N
N

N

HAL

open science

Nonlinear unmixing of hyperspectral data based on a
linear-mixture/nonlinear-fluctuation model
Jie Chen, Cédric Richard, Paul Honeine

» To cite this version:

Jie Chen, Cédric Richard, Paul Honeine. Nonlinear unmixing of hyperspectral data based on a linear-
mixture/nonlinear-fluctuation model. IEEE Transactions on Signal Processing, 2013, 61 (2), pp.480 -

492. 10.1109/TSP.2012.2222390 . hal-01965573

HAL Id: hal-01965573
https://hal.science/hal-01965573
Submitted on 3 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01965573
https://hal.archives-ouvertes.fr

Nonlinear unmixing of hyperspectral data based on
a linear-mixture/nonlinear-fluctuation model

Jie Chen Student Member, |IEEE, Cédric RichardSenior Member, |IEEE, Paul HoneineMember, |EEE

Abstract—Spectral unmixing is an important issue to analyze (MVC-NMF) [10]. Endmember identification and abundance
remotely sensed hyperspectral data. Although the linear ¢  estimation can be conducted either in a sequential or anttab
ture model has obvious practical advantages, there are many e manner. Under the assumption that the endmembers have

situations in which it may not be appropriate and could be - . ) .
advantageously replaced by a nonlinear one. In this paper, been identified, hyperspectral image unmixing then redtaes

we formulate a new kernel-based paradigm that relies on the €stimating the fractional abundances. The term unmixing in
assumption that the mixing mechanism can be described by a the paper represents the abundance estimation step, vehich i
linear mixture of endmember spectra, with additive nonlinear  referred to as theupervised unmixing in some literature.
fluctuations defined in a reproducing kernel Hilbert space. This The linear mixture model is widely used to identify and

family of models has clear interpretation, and allows to tale tif ts | tel di d
complex interactions of endmembers into account. Extensi/ quantily pur€ components in remotely sensed images due

experiment results, with both synthetic and real images, lustrate 10 its simple physical interpretation and trackable estioma
the generality and effectiveness of this scheme compared tvi process. To be physically interpretable, the driving alaumcgs

state-of-the-art methods. are often required to satisfy two constraints: all abundanc
must be nonnegative, and their sum must be equal to one.

. INTRODUCTION In addition to the extremely low-complexity method that has
cIngeen recently proposed [7], which is based on geometric

Hyperspectral imaging is a continuously growing area . .
. . . . .. _considerations, at least two classes of approaches can be
remote sensing, which has received considerable atteition’. =~~~ .
s1t|ngwshed to determine abundances. On the one hand,

the last decade. Hyperspectral data provide a wide specﬁ:a

range, coupled with a high spectral resolution. These chard ere are estimation methods that lead to an optimization

teristics are suitable for detection and classificationuofaces problem which mUSF be solved subject to non-negativity z_;md
sum-to-one constraints [11]. On the other hand, following

and chemical elements in the observed images. Applications

. . . e : the principles of Bayesian inference, there are simulation
include land use analysis, pollution monitoring, wideeare

. ' . . techniques that define prior distributions for abundanaas,
reconnaissance, and field surveillance, to cite a few. Due 10. o
. , . . . : estimate unknown parameters based on the resulting joint
multiple factors, including the possible low spatial regmn

: . . . . gosterior distribution [12], [13], [14], [15]. Some recemobrks
of some hyperspectral-imaging devices, the diversity of m so take sparsity constraints into account in the unmixin
terials in the observed scene, the reflections of photons or?% P y 9

several objects, etc., mixed-pixel problems can occur and process [2], [15], [16], [17], [18].

. : . . - Although the linear mixture model has obvious practical
critical for proper interpretation of images. Indeed, gssig o . S

. : . advantages, there are many situations in which it may not be
mixed pixels to a single pure component, emdmember, appropriate (e involving multiple light scatteringfests)
inevitably leads to a loss of information. bprop 9 9 pie g

o . . nd could be advantageously replaced by a nonlinear one.
Spectral unmixing is an important issue to analyze remotely

L .. For instance, multiple scattering effects can be observed o
sensed hyperspectral data. This involves the decompuosifio S
each mixed pixel into its pure endmember spectra, and tﬁ%mplex vegetated surfaces [19] where it is assumed that

esimaton of e abundance vaive oreach enamaber ({05501 1aiton s Sateree by e seene o
Several approaches have been developed for endmember €x- 9 i - : )
: . . mixture models, such as tlgeneralized bilinear model studied
traction [2]. On the one hand, methods with pure pixel as- . . :
. In [20], account for presence of multi-photon interactidoys
sumption have been proposed to extract the endmembers fro . . : . : :
. . . L . introducing additional interaction terms in the linear rabd
pixels in the scene, such as the pixel purity index algorifBn

the vertex component analysis (VCA) [4], and the N_FINDlﬁnother typical situation is the case where the components

algorithm [5], among others [6], [7]. On the other hand, somoef mterest_ are in an |nt|m§1te as_somatlon, and the photons
ract with all the materials simultaneously as they are

methods have been proposed to overcome the absencénb

. . . multiply scattered. A bidirectional reflectance model lhse
pure pixels, by generating virtual endmembers, such as the

minimum volume simplex analysis (MVSA) [8], the minimum®" the fundamental principles of radiative transfer theory

volume enclosing simplex algorithm (MVES) [9], and thdvas proposed in [21] to describe these interactions. It is

- - ) . . usually referred to as thmtimate mixture model. Obviously,
minimum volume constrained nonnegative matrix factorrat y ) : y
the mixture mechanism in a real scene may be much more
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posed to account for nonlinear effects. Using trainingebasbasic concepts of our modeling approach. Section Il prissen
approaches is a way to bypass difficulties with unknowa new kernel-based hyperspectral mixture model, called K-
mixing mechanism and parameters. In [22], a radial badifype, and the associated identification algorithm to extrac
function neural network was used to unmix intimate mixturethe abundances within this nonlinear context. The balance
In [23], the authors designed a multi-layer perceptron akeutbetween linear and nonlinear contributions is unfortulyate
network combined with a Hopfield neural network to dedlxed in K-Hype. In order to overcome this drawback, a
with nonlinear mixtures. In [6], [24], the authors discu$senatural generalization called SuperK-Hype or SK-Hype, is
methods for automatic selection and labeling of trainintdpen largely described. It is based on the concept of Meltipl
samples. These methods require the networks to be trai@anel Learning, and allows to automatically adapt the bal-
using pixels with known abundances, and the quality of tleice between linear spectral interactions and nonlineas.on
training data may affect the performance notably. Moreovetinally, major differences with some existing works on ladfn

for a new set of spectra in a scene, or different embeddedsed processing of hyperspectral images are also poiated o
parameters, a new neural network should be trained ag#&inSection IV, experiments are conducted using both syitthet
before unmixing can be performed. Approaches that do renid real images. Performance comparisons with other popula
require training samples were also studied in the liteeatumethods are also provided. Section V concludes this pagkr an
In [20], a nonlinear unmixing algorithm for the generalbdar gives a short outlook onto future work.

mixture model was proposed. Based on Bayesian inference,

this method however has a high computational complexity anfl. A KERNEL-BASED NONLINEAR UNMIXING PARADIGM

is dedicated to the bilinear model. In [25], [26], the author | ot ,» — [r1,72,...,rz]T be an observed column pixel,

extended the collection of endmembers by adding artificigbpposed to be a mixture ok endmember spectra, with
cross-terms of pure signatures to model light scatterifec  ; tne number of spectral bands. Assume thef —
on different materials. However, it is not easy to identifiyigh [m1,ma,...,mpg| is the (L x R) target endmember matrix,
cross-terms should be selected and added to the endmenifi&tie each columnn; is an endmember spectral signa-
dictionary. If all the possible cross-terms were considetee 1,re For the sake of convenience, we shall denoterby
set of endmembers would expand dramatically. In [27], thRe st (1 x R) row of M, that is, the vector of the

authors addressed the nonlinear unmixing problem with & ongmember signatures at tiieth wavelength band. Let
intimate mixture model. The proposed method first converts _ [a1,s,...,ap]T be the abundance column vector

observed reflectances into albedo using a look-up table, the.cqciated with the pixal.
a linear algorithm estimates the endmember albedos and th@ye first consider the linear mixing model where any

mass fractions for each sample. This method is based on fierved pixel is a linear combination of the endmembers,
hypothesis that all the parameters of the intimate m'XtUWeighted by the fractional abundances, that is

model are known. Nonlinear algorithms operating in repro-

ducing kernel Hilbert spaces (RKHS) have been a topic of r=Ma+n 1)

considerable inte_rest i_n_the m_achine_ Iearning communitg, 3where n is a noise vector. Under the assumption that the
have proved their efficiency in solving nonlinear prOblem%ndmember matrixVf is known, the vectorx of fractional

