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Nonlinear unmixing of hyperspectral data based on
a linear-mixture/nonlinear-fluctuation model

Jie Chen,Student Member, IEEE, Cédric Richard,Senior Member, IEEE, Paul Honeine,Member, IEEE

Abstract—Spectral unmixing is an important issue to analyze
remotely sensed hyperspectral data. Although the linear mix-
ture model has obvious practical advantages, there are many
situations in which it may not be appropriate and could be
advantageously replaced by a nonlinear one. In this paper,
we formulate a new kernel-based paradigm that relies on the
assumption that the mixing mechanism can be described by a
linear mixture of endmember spectra, with additive nonlinear
fluctuations defined in a reproducing kernel Hilbert space. This
family of models has clear interpretation, and allows to take
complex interactions of endmembers into account. Extensive
experiment results, with both synthetic and real images, illustrate
the generality and effectiveness of this scheme compared with
state-of-the-art methods.

I. I NTRODUCTION

Hyperspectral imaging is a continuously growing area of
remote sensing, which has received considerable attentionin
the last decade. Hyperspectral data provide a wide spectral
range, coupled with a high spectral resolution. These charac-
teristics are suitable for detection and classification of surfaces
and chemical elements in the observed images. Applications
include land use analysis, pollution monitoring, wide-area
reconnaissance, and field surveillance, to cite a few. Due to
multiple factors, including the possible low spatial resolution
of some hyperspectral-imaging devices, the diversity of ma-
terials in the observed scene, the reflections of photons onto
several objects, etc., mixed-pixel problems can occur and be
critical for proper interpretation of images. Indeed, assigning
mixed pixels to a single pure component, orendmember,
inevitably leads to a loss of information.

Spectral unmixing is an important issue to analyze remotely
sensed hyperspectral data. This involves the decomposition of
each mixed pixel into its pure endmember spectra, and the
estimation of the abundance value for each endmember [1].
Several approaches have been developed for endmember ex-
traction [2]. On the one hand, methods with pure pixel as-
sumption have been proposed to extract the endmembers from
pixels in the scene, such as the pixel purity index algorithm[3],
the vertex component analysis (VCA) [4], and the N-FINDR
algorithm [5], among others [6], [7]. On the other hand, some
methods have been proposed to overcome the absence of
pure pixels, by generating virtual endmembers, such as the
minimum volume simplex analysis (MVSA) [8], the minimum
volume enclosing simplex algorithm (MVES) [9], and the
minimum volume constrained nonnegative matrix factorization
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(MVC-NMF) [10]. Endmember identification and abundance
estimation can be conducted either in a sequential or collabora-
tive manner. Under the assumption that the endmembers have
been identified, hyperspectral image unmixing then reducesto
estimating the fractional abundances. The term unmixing in
the paper represents the abundance estimation step, which is
referred to as thesupervised unmixing in some literature.

The linear mixture model is widely used to identify and
quantify pure components in remotely sensed images due
to its simple physical interpretation and trackable estimation
process. To be physically interpretable, the driving abundances
are often required to satisfy two constraints: all abundances
must be nonnegative, and their sum must be equal to one.
In addition to the extremely low-complexity method that has
been recently proposed [7], which is based on geometric
considerations, at least two classes of approaches can be
distinguished to determine abundances. On the one hand,
there are estimation methods that lead to an optimization
problem which must be solved subject to non-negativity and
sum-to-one constraints [11]. On the other hand, following
the principles of Bayesian inference, there are simulation
techniques that define prior distributions for abundances,and
estimate unknown parameters based on the resulting joint
posterior distribution [12], [13], [14], [15]. Some recentworks
also take sparsity constraints into account in the unmixing
process [2], [15], [16], [17], [18].

Although the linear mixture model has obvious practical
advantages, there are many situations in which it may not be
appropriate (e.g., involving multiple light scattering effects)
and could be advantageously replaced by a nonlinear one.
For instance, multiple scattering effects can be observed on
complex vegetated surfaces [19] where it is assumed that
incident solar radiation is scattered by the scene through mul-
tiple bounces involving several endmembers. Some nonlinear
mixture models, such as thegeneralized bilinear model studied
in [20], account for presence of multi-photon interactionsby
introducing additional interaction terms in the linear model.
Another typical situation is the case where the components
of interest are in an intimate association, and the photons
interact with all the materials simultaneously as they are
multiply scattered. A bidirectional reflectance model based
on the fundamental principles of radiative transfer theory
was proposed in [21] to describe these interactions. It is
usually referred to as theintimate mixture model. Obviously,
the mixture mechanism in a real scene may be much more
complex than the above models and often relies on scene
parameters that are difficult to obtain.

Nonlinear unmixing has generated considerable interest
among researchers, and different methods have been pro-
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posed to account for nonlinear effects. Using training-based
approaches is a way to bypass difficulties with unknown
mixing mechanism and parameters. In [22], a radial basis
function neural network was used to unmix intimate mixtures.
In [23], the authors designed a multi-layer perceptron neural
network combined with a Hopfield neural network to deal
with nonlinear mixtures. In [6], [24], the authors discussed
methods for automatic selection and labeling of training
samples. These methods require the networks to be trained
using pixels with known abundances, and the quality of the
training data may affect the performance notably. Moreover,
for a new set of spectra in a scene, or different embedded
parameters, a new neural network should be trained again
before unmixing can be performed. Approaches that do not
require training samples were also studied in the literature.
In [20], a nonlinear unmixing algorithm for the general bilinear
mixture model was proposed. Based on Bayesian inference,
this method however has a high computational complexity and
is dedicated to the bilinear model. In [25], [26], the authors
extended the collection of endmembers by adding artificial
cross-terms of pure signatures to model light scattering effects
on different materials. However, it is not easy to identify which
cross-terms should be selected and added to the endmember
dictionary. If all the possible cross-terms were considered, the
set of endmembers would expand dramatically. In [27], the
authors addressed the nonlinear unmixing problem with an
intimate mixture model. The proposed method first converts
observed reflectances into albedo using a look-up table, then
a linear algorithm estimates the endmember albedos and the
mass fractions for each sample. This method is based on the
hypothesis that all the parameters of the intimate mixture
model are known. Nonlinear algorithms operating in repro-
ducing kernel Hilbert spaces (RKHS) have been a topic of
considerable interest in the machine learning community, and
have proved their efficiency in solving nonlinear problems.
Kernel-based methods have already been considered for de-
tection and classification in hyperspectral images [28], [29].
Kernel-based nonlinear unmixing approaches have also been
investigated [30], [31], [32]. These algorithms were mainly
obtained by replacing each inner product between endmember
spectra, in the cost functions to be optimized, by a kernel
function. This can be viewed as a nonlinear distortion map
applied to the spectral signature of each material, indepen-
dently of their interactions. This principle may be extremely
efficient in solving detection and classification problems as a
proper distortion can increase the detectability or separability
of some patterns. It is however of little physical interest in
solving the unmixing problem because the nonlinear nature of
mixing is not only governed by individual spectral distortions,
but also by nonlinear interactions of the materials.

In this paper, we formulate the problem of estimating abun-
dances of a nonlinear mixture of hyperspectral data. This new
kernel-based paradigm allows to take nonlinear interactions of
the endmembers into account. It leads to a more meaningful
interpretation of the unmixing mechanism than existing kernel
based methods. The abundances are determined by solving an
appropriate kernel-based regression problem under constraints.
This paper is organized as follows. Section II introduces the

basic concepts of our modeling approach. Section III presents
a new kernel-based hyperspectral mixture model, called K-
Hype, and the associated identification algorithm to extract
the abundances within this nonlinear context. The balance
between linear and nonlinear contributions is unfortunately
fixed in K-Hype. In order to overcome this drawback, a
natural generalization called SuperK-Hype or SK-Hype, is
then largely described. It is based on the concept of Multiple
Kernel Learning, and allows to automatically adapt the bal-
ance between linear spectral interactions and nonlinear ones.
Finally, major differences with some existing works on kernel-
based processing of hyperspectral images are also pointed out.
In Section IV, experiments are conducted using both synthetic
and real images. Performance comparisons with other popular
methods are also provided. Section V concludes this paper and
gives a short outlook onto future work.

II. A KERNEL-BASED NONLINEAR UNMIXING PARADIGM

Let r = [r1, r2, . . . , rL]
⊤ be an observed column pixel,

supposed to be a mixture ofR endmember spectra, with
L the number of spectral bands. Assume thatM =
[m1,m2, . . . ,mR] is the (L ×R) target endmember matrix,
where each columnmi is an endmember spectral signa-
ture. For the sake of convenience, we shall denote bym⊤

λℓ

the ℓ-th (1 × R) row of M , that is, the vector of the
R endmember signatures at theℓ-th wavelength band. Let
α = [α1, α2, . . . , αR]

⊤ be the abundance column vector
associated with the pixelr.

We first consider the linear mixing model where any
observed pixel is a linear combination of the endmembers,
weighted by the fractional abundances, that is,

r = Mα+ n (1)

where n is a noise vector. Under the assumption that the
endmember matrixM is known, the vectorα of fractional
abundances is usually determined by minimizing a cost func-
tion of the form

J(α) = Jreg(α) +
1

2µ
‖r −Mα‖2

= Jreg(α) +
1

2µ

L
∑

ℓ=1

(rℓ −α⊤mλℓ
)2

(2)

under the non-negativity and sum-to-one constraints1

αi ≥ 0, ∀i ∈ 1, . . . , R
R
∑

i=1

αi = 1,
(3)

where Jreg(·) is a regularization function, andµ is a small
positive parameter that controls the trade-off between regu-
larization and fitting. The above analysis assumes that the
relationship betweenmλℓ

and rℓ is dominated by a linear
function. There are however many situations, involving multi-
ple scattering effects, in which model (1) may be inappropriate
and could be advantageously replaced by a nonlinear one.

1For ease of notation, these two constraints will be denoted by α � 0 and
1
⊤
α = 1, where1 is a vector of ones.
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Consider the general mixing mechanism

r = Ψ(M ) + n (4)

with Ψ an unknown nonlinear function that defines the inter-
actions between the endmembers in matrixM . This requires
us to consider a more general problem of the form

ψ∗ = argmin
ψ∈H

1

2
‖ψ‖2H +

1

2µ

L
∑

ℓ=1

(rℓ − ψ(mλℓ
))2 (5)

with H a given functional space, andµ a positive parameter
that controls the trade-off between regularity of the function ψ
and fitting. Clearly, this basic strategy may fail if the function-
als ψ of H cannot be adequately and finitely parameterized.
Kernel-based methods rely on mapping data from the original
input space into a feature space by means of a nonlinear
function, and then solving a linear problem in that new space.
They lead to efficient and accurate resolution of the inverse
problem (5), as it has been showed in the literature. See,
e.g., [33], [34]. Our paper exploits the central idea of this
research area, known as thekernel trick, to investigate new
nonlinear unmixing algorithms. We shall now review the main
definitions and properties related to reproducing kernel Hilbert
spaces [35] and Mercer kernels [36].

Let H denote a Hilbert space of real-valued functionsψ
on a compactM, and let 〈· , ·〉H be the inner product in
the spaceH. Suppose that the evaluation functionalδmλ

defined byδmλ
[ψ] = ψ(mλ) is linear with respect toψ

and bounded, for allmλ in M. By virtue of the Riesz
representation theorem, there exists a unique positive definite
functionmλ 7→ κ(mλ,mλj

) in H, denoted byκ(·,mλj
) and

called representer of evaluation at mλj
, which satisfies [35]

ψ(mλj
) = 〈ψ, κ(·,mλj

)〉H, ∀ψ ∈ H (6)

for every fixedmλj
∈ M. A proof of this may be found

in [35]. Replacingψ by κ(·,mλi
) in (6) yields

κ(mλi
,mλj

) = 〈κ(·,mλi
), κ(·,mλj

)〉H (7)

for all mλi
, mλj

∈ M. Equation (7) is the origin of
the generic termreproducing kernel to refer toκ. Denoting
by Φ the map that assigns the kernel functionκ(·,mλj

)
to each input datamλj

, equation (7) immediately implies
that κ(mλi

,mλj
) = 〈Φ(mλi

),Φ(mλj
)〉H. The kernel thus

evaluates the inner product of any pair of elements ofM
mapped to the spaceH without any explicit knowledge of
Φ andH. Within the machine learning area, this key idea is
known as thekernel trick.

The kernel trick has been widely used to transform linear
algorithms expressed only in terms of inner products into
nonlinear ones. Considering again (5), the optimum function
ψ∗ can be obtained by solving the following least squares
support vector machines (LS-SVM) problem [37]

ψ∗ = argmin
ψ∈H

1

2
‖ψ‖2H +

1

2µ

L
∑

ℓ=1

e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
), ℓ ∈ {1, . . . , L}

(8)

We introduce the Lagrange multipliersβℓ, and consider the
Lagrange function

L =
1

2
‖ψ‖2H +

1

2µ

L
∑

ℓ=1

e2ℓ −
L
∑

ℓ=1

βℓ (eℓ − rℓ + ψ(mλℓ
)). (9)

The conditions for optimality with respect to the primal
variables are given by

{

ψ∗ =
∑L

ℓ=1 β
∗
ℓ κ(·,mλℓ

)
e∗ℓ = µβ∗

ℓ

(10)

We then derive the dual optimization problem

β∗ = argmax
β

−1

2
β⊤(K + µI)β + β⊤r, (11)

where K is the so-called Gram matrix whose
(ℓ, p)-th entry is defined by κ(mλℓ

,mλp
). Classic

examples of kernels are the radially Gaussian kernel
κ(mλℓ

,mλp
) = exp

(

−‖mλℓ
−mλp

‖2/2σ2
)

, and the
Laplacian kernelκ(mλℓ

,mλp
) = exp

(

−‖mλℓ
−mλp

‖/σ
)

,
with σ ≥ 0 the kernel bandwidth. Another example
of interest is the q-th degree polynomial kernel
κ(mλℓ

,mλp
) = (1 +m⊤

λℓ
mλp

)q, with q ∈ IN∗.
The kernel functionκ mapsmλℓ

into a very high, even
infinite, dimensional spaceH without any explicit knowledge
of the associated nonlinear function. The vectorβ∗ and κ
then describe the relation between the endmembers and the
observation. The goal of the analysis is however to estimate
the abundance vector, and there is no direct relation between
α∗ and β∗ in the general case. In what follows, we shall
focus attention on the design of specific kernels that enableus
to determine abundance fractions within this context.

III. K ERNEL DESIGN AND UNMIXING ALGORITHMS

The aim of this section is to propose kernel design methods
and the corresponding algorithms to estimate abundances. The
two approaches described hereafter are flexible enough to
capture wide classes of nonlinear relationships, and to reliably
interpret a variety of experimental measurements. Both have
clear interpretation.

A. A preliminary approach for kernel-based hyperspectral
unmixing: the K-Hype algorithm

In order to extract the mixing ratios of the endmembers, we
define the functionψ in (5) by a linear trend parameterized by
the abundance vectorα, combined with a nonlinear fluctuation
term, namely,

ψ(mλℓ
) = α⊤mλℓ

+ ψnlin(mλℓ
)

subject to α � 0 and 1
⊤α = 1

(12)

whereψnlin can be any real-valued functions on a compact
M, of a reproducing kernel Hilbert space denoted byHnlin.
Let κnlin be its reproducing kernel. It can be shown [38]
that, as the direct sumHlin ⊕ Hnlin of the RKHS of kernels
κlin(mλℓ

,mλp
) = m⊤

λℓ
mλp

andκnlin(mλℓ
,mλp

) defined on
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M, the spaceH of functions of the form (12) is also a RKHS
with kernel function

κ(mλℓ
,mλp

) = (κlin ⊕ κnlin)(mλℓ
,mλp

)

= m⊤
λℓ
mλp

+ κnlin(mλℓ
,mλp

).
(13)

The corresponding Gram matrixK is given by

K = MM⊤ +Knlin (14)

whereKnlin is the Gram matrix associated with the nonlinear
mapψnlin, with (ℓ, p)-th entryκnlin(mλℓ

,mλp
).

We propose to conduct hyperspectral data unmixing by
solving the following convex optimization problem

ψ∗ = argmin
ψ

1

2

(

‖ψlin‖2Hlin
+ ‖ψnlin‖2Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

where ψ = ψlin + ψnlin with ψlin(mλℓ
) = α⊤mλℓ

subject to eℓ = rℓ − ψ(mλℓ
)

α � 0 and 1
⊤α = 1

(15)

By the strong duality property, we can derive a dual problem
that has the same solution as the above primal problem. Let us
introduce the Lagrange multipliersβℓ, γr andλ. The Lagrange
function associated with the problem (15) can be written as

G =
1

2

(

‖α‖2 + ‖ψnlin‖2Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

−
L
∑

ℓ=1

βℓ (eℓ − rℓ + ψ(mλℓ
))−

R
∑

r=1

γr αr + λ(1⊤α− 1)

(16)

with γr ≥ 0. We have used that‖ψlin‖2Hlin
= ‖α‖2 because the

functional spaceHlin , parametrized byα, contains all the func-
tion of the variablemλℓ

of the formψlin(mλℓ
) = α⊤mλℓ

. It
is characterized by the norm

‖ψlin‖2Hlin
= 〈κlin(α, · ), κlin(α, · )〉H = κlin(α,α) = ‖α‖2.

(17)
The conditions for optimality ofG with respect to the primal
variables are given by







α∗ =
∑L
ℓ=1 β

∗
ℓ mλℓ

+ γ∗ − λ∗1

ψ∗
nlin =

∑L
ℓ=1 β

∗
ℓ κnlin(·,mλℓ

)
e∗ℓ = µβ∗

ℓ

(18)

By substituting (18) into (16), we get the dual problem (19)
(next page).

Provided that the coefficient vectorβ∗ has been determined,
the measured pixel can be reconstructed using

r∗ = [ψ∗(mλ1
), . . . , ψ∗(mλL

)]⊤

= M (M⊤β∗ + γ∗ − λ∗1) +Knlin β
∗

(20)

as indicated by (18). Comparing the above expression
with (12), we observe that the first and the second term of
the r.h.s. of equation (20) correspond to the linear trend and
the nonlinear fluctuations, respectively. Finally, the abundance
vectorα∗ can be estimated as follows

α∗ = M⊤β∗ + γ∗ − λ∗1 (21)

Problem (19) is a quadratic program (QP). Numerous candi-
date methods exist to solve it, such as interior point, active
set and projected gradient, as presented in [39], [40]. These
well known numerical procedures lie beyond the scope of this
paper.

B. Some remarks on kernel selection

Selecting an appropriate kernel is of primary importance as
it captures the nonlinearity of the mixture model. Though an
infinite variety of possible kernels exists, it is always desirable
to select a kernel that is closely related to the application
context. The following example justifies the combination (12),
which associates a linear model with a nonlinear fluctuation
term. It also allows us to define a possible family of appro-
priate kernels for data unmixing.

Consider the generalized bilinear mixing model presented
in [20], at first, limited to three endmember spectra for the
sake of clarity

r =M α+ γ12 α1 α2 (m1 ⊗m2) + γ13 α1 α3 (m1 ⊗m3)

+ γ23 α2 α3 (m2 ⊗m3) + n

with α1, α2, α3 ≥ 0

α1 + α2 + α3 = 1
(22)

where γ12, γ13 and γ23 are attenuation parameters, and⊗
the Hadamard product. It can be observed that the nonlinear
term with respect toα, in the r.h.s. of (22), is closely related
to the homogeneous polynomial kernel of degree2, that is,
κnlin(mλℓ

,mλp
) = (m⊤

λℓ
mλp

)2. Indeed, with a slight abuse
of notation, the latter can be written in an inner product form
as follows

κnlin(mλℓ
,mλp

) = Φnlin(mλℓ
)⊤Φnlin(mλp

) (23)

with

Φnlin(mλℓ
) =(m2

λℓ,1
, m2

λℓ,2
, m2

λℓ,3
,
√
2mλℓ,1

mλv,2
,

√
2mλℓ,1

mλℓ,3
,
√
2mλℓ,2

mλℓ,3
)⊤

(24)

where mλℓ,i
is the i-th entry of mλℓ

. This means that,
in addition to the linear mixture termMα, the auto and
interaction terms considered by the kernel-based model are
of the formmi ⊗mj for all i, j = 1, . . . , R.

By virtue of the reproducing kernel machinery, endmem-
ber spectra do not need to be explicitly mapped into the
feature space. This allows to consider complex interaction
mechanisms by changing the kernelκnlin, without having to
modify the optimization algorithm described in the previous
subsection. As an illustration, consider the polynomial kernel
κnlin(mλℓ

,mλp
) = (1 + m⊤

λℓ
mλp

)q. Making use of the
binomial theorem yields

κnlin(mλℓ
,mλp

) =

q
∑

k=0

(

q

k

)

(m⊤
λℓ

mλp
)k. (25)

We observe that each component(m⊤
λℓ

mλp
)k =

(mλℓ,1
mλp,1

+ . . .+mλℓ,R
mλp,R

)k of the above expression
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max
β,γ,λ

G′(β,γ, λ) = −1

2





β

γ

λ





⊤ 



K + µI M −M1

M⊤ I −1

−1
⊤M⊤ −1

⊤ R









β

γ

λ



+





r

0

−1





⊤ 



β

γ

λ





subject to γ � 0

(19)

with K = MM⊤ +Knlin.

can be expanded into a weighted sum ofk-th degree
monomials of the form

(mλℓ,1
mλp,1

)k1(mλℓ,2
mλp,2

)k2 . . . (mλℓ,R
mλp,R

)kR (26)

with
∑R

r=1 kr = k. This means that, in addition to the linear
mixture termMα, the auto and interaction terms considered
by the kernel-based model are of the formmk1

1 ⊗ mk2
2 ⊗

. . . ⊗ mkR
R for every set of exponents in the Hadamard

sense satisfying0 ≤ ∑R
r=1 kr ≤ q. Note that it would be

computationally expensive to explicitly form these interac-
tion terms. Their number is indeed very large: there arepk

monomials (26) of degreek, and then1−Rq+1

1−R components
in the entireq-th order representation. Compared with the
methods introduced in [25], [26], which insert products of
pure material signatures as new endmembers, we do not need
to extend the endmember matrix by adding such terms. The
kernel trick makes the computation much more tractable. In the
experimentations reported hereafter, the following2-nd degree
polynomial kernel was used

κnlin(mλℓ
,mλp

) =

(

1 +
1

R2
(mλℓ

− 1/2)⊤(mλp
− 1/2)

)2

(27)
where the constants1/R2 and 1/2 serve the purpose of
normalization.

C. Nonlinear unmixing by multiple kernel learning: the SK-
Hype algorithm

The proposed model relies on the assumption that the
mixing mechanism can be described by a linear mixture of
endmember spectra, with additive nonlinear fluctuationsψnlin

defined in a RKHS. This justifies the use of a Gram matrix
of the formK = MM⊤ +Knlin in the algorithm presented
previously. Model (12) however has some limitations in that
the balance between the linear componentα⊤mλℓ

and the
nonlinear componentψnlin(mλℓ

) cannot be tuned. This should
however be made possible as recommended by physically-
inspired models such as model (22). In addition, kernelsκnlin

with embedded linear component such as the inhomogeneous
polynomial kernel (25) introduces a bias into the estimation
of α, unless correctly estimated and removed. Another diffi-
culty is that the model (12) cannot captures the dynamic of
the mixture, which requires thatr or the mλℓ

’s be locally
normalized. This unlikely situation occurs, e.g., if a library
of reflectance signatures is used for the unmixing process. In
order to address problems such as the above, we shall now
consider Gram matrices of the form

Ku = uMM⊤ + (1− u)Knlin (28)

with u in [0, 1] in order to ensure positiveness ofKu.
Learning both the parameteru and the mixing coefficients
β in a single optimization problem is known as the multiple
kernel learning problem. See [41] and references therein. The
rest of this section is devoted to the formulation and resolution
of a convex optimization problem.

In order to tune the balance betweenψlin(mλℓ
) = α⊤mλℓ

andψnlin(mλℓ
), it might seem tempting to substitute matrix

K with matrix Ku in the dual problem (19). Unfortunately,
a primal problem must be first formulated in order to identify,
in the spirit of equation (18), explicit expressions forψlin and
ψnlin. We propose to conduct hyperspectral data unmixing by
solving the following primal problem

ψ∗, u∗ = argmin
ψ,u

1

2

(

1

u
‖ψlin‖2Hlin

+
1

1− u
‖ψnlin‖2Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
) and 0 ≤ u ≤ 1

where ψ = ψlin + ψnlin

(29)

whereu allows to adjust the balance betweenψlin andψnlin

via their norms. The spacesH′
lin andH′

nlin are RKHS of the
general form

H′ =

{

ψ ∈ H :
‖ψ‖H
u

<∞
}

(30)

with the conventionx0 = 0 if x = 0, and∞ otherwise. This
implies that, ifu = 0, thenψ belongs to spaceH′ if and only if
ψ = 0. By continuity consideration via this convention, it can
be shown that problem (29) is a convex optimization problem
by virtue of the convexity of the so-called perspective function
f(u, ψ) = ‖ψ‖2H′/u over IR+ ×H′. This has been shown in
[42, Chapter 3] in the finite-dimensional case, and extendedin
[41] to the infinite-dimensional case. This allows to formulate
the two-stage optimization procedure, with respect toψ and
u successively, in order to solve problem (29).

min
u
J(u) subject to 0 ≤ u ≤ 1 (31)

whereJ(u) is defined by (32) (next page).
The connection between (29) and this problem is as follows.

We always have [42, p. 133]

min
u,ψ

F (u, ψ) = min
u
J(u) (33)

where J(u) = minψ F (u, ψ), subject to all the constraints
over u andψ defined in (31)-(32). In addition, as proven in
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J(u) =























min
ψ
F (u, ψ) =

1

2

(

1

u
‖ψlin‖2Hlin

+
1

1− u
‖ψnlin‖2Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
) with ψ = ψlin + ψnlin

and ψlin(mλℓ
) = h⊤mλℓ

with h � 0

(32)

textbooks [42, p. 87], becauseF is convex in(u, ψ) subject
to convex constraints overψ, it turns out thatJ(u) is convex
in u and, as a consequence, that the constrained optimization
problem (31) is convex.

Compared to the preliminary algorithm described in Sec-
tion III-A, it is important to note that the sum-to-one con-
straint1⊤h = 1 has been given up. We have adopted an alter-
native strategy, which consists of relaxing this constraint, and
normalizingh afterward in order to be correctly interpreted
as a vectorα of fractional abundances. The main reasons are
as follows. The weight vectorh is optimally scaled by the
factor u in order to achieve the best balance betweenψlin

andψnlin. As a consequence, there is no significant advantage
of satisfying the sum-to-one constraint1⊤h = 1 along the
optimization process, which is consequently simplified. Onthe
contrary, we clearly observed that relaxing theℓ1-norm 1

⊤h

of the weight vectorh acts as an additional degree of freedom
to adjust the balance betweenψlin and ψnlin, which would
otherwise be limited to the factorsu and1−u. This has been
confirmed by experiments, which have revealed a significant
improvement in performance.

By the strong duality property, we shall now derive a
dual problem that has the same solutionJ(u) = F (u, ψ∗)
as the primal problem (32). Let us introduce the Lagrange
multipliersβℓ andγr. The Lagrange function associated with
the problem (32) can be written as

G =
1

2

(

1

u
‖h‖2 + 1

1− u
‖ψnlin‖2Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

−
L
∑

ℓ=1

βℓ (eℓ − rℓ + ψ(mλℓ
))−

R
∑

r=1

γr hr

(34)

with γr ≥ 0, where we have used that‖ψlin‖2Hlin
= ‖h‖2.

The conditions for optimality ofG with respect to the primal
variables are given by











h∗ = u
(

∑L
ℓ=1 β

∗
ℓ mλℓ

+ γ∗
)

ψ∗
nlin = (1− u)

∑L
ℓ=1 β

∗
ℓ κnlin(·,mλℓ

)
e∗ℓ = µβ∗

ℓ

(35)

By substituting (35) into (34), we get the dual problem (36)
(next page).

Pixel reconstruction can be performed using

r∗ = [ψ∗(mλ1
), . . . , ψ∗(mλL

)]⊤

with ψ∗(mλℓ
) = m⊤

λℓ
h∗ + ψ∗

nlin(mλℓ
) defined in equation

(35). Finally, the estimated abundance vector is given by

α∗ =
M⊤β∗ + γ∗

1
⊤(M⊤β

∗ + γ∗)
(37)

Let us briefly address the differentiability issue of the
problem (31)-(36). The existence and computation of the
derivatives of supremum functions such asJ(u) have been
largely discussed in the literature. As pointed out in [41],[43],
the differentiability ofJ at any pointu0 is ensured by the unic-
ity of the corresponding minimizer(β∗

0,γ
∗
0), and by the differ-

entiability of the cost functionF (u, ψ) in (32). The derivative
of J at u0 can be calculated as if the minimizer(β∗

0,γ
∗
0) was

independent ofu0, namely,dJ(u)
du

∣

∣

u=u0
=

∂G′(u,β∗

0,γ
∗

0)
∂u

∣

∣

u=u0
.

This yields

dJ(u)

du

∣

∣

∣

∣

u=u0

= −1

2

(

‖M⊤β∗
0 + γ∗

0‖2 − β∗
0
⊤
Knlin β

∗
0

)

(38)
Table I summarizes the proposed algorithm. Note that (31) is

a very small-size problem. Indeed, it involves a one-dimension
optimization variable and can thus be solved with an ad-hoc
procedure. Using a gradient projection method, e.g., basedon
Armijo rule along the feasible direction, makes practical sense
in this case [39, Chapter 2]. See also [44]. Moreover, both
problems can benefit of warm-starting between successive so-
lutions to speed-up the optimization procedure. The algorithm
can be stopped based on conditions for optimality in convex
optimization framework. In particular, the KKT conditionsand
the duality gap should be equal to zero, within a numerical
error tolerance specified by the user. The variation of the
cost J(u) between two successive iterations should also be
considered as a potential stopping criterion.

Before testing our algorithms, and comparing their perfor-
mance with state-of-the-art approaches, we shall now explain
how they differ from existing kernel-based techniques for
hyperspectral data processing.

D. Comparison with existing kernel-based methods in hyper-
spectral imagery

Some kernel-based methods have already been proposed
to process hyperspectral images, with application to classi-
fication, supervised or unsupervised unmixing, etc. By taking
advantage of capturing nonlinear data dependences, some of
them have been shown to achieve better performance than
their linear counterpart. Let us now briefly discuss the main
difference between our kernel-based model and those presently
existing. The central idea underlying most of state-of-the-
art methods is to nonlinearly transform hyperspectral pixel-
vectors prior to applying a linear algorithm, simply by replac-
ing inner products with kernels in the cost function. This basic
principle is fully justified in detection/classification problems
because a proper nonlinear distortion of spectral signatures
can increase the detectability/separability of materials. Within
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J(u) =



















max
β,γ

G′(u,β,γ) = −1

2

(

β

γ

)⊤ (

Ku + µI uM

uM⊤ uI

)(

β

γ

)

+

(

r

0

)⊤(

β

γ

)

subject to γ � 0

with Ku = uMM⊤ + (1− u)Knlin

(36)

TABLE I
NONLINEAR UNMIXING BY MULTIPLE KERNEL LEARNING : THE SK-HYPE ALGORITHM

Initialization
Choose the kernel κnlin and the regularization constant µ ≥ 0.
Calculate the kernel matrix Knlin.

Repeat
Calculate J(u) in (36) by using a generic QP solver
Solve the optimization problem

minu J(u) subject to 0 ≤ u ≤ 1
by performing one iteration of the gradient projection

algorithm, using (38)
until stopping criterion is satisfied
Estimate the abundances by (37)

the context of hyperspectral unmixing, this leads to consider
mixtures of the form

Φ(r) = [Φ(m1), Φ(m2), . . . , Φ(mR)]α+ n. (39)

This model is inherent in the KFCLS algorithm [30], [31],
which optimizes the following mean-square error criterion
where all the inner products have been replaced by kernels

J(α) = α⊤Km α− 2α⊤κrm + κ(r, r), (40)

whereKm is the Gram matrix with(i, j)-th entryκ(mi,mj),
andκrm is a vector withi-th entryκ(r,mi). Unfortunately,
even though model (39) allows distortions of spectral signa-
tures, it does not explicitly include nonlinear interactions of the
endmember spectra. The analysis in Section III-B has shown
strong connections between our kernel-based model and well-
characterized models, e.g., the generalized bilinear mixture
model. The experimental comparison on simulated and real
data reported in the next section confirms this view.

IV. EXPERIMENTAL RESULTS

We shall now conduct some simulations to validate the
proposed unmixing algorithms, and to compare them with
state-of-the-art methods, using both synthetic and real images.

A. Experiments on synthetic images

Let us first report some experimental results on synthetic
images, generated by linear and nonlinear mixing of several
endmember signatures. The materials we have considered are
alunite, calcite, epidote, kaolinite, buddingtonite, almandine,
jarosite and lepidolite. They were selected from the ENVI
software library. These spectra consist of 420 contiguous
bands, covering wavelengths ranging from 0.3951 to 2.56
micrometers.

In the first scene, only three materials were selected to
generate images: epidote, kaolinite, buddingtonite. In the sec-
ond scene, five materials were used: alunite, calcite, epidote,

kaolinite, buddingtonite. In the third scene, the eight materials
were used. For each scene, three50-by-50 hyperspectral
images were generated with different mixture models, each
providingN = 2500 pixels for evaluating and comparing the
performance of several algorithms. These three models were
the linear model (1), the bilinear mixture model defined as

r = Mα+

R−1
∑

i=1

R
∑

j=i+1

αi αj (mi ⊗mj) + n, (41)

and a post-nonlinear mixing model (PNMM) [45] defined by

r = (Mα)ξ + n (42)

where ( · )ξ denotes the exponential valueξ applied to each
entry of the input vector. Parameterξ was set to0.7. The
abundance vectorsαn, with n = 1, . . . , 2500, were uniformly
generated in the simplex defined by non-negative and sum-to-
one constraints. Finally, all these images were corrupted with
an additive white Gaussian noisen with two levels of SNR,
30 dB and of15 dB.

