how well and how fast the nerves

conduct impulses are often performed in conjunction with EMG studies.

Each time series is decomposed into two parts. The first n = 300 samples are used in

the learning stage, for estimating the optimal value of the order p from p ∈ [1, 2, . . . , 5],

the coefficients in the AR expansion, and the bandwidth σ of the Gaussian kernel. The

next n = 300 samples are used to evaluate the relevance of the resulting model, by

considering the mean square error (MSE) estimated with

εerr =
1

n

2n
∑

i=n+1

‖x∗i − xi‖
2,

where x∗i is the predicted value at instant i, and xi is the true value of the time series at
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the same time.

Table 2 gives the mean square error and the computational time measured on an Intel

Core 2, with a speed of 2.40 GHz and a random access memory of 1.00 GB, for each

of the three proposed nonlinear AR models, as well as the linear model. For the pre-

image technique, the stopping criterion is given by a lower bound on the tolerance, set

to 10−6 , while limiting the maximum number of iterations to 50. It is obvious that the

AR Φ-model with pre-image technique presents the best MSE, however such fine-tuning

requires significant computational resources. The hybrid model presents a good tradeoff

between accuracy and computational complexity, and outperforms the linear AR model.

The results obtained for the three time series are illustrated in Figure 3.

The experimental settings are similar to the ones given in [7] for Lorenz and MG30

time series. This allows us to provide a comparative study with different nonlinear

techniques provided in the aforementioned paper, such as multilayer perceptron, support

vector regressor, and a kernel Kalman filter. Table 3 shows the MSE evaluated on each

time series using different nonlinear prediction technique. As we can see, the kernel AR

with pre-image presents the best MSE for the MG30, and the hybrid AR model presents

the best MSE for the Lorenz attractor time series. An adequate model is contributed to

each time series depending on the nature of the data.

[Table 2 about here.]

[Table 3 about here.]

[Figure 3 about here.]
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8. Conclusion and future work

In this paper, we proposed to derive Yule-Walker equations for nonlinear autoregres-

sive models. To this end, we combined the simplicity of the AR model with the efficiency

of the kernel machines in machine learning. Two models were derived, with a third one

that can be used. The first model, the AR Φ-model was based on the mapping defined by

a kernel, but requires a pre-image technique to get back to the input space. To circum-

vent the pre-image problem, we considered an hybrid model. We derived Yule-Walker

equations for all these AR models, and showed the ease of estimating the model parame-

ters. The relevance of the proposed techniques were illustrated on three time series, and

compared to several well-known nonlinear techniques. As we have concluded, the kernel

AR with the pre-image presents the best MSE, however it requires significant compu-

tational resources. The hybrid model represents a good compromise between efficiency

and computational cost, and outrun the linear AR model.

As for future work, we are considering the estimation of the optimal order, by adapt-

ing several criteria such as the Akaike Information Criterion, the Bayesian Information

Criterion and the partial autocorrelation function. Also, we intend to apply other tech-

niques to estimate the model parameters, such as the Levinson-Durbin method. Finally,

we will extend the use of the kernel machines for the Autoregressive Moving Average

model.
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Figure 3: Visualization of the results obtained when predicting the four time series using the linear AR
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original data.
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Type General form

P
ro
je
ct
iv
e

Monomial κm(xi, xj) = (xi · xj)
p

Polynomial κp(xi, xj) = (c+ xi · xj)
p

Exponential κE(xi, xj) = exp( 1
σ
(xi · xj))

Sigmoid κS(xi, xj) = tanh(c (xi · xj) + σ)

R
a
d
ia
l

Laplacian κL(xi, xj) = exp(−1
σ
‖xi − xj‖)

Gaussian κG(xi, xj) = exp( −1
2σ2 ‖xi − xj‖

2)

Multiquadratic κMQ(xi, xj) =
√

‖xi − xj‖2 + c

Rational κR(xi, xj) = 1−
‖xi−xj‖

2

‖xi−xj‖2+σ

Table 1: Commonly used reproducing kernels in machine learning, with parameters c, σ > 0, and p ∈ IN+
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MG30 Lorenz ECG EMG-Neuro

Linear AR model Time (s) 0.0107 0.0539 0.0126 0.0133

(with (1)) MSE 0.0655 0.2907 0.0332 0.1397

AR Φ-model (pre-image) Time (s) 5.3201 10.5241 7.8921 9.0315

(with (4)) MSE 1 · 10−5 0.1498 6 · 10−4 1 · 10−4

Hybrid AR model Time (s) 0.0861 0.6091 0.1834 0.1280

(with (9)) MSE 0.0623 0.0213 0.0290 0.0061

Table 2: Estimated computational time and mean square error (MSE) between the predicted values and
the original ones.
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MG30 Lorenz

Multilayer perceptron 0.0461 0.2837

Support vector regression 0.0313 0.1811

Nonlinear Kalman filter 0.0307 0.3133

AR Φ-model (pre-image) 1 · 10−5 0.1498

Hybrid AR model 0.0623 0.0213

Table 3: The mean square error values for different nonlinear prediction techniques compared to our
proposed methods.
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