Kemel—based mthod; ha_ve already been.considered for Q&]ndances is usually determined by minimizing a cost func-
tection and classification in hyperspectral images [289].[2 i1 of the form

Kernel-based nonlinear unmixing approaches have also been 1
investigated [30], [31], [32]. These algorithms were mginl J(@) = Jreg(@) + —||r — Ma|?
obtained by replacing each inner product between endmember 2p

spectra, in the cost functions to be optimized, by a kernel _ L T 9 2)
function. This can be viewed as a nonlinear distortion map = Jreg(e) + 20 Z(” —aimy,)

applied to the spectral signature of each material, indepen =1

dently of their interactions. This principle may be extréyne under the non-negativity and sum-to-one constraints
efficient !n so_lving det_ection and classificati_o_n proble_n_asaa a; >0, Viel,....R

proper distortion can increase the detectability or sdpkisa R

of some patterns. It is however of little physical interast i Z =1 ®)
solving the unmixing problem because the nonlinear natfire o P ’

mixing is not only governed by individual spectral distorts,
but also by nonlinear interactions of the materials.

In this paper, we formulate the problem of estimating abu
dances of a nonlinear mixture of hyperspectral data. This n . . . ) .
kernel-based paradigm allows to take nonlinear interastuaf relat|_onsh|p betweenn,, andr is c_iom|_nated_ by a Im_ear
the endmembers into account. It leads to a more meaning ction. T_here are ho_weve_r many situations, mv_olvmgnmu_l
interpretation of the unmixing mechanism than existingikeér ple scattering effects, in which model (1) may be inappraeri

based methods. The abundances are determined by solviné‘%ﬂ could be advantageously replaced by a nonlinear one.

approprlate .kemel'blasecj regression prOb_lem Ur?der @OMST  1For ease of notation, these two constraints will be denogec: b- 0 and
This paper is organized as follows. Section Il introduces th ™« = 1, where1 is a vector of ones.

where Jieg(-) is a regularization function, and is a small
ositive parameter that controls the trade-off betweem+eg
rization and fitting. The above analysis assumes that the



Consider the general mixing mechanism We introduce the Lagrange multiplief$, and consider the
Lagrange function

r=%(M)+n 4)
. . . , . 1o 1=y o
with ¥ an unknown nonlinear function that defines the inter-£ = = [[¢[3, + = Y €7 = > Be (er — 1o + ¥(ma,)). (9)
. . . . . 2 20
actions between the endmembers in mafvix This requires (=1 (=1
us to consider a more general problem of the form The conditions for optimality with respect to the primal
L variables are given by
vt = argmin 2 6% + o= S (e~ w(ma,)? () :
wen 20 M Doy — ‘ { V=30 By k(s my,) (10)
e =nbp

with H a given functional space, anda positive parameter

that controls the trade-off between regularity of the fisreyy  We then derive the dual optimization problem

and fitting. Clearly, this basic strategy may fail if the ftioo- . 1+ .

als /) of H cannot be adequately and finitely parameterized. p =argmax—o B (K +ul) B+ 7,  (11)

Kernel-based methods rely on mapping data from the original p

input space into a feature space by means of a nonlinedrere K is the so-called Gram matrix whose

function, and then solving a linear problem in that new spacg,p)-th entry is defined by x(my,,m,,). Classic

They lead to efficient and accurate resolution of the inversgamples of kernels are the radially Gaussian kernel

problem (5), as it has been showed in the literature. Sedm,,,my,) = exp(—|my, —m,,[[*/20%), and the

e.g., [33], [34]. Our paper exploits the central idea of thisaplacian kernek(my,,my,) = exp(—|lmy, —my,||/0),

research area, known as tkernel trick, to investigate new with ¢ > 0 the kernel bandwidth. Another example

nonlinear unmixing algorithms. We shall now review the maiof interest is the ¢-th degree polynomial kernel

definitions and properties related to reproducing kerndétt  «(m.,, my,) = (1+my my,)?, with ¢ € IN*.