The following algorithms were considered

• The so-called Fully Constrained Least Square method
(FCLS), [11]: This technique was derived based on linear
mixture model. It provides the optimal solution in the
least-mean-square sense, subject to non-negativity and
sum-to-one constraints. A relaxation parameterν has to
be tuned to specify a compromise between the residual
error and the sum-to-one constraint.

• The extended endmember-matrix method
(ExtM) , [25]: This method consists of extending
the endmember matrixM artificially with cross-spectra
of pure materials in order to model light scatter effects.
In the experiments, all the second-order cross terms
mi ⊗ mj were inserted so that it would correspond to
the generalized bilinear model. This approach also has a
relaxation parameterν for the sum-to-one constraint.
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• The so-called Kernel Fully Constrained Least Square
method (KFCLS), [30]: This is a kernel method, directly
derived from FCLS, in which all the inner products are
replaced by kernel functions. As for all the other kernel-
based algorithms considered in this paper, the Gaussian
kernel was used for simulations. This algorithm has two
parameters, the bandwidthσ of the Gaussian kernel, and
a relaxation parameterν for the sum-to-one constraint.

• The Bayesian algorithm derived for generalized bilin-
ear model (BilBay), [20]: This method is based on ap-
propriate prior distributions for the unknown parameters,
which must satisfy the non-negativity and sum-to-one
constraints, and then derives joint posterior distribution of
these parameters. A Metropolis-within-Gibbs algorithm
is used to estimate the unknown model parameters. The
MMSE estimates of the abundances were computed by
averaging the2500 generated samples obtained after500
burn-in iterations.

• The first algorithm proposed in this paper (K-Hype):
This is the preliminary algorithm described in Section
III-A. The Gaussian kernel (G) with bandwidthσ, and the
polynomial kernel (P) defined by (27) were considered.
The Matlab optimization function Quadprog was used to
solve the QP problem.

• The second algorithm proposed in this paper (SK-
Hype): This is the main algorithm described in Section
III-C and Table I. As for K-Hype, the Gaussian kernel
and the polynomial kernel were considered. In order
to simplify the experiments, the weight vectoru was
constrained to be of the formu = [u, 1 − u]⊤ with
0 ≤ u ≤ 1. Obviously, this allows to reduce the number
of variables but does not change the structure of the
algorithm. The variableu was initially set to12 . A gradient
projection method, based on the Armijo rule to compute
the optimal step size along the feasible direction, was
used to determinedu. The algorithm was stopped when
the relative variation ofu between two successive itera-
tions became less thanζmax = 10−3, or the maximum
number of iterations Itmax = 10 was reached. The Matlab
optimization function Quadprog was used to solve the QP
problem.

The root mean square error defined by

RMSE=

√

√

√

√

1

NR

N
∑

n=1

‖αn −α∗
n‖2 (43)

was used to compare these six algorithms. In order to tune
their parameters, preliminary runs were performed on100
independent test pixels for each experiment. The bandwidthσ
of the Gaussian kernel in the algorithms ExtM, K-Hype
and SK-Hype was varied within{1, . . . , 3} with increment
of 1

2 . The parameterµ of K-Hype and SK-Hype algorithms
was varied within{1, 10−1, 10−2, 5 · 10−3}. The parame-
ter ν in algorithms FCLS, ExtM, KFCLS was chosen within
{1, 10−1, 10−2, 10−3, 10−4}. All the parameters used in the
experiments are reported in the Appendix.

Results for Scene 1 to Scene 3 unmixing, with three, five
and eight endmember materials, are reported in Table II,

Table III and Table IV respectively. Because the FCLS method
was initially derived for the linear mixing model, it achieves
a very low RMSE for linearly-mixed images, and produces a
relatively large RMSE with nonlinearly-mixed images. With
second-order cross terms that extend the endmember ma-
trix M , the ExtM algorithm notably reduces the RMSE
when dealing with bilinearly-mixed images when compared
with FCLS. However, it marginally improves the performance
in PNMM image ummixing. BilBay algorithm was derived
for the bilinear mixing model, and thus achieves very good
performance with bilinearly-mixed images. Nevertheless,the
performance of BilBay clearly degrades when dealing with
a nonlinear mixing model for which it was not originally
designed. KFCLS with Gaussian kernel performs worse than
FCLS, even with nonlinearly-mixed images as it does not
clearly investigate nonlinear interactions between materials.

For the less noisy scenes (30 dB), our algorithms K-
Hype and SK-Hype exhibit significantly reduced RMSE when
dealing with nonlinearly-mixed images. In the case of the
bilinear model, K-Hype and SK-Hype achieve very good
performance compared to the other algorithms. Indeed, they
are the best performers except in a few cases. In the case of
the PNMM model, they outperform all the other algorithms,
and it can be observed that SK-Hype outperforms K-Hype in
several scenarios. For the noisiest scenes (15 dB), although
the increase in the noise level significantly degrades the
performance of all the algorithms, K-Hype and SK-Hype
still maintain an advantage. Last but not least, the margin of
performance over the other approaches becomes larger as the
number of endmembers increases.

To give a more meaningful comparison of the performance
of these algorithms, one-tailed Welch’st-tests with signifi-
cance level0.05 were used to test the hypothesis

H0 : RMSEproposed< RMSEliterature

where RMSEproposeddenotes the RMSE of the K-Hype and SK-
Hype algorithms, with Gaussian and polynomial kernels, and
RMSEliterature is the RMSE of the algorithms of the literature
selected in this paper. Due to limited space, only the results for
Scene 2 and the SNR level30 dB are reported here, in Table V
to VII. The letterA means that the hypothesisH0 is accepted.
Without ambiguity, these results confirm the advantage of our
algorithms.

TABLE V
WELSH’ S t-TESTS FOR SCENE2 WITH SNR = 30DB (LINEAR MODEL)

FCLS ExtM KFCLS BilBay
K-Hype (G) A

K-Hype (P) A

SK-Hype (G) A

SK-Hype (P) A

The computational time of these algorithms mainly de-
pends on the constrained optimization problem to be solved.
FCLS and KFLCS minimize a quadratic cost function of
dimensionR, under inequality constraints of the same dimen-
sion. ExtM solves a similar problem but with an increased
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TABLE II
SCENE 1 (THREE MATERIALS): RMSECOMPARISON

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0037±2×10−5 0.0758±0.0019 0.0604±0.0017 0.0212±0.0005 0.0960±0.0060 0.0886±0.0063
ExtM 0.0079±0.0001 0.0312±0.0013 0.0601±0.0016 0.0404±0.0031 0.0991±0.096 0.0869±0.0066

KFCLS 0.0054±3×10−5 0.2711±0.0516 0.2371±0.0197 0.0296±0.0009 0.2694±0.0498 0.2372±0.0235
BilBay 0.0384±0.0013 0.0285±0.0006 0.1158±0.0058 0.1135±0.0098 0.1059±0.0085 0.1191±0.0091

K-Hype (G) 0.0208±0.0004 0.0349±0.0013 0.0446±0.0020 0.0562±0.0041 0.0611±0.0048 0.0786±0.0067
K-Hype (P) 0.0346±0.0011 0.0281±0.0011 0.0569±0.0031 0.0589±0.0041 0.0628±0.0053 0.0794±0.0066

SK-Hype (G) 0.0104±0.0001 0.0315±0.0012 0.0230±0.0007 0.0562±0.0044 0.0598±0.0048 0.0757±0.0073
SK-Hype (P) 0.0106±0.0002 0.0310±0.0011 0.0245±0.0007 0.0561±0.0043 0.0602±0.0048 0.0742±0.0075

TABLE III
SCENE 2 (FIVE MATERIALS ): RMSECOMPARISON

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0134±0.0002 0.1137±0.0032 0.1428±0.0039 0.0657±0.0047 0.1444±0.0116 0.1611±0.0134
ExtM 0.0157±0.0003 0.0575±0.0024 0.1427±0.0040 0.0761±0.0060 0.1207±0.0160 0.1678±0.0139

KFCLS 0.0200±0.0004 0.2051±0.0148 0.1955±0.0115 0.0890±0.0080 0.1884±0.0113 0.1572±0.0114
BilBay 0.0585±0.0017 0.0441±0.0010 0.1741±0.0082 0.1465±0.0109 0.1007±0.0063 0.1609±0.0124

K-Hype (G) 0.0231±0.0004 0.0307±0.0008 0.0398±0.0012 0.1076±0.0093 0.0748±0.0046 0.0823±0.0053
K-Hype (P) 0.0218±0.0004 0.0465±0.0012 0.0386±0.0011 0.0738±0.0043 0.0847±0.0052 0.0828±0.0054

SK-Hype (G) 0.0196±0.0004 0.0288±0.0007 0.0346±0.0010 0.0675±0.0040 0.0778±0.0043 0.0942±0.0065
SK-Hype (P) 0.0195±0.0004 0.0349±0.0008 0.0346±0.0010 0.0673±0.0040 0.0830±0.0046 0.0965±0.0071

TABLE IV
SCENE 3 (EIGHT MATERIALS): RMSECOMPARISON

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0148±0.0002 0.0930±0.0024 0.1079±0.0018 0.0652±0.0031 0.1177±0.0068 0.1252±0.0065
ExtM 0.0173±0.0003 0.0560±0.0017 0.1126±0.0019 0.0743±0.0038 0.1066±0.0062 0.1322±0.0063

KFCLS 0.0216±0.0004 0.1431±0.0059 0.1274±0.0039 0.0647±0.0032 0.1270±0.0038 0.2250±0.0220
BilBay 0.0448±0.0007 0.0369±0.0004 0.1159±0.0029 0.0745±0.0020 0.0792±0.0026 0.1040±0.0430

K-Hype (G) 0.0203±0.0003 0.0202±0.0003 0.0300±0.0006 0.0562±0.0020 0.0548±0.0018 0.0642±0.0024
K-Hype (P) 0.0195±0.0003 0.0330±0.0006 0.0297±0.0006 0.0585±0.0021 0.0646±0.0024 0.0657±0.0026

SK-Hype (G) 0.0185±0.0003 0.0221±0.0003 0.0291±0.0006 0.0561±0.0019 0.0573±0.0020 0.0696±0.0027
SK-Hype (P) 0.0184±0.0002 0.0247±0.0004 0.0313±0.0007 0.0571±0.0021 0.0620±0.0021 0.0736±0.0031

TABLE VI
WELSH’ S t-TESTS FOR SCENE2 WITH SNR = 30DB (BILINEAR MODEL )

FCLS ExtM KFCLS BilBay
K-Hype (G) A A A A

K-Hype (P) A A A

SK-Hype (G) A A A A

SK-Hype (P) A A A A

TABLE VII
WELSH’ S t-TESTS FOR SCENE2 WITH SNR = 30DB (PNMM)

FCLS ExtM KFCLS BilBay
K-Hype (G) A A A A

K-Hype (P) A A A A

SK-Hype (G) A A A A

SK-Hype (P) A A A A

dimension due to the cross-spectra that are artificially inserted.
In the case where only the second-order cross spectra are
added, the dimension of the optimization problem isR+

(

R
2

)

with R = 3, 5 and 8 in this study. BilBay has to generate
numerous samples to estimate the model parameters, and
suffers from the large computational cost of this sampling

strategy. K-Hype solves a quadratic programming problem
of dimensionL + R + 1. It is interesting to note that the
computational cost is independent of the complexity of the
unmixing model. A sparsification strategy as described in
[46] should be advantageously used to greatly reduce the
computational complexity with negligible effect on the quality
of the results. SK-Hype has similar advantages as K-Hype
except that the alternating optimization scheme requires more
time. The average computational times per pixel of all these
algorithms are listed in Table VIII.2

B. Experiment with AVIRIS image

This section illustrates the performance of the proposed
algorithms, and several other algorithms, when applied to real
hyperspectral data. The scene that was used for our experiment
is the well-known image captured on the Cuprite mining dis-
trict (NV, USA) by AVIRIS. A sub-image of250× 191 pixels
was chosen to evaluate the algorithms. This area of interest
has L = 188 spectral bands. The number of endmembers
was first estimated via the virtual dimensionality, andR was
accordingly set to12 [4]. VCA algorithm was then used to

2Using Matlab R2008a on a iMac with 3.06GHz Intel Core 2 Duo and4
Go Memory
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TABLE VIII
AVERAGED COMPUTATIONAL TIME PER PIXEL(IN SECONDS)

L = 420 L = 210
R = 3 R = 5 R = 8 R = 3 R = 5 R = 8

FCLS 7.6× 10−4 1.2× 10−3 2.4× 10−3 6.4× 10−4 1.1× 10−3 2.1× 10−3

ExtM 1.6× 10−3 5.5× 10−3 0.020 1.4× 10−3 4.0× 10−3 0.014
KFCLS 6.0× 10−4 1.3× 10−3 2.5× 10−3 5.6× 10−4 8.4× 10−4 1× 10−3

BilBay 6.6 15 40 6.4 14 33
K-Hype 0.17 0.29 0.47 0.038 0.065 0.11
SK-Hype 4.3 7.5 13.4 0.92 1.7 3.1

extract the endmembers. Both our algorithms were compared
with all the state-of-the-art algorithms considered previously.
After preliminary experiments, the regularization parameters
of FCLS and ExtM algorithms were set toν = 0.01.
K-Hype algorithm and SK-Hype algorithm were run with
the polynomial kernel (27), and the Gaussian kernel. The
bandwidth of the Gaussian kernel was set toσ = 2. The
regularization parameterµ was fixed to2 · 10−3. To evaluate
the performance, the averaged spectral angle between original
r and reconstructedr∗ pixel vectors was used