spaces [35] and Mercer kernels [36]. The kernel functionkx mapsm,, into a very high, even
Let H denote a Hilbert space of real-valued functiafis infinite, dimensional spac# without any explicit knowledge

on a compactM, and let(-,-)3; be the inner product in of the associated nonlinear function. The vec®r and »

the space?{. Suppose that the evaluation functiond),, then describe the relation between the endmembers and the

defined byd,,, [v] = ¥(m,) is linear with respect to) observation. The goal of the analysis is however to estimate

and bounded, for alm, in M. By virtue of the Riesz the abundance vector, and there is no direct relation betwee

representation theorem, there exists a unique positiveitiefi «* and 3* in the general case. In what follows, we shall

functionm) — x(mx, my,) in H, denoted by:(-,m,;) and focus attention on the design of specific kernels that enatble

calledrepresenter of evaluation at m;, which satisfies [35] to determine abundance fractions within this context.

w(mkg‘) = <1/15 ’i(" m>\j)>H7 Vi EH (6)

for every fixedm,, € M. A proof of this may be found
in [35]. Replacingy by x(-,my,) in (6) yields

IIl. KERNEL DESIGN AND UNMIXING ALGORITHMS

The aim of this section is to propose kernel design methods
and the corresponding algorithms to estimate abundanbes. T
@) two approaches described hereafter are flexible enough to

capture wide classes of nonlinear relationships, and tahigl

for all m,,, m,, € M. Equation (7) is the origin of interpret a variety of experimental measurements. Botle hav
the generic ternteproducing kernel to refer tos. Denoting Clear interpretation.

by @ the map that assigns the kernel functief,my,)
to each input datan,;, equation (7) immediately implies
that k(my,,my;) = (B(my,), ®(my,))». The kernel thus
evaluates the inner product of any pair of elements\df
mapped to the spac® without any explicit knowledge of In order to extract the mixing ratios of the endmembers, we
® and?{. Within the machine learning area, this key idea igefine the function) in (5) by a linear trend parameterized by
known as thekernel trick. the abundance vecter, combined with a nonlinear fluctuation

The kernel trick has been widely used to transform line&@rm, namely,
algorithms expressed only in terms of inner products into
nonlinear ones. Considering again (5), the optimum fumctio w(my,) = alma, + doin(m),)

* can be obtained by solving the following least squares subjectto =0 and 1Ta=1
support vector machines (LS-SVM) problem [37]

K(my,, m>\j) = (k(-;my,), 6(, my; IEY

A. A preliminary approach for kernel-based hyperspectral
unmixing: the K-Hype algorithm

(12)

where ¢nin can be any real-valued functions on a compact

1 1 M, of a reproducing kernel Hilbert space denoted?byin.
" = argmin §||w|\% + 2—Ze§ Let xnin be its reproducing kernel. It can be shown [38]
YeEH [yt (8) that, as the direct suriti, © Hnin of the RKHS of kernels

subjectto ey =1, —(my,), £e€{l,...,L} mm(m,\z,m,\p) = m:\:m,\p andkniin(my,, my,) defined on



M, the spacé of functions of the form (12) is also a RKHSProblem (19) is a quadratic program (QP). Numerous candi-
with kernel function date methods exist to solve it, such as interior point, activ
set and projected gradient, as presented in [39], [40]. &hes

K(m,, my,) = (Kin © Kalin) (M, , Ty, ) . . .
‘ " e ! (13) well known numerical procedures lie beyond the scope of this

.
= my,my, + Knlin(Mx,, M,).

paper.
The corresponding Gram matri is given by
K=MM" + Kqin (14) B. Some remarks on kernel selection

where K i, is the Gram matrix associated with the nonlinear Selecting an appropriate kernel is of primary importance as

map Yniin, With (¢, p)-th entry kpjin(m.,, my,,). it captures the nonlinearity of the mixture model. Though an
We propose to conduct hyperspectral data unmixing lyfinite variety of possible kernels exists, it is alwaysicsse

solving the following convex optimization problem to select a kernel that is closely related to the application
) | L context. The following example justifies the combinatioB)(1

Y* = arg min 3 (loin 134, + oninl 34,) + 5 Z €2 which associates a linear model with a nonlinear fluctuation

¥ K= term. It also allows us to define a possible family of appro-

priate kernels for data unmixing.
Consider the generalized bilinear mixing model presented

i in [20], at first, limited to three endmember spectra for the
a=0 and 1 a=1 sake of clarity

(15)
. . r=M o+ ay o (M @ ma) + apaz (m; @m
By the strong duality property, we can derive a dual problem Mz 0 0z (M 2) + iz a1 a3 (m 2
+ 23 a2 3 (M2 @ M3) + 1

that has the same solution as the above primal problem. Let us

where ¢ = jin + nin - With  Yin(my,) = o' my,
subject to e, = r; — ¥(my,)

introduce the Lagrange multipliefs, v, andA. The Lagrange with a1, a2,a3 >0
function associated with the problem (15) can be written as al+as+as=1
1 1 L (22)
_ - 2 2 L 2
G= 2 (lell® + [l 15) + 24 ;e" where v12, 713 and 4,3 are attenuation parameters, and

R the Hadamard product. It can be observed that the nonlinear
_ _ ar+ A 1T — 1 term with respect tay, in the r.h.s. of (22), is closely related

Pelee —re+9(ma,)) ;7 ar+ Al a—1) to the homogeneous polynomial kernel of degfedhat is,

(16) Fnin(my,,my,) = (mL m/\p)Q. Indeed, with a slight abuse

_ ) ) of notation, the latter can be written in an inner productrfor
with . > 0. We have used that)in |5, = [|||* because the 4¢ follows

functional spacé{i,, parametrized by, contains all the func-
tion of the variablem,, of the formwin (my,) = a'm,,. It Knlin (Mg, My,) = ‘inuin(mxg)T‘innn(mxp) (23)
is characterized by the norm

-

~
Il

1

with
[¥in 134, = (Fin (e, ), miin (e, - )3 = kin (e, @) = |,
| (17) én"n(m)‘@) :(mie@’ m§£,2’ mi[,a’ \/imAl,lmAv,za (24)
The conditions for optimality of¥ with respect to the primal ﬁmAeY]mAm’ \/QmAlwzmMS)T

variables are given by _ _
where my, , is the i-th entry of m,,. This means that,

* L * * * . oy . .
o= Zl:Ll Bima, +7" - A1 in addition to the linear mixture ternM «, the auto and
Yhin = o1 B¢ Fnlin(-, mex,) (18) interaction terms considered by the kernel-based model are
y

e; = pby of the formm; @ m; forall i, j=1,..., R.
By substituting (18) into (16), we get the dual problem (19) By virtue of the reproducing kernel machinery, endmem-
(next page). ber spectra do not need to be explicitty mapped into the

Provided that the coefficient vectsr has been determined,feature space. This allows to consider complex interaction

the measured pixel can be reconstructed using mechanisms by changing the kernglin, without having to
modify the optimization algorithm described in the prewou

* * * T
=[Pt (my,), .. YT (M) (20) subsection. As an illustration, consider the polynomiahké
=M(M'B" +~* —\1) + Kyin 8 Knlin(ma,,my,) = (1 + mL mAp)Q. Making use of the

as indicated by (18). Comparing the above expressiij'r'omial theorem yields

with (12), we observe that the first and the second term of q
the r.h.s. of equation (20) correspond to the linear trerdl an Enlin(1722,, M) ,)) = Z <
the nonlinear fluctuations, respectively. Finally, the radance k=0

vectora* can be estimated as follows

U ma, ) (@)

We observe that each componerim), m, )" =
o =MTB" +4* —\'1 (21) (mx,, mxr,, + ... +mx, M, )" Of the above expression



T

(B K+pl | M |[-M1\ /3 r 3
max G'(8,7,A) = —5 | 7 M’ I | -1 v |+|_0O B
ol 2\ ) oM [T R )\ =)\ v (19)

subjectto v =0

can be expanded into a weighted sum kbfth degree with « in [0, 1] in order to ensure positiveness