Θ =
1

N

N
∑

n=1

θ(rn, r
∗
n)

whereN is the number of processed pixels andθ(r, r∗) =

cos−1
(

〈r,r∗〉
‖r‖‖r∗‖

)

. It is important to note that the quality of
reconstruction, estimated by the averaged spectral angle or
mean-square error for instance, is not necessarily in proportion
to the the quality of unmixing, especially for real images
where the nonlinear mixing mechanism can be complex. In
particular, more complicated model may better fit the data.
ParameterΘ is only reported here as complementary informa-
tion. The averaged spectral angle of each approach is reported
in Table IX. Note that KFCLS was not considered in these
tests as there is no possible direct reconstruction of pixels.
Clearly, our algorithms have much lower reconstruction errors
than the other approaches. Six typical estimated abundance
maps out of twelve available are shown in Figure 1. It can be
observed that the estimated locations of the different materials
are quite similar for the four methods, except the US Highway
95 in the last column which is much more accurately depicted
by our methods. Finally, the distributions of reconstruction
errors‖rn−r∗

n‖/L associated to these methods are shown in
Figure2.

TABLE IX
SPECTRAL ANGLES COMPARISON

Algorithms Θ
FCLS 0.0136
ExtM 0.0123

BilBay 0.0182
K-Hype (G) 0.0070
K-Hype (P) 0.0098

SK-Hype (G) 0.0078
SK-Hype (P) 0.0104

V. CONCLUSION

Spectral unmixing is an important issue to analyze remotely
sensed hyperspectral data. This involves the decomposition of
each mixed pixel into its pure endmember spectra, and the
estimation of the abundance value for each endmember. To be
physically interpretable, the abundances are often required to
be nonnegative, and their sum must be equal to one. Although
the linear mixture model has many practical advantages, there
are many situations in which it may not be appropriate. In
this paper, we formulated a new kernel-based paradigm that
relies on the assumption that the mixing mechanism can be
described by a linear mixture of endmember spectra, with
additive nonlinear fluctuations defined in a RKHS. This family
of models has a clear physical interpretation, and allows to
take complex interactions of endmembers into account. Two
kernel-based algorithms for estimating the abundances were
proposed. The second one, based on the concept of multiple
kernel learning, is the natural generalization of the first one as
it allows to automatically adapt the balance between linear
spectral interactions and nonlinear ones. Future work will
include studying the feasibility and constraints of designing
physically meaningful kernels, possibly based on manifold
learning as in [47], [48]. We will also focus our attention
on adaptive kernel-based algorithms, in the spirit of [46],to
unmix neighboring pixel-vectors sequentially and thus speed
up processing.
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TABLE X
SIMULATION PARAMETERS CORRESPONDING TOSCENE 1 (CF. TABLE II)

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS ν = 0.001 ν = 1 ν = 1 ν = 0.001 ν = 1 ν = 1
ExtM ν = 0.001 ν = 0.001 ν = 1 ν = 0.1 ν = 0.001 ν = 1

KFCLS ν = 0.1, σ = 3 ν = 0.01, σ = 3 ν = 0.01, σ = 5 ν = 0.01, σ = 5 ν = 0.1, σ = 1 ν = 0.01, σ = 3
BilBay - - - - - -

K-Hype (G) µ = 5 · 10−3, σ = 3 µ = 10−1, σ = 3 µ = 5 · 10−3, σ = 3 µ = 10−1, σ = 3 µ = 10−1, σ = 2 µ = 10−1, σ = 2.5
K-Hype (P) µ = 5 · 10−3 µ = 10−2 µ = 5 · 10−3 µ = 10−1 µ = 10−1 µ = 10−1

SK-Hype (G) µ = 10−2, σ = 2 µ = 10−2, σ = 2.5 µ = 5 · 10−3, σ = 3 µ = 10−1, σ = 1 µ = 10−1, σ = 1.5 µ = 1, σ = 2.5

SK-Hype (P) µ = 5 · 10−3 µ = 10−2 µ = 5 · 10−3 µ = 10−1 µ = 10−1 µ = 10−1

TABLE XI
SIMULATION PARAMETERS CORRESPONDING TOSCENE 2 (CF. TABLE III)

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS ν = 0.001 ν = 1 ν = 1 ν = 0.001 ν = 1 ν = 1
ExtM ν = 0.001 ν = 0.1 ν = 1 ν = 0.001 ν = 0.001 ν = 1

KFCLS ν = 0.1, σ = 3 ν = 1, σ = 1.5 ν = 1, σ = 1 ν = 0.1, σ = 3 ν = 1, σ = 3 ν = 1, σ = 3
BilBay - - - - - -

K-Hype (G) µ = 10−2, σ = 3 µ = 10−2, σ = 1.5 µ = 5 · 10−3, σ = 3 µ = 10−2, σ = 2 µ = 1, σ = 1 µ = 1, σ = 3
K-Hype (P) µ = 10−2 µ = 10−1 µ = 5 · 10−3 µ = 1 µ = 1 µ = 1

SK-Hype (G) µ = 10−1, σ = 3 µ = 10−2, σ = 2 µ = 10−2, σ = 3 µ = 10−2, σ = 3 µ = 1, σ = 1 µ = 1, σ = 1

SK-Hype (P) µ = 10−1 µ = 5 · 10−3 µ = 5 · 10−3 µ = 1 µ = 1 µ = 1

TABLE XII
SIMULATION PARAMETERS CORRESPONDING TOSCENE 3 (CF. TABLE IV)

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS ν = 0.01 ν = 1 ν = 1 ν = 0.01 ν = 1 ν = 1
ExtM ν = 0.01 ν = 0.01 ν = 1 ν = 0.01 ν = 0.01 ν = 0.01

KFCLS ν = 0.1, σ = 3 ν = 1, σ = 1 ν = 1, σ = 1 ν = 0.1, σ = 2.5 ν = 1, σ = 2 ν = 0.1, σ = 1.5
BilBay - - - - - -

K-Hype (G) µ = 10−2, σ = 3 µ = 10−1, σ = 1.5 µ = 10−2, σ = 3 µ = 1, σ = 1.5 µ = 1, σ = 1 µ = 1, σ = 1.5
K-Hype (P) µ = 10−2 µ = 10−1 µ = 5 · 10−3 µ = 1 µ = 1 µ = 1

SK-Hype (G) µ = 10−1, σ = 3 µ = 10−1, σ = 2.5 µ = 10−1, σ = 3 µ = 1, σ = 1.5 µ = 1, σ = 1.5 µ = 1, σ = 1

SK-Hype (P) µ = 10−1 µ = 10−1 µ = 10−2 µ = 1 µ = 1 µ = 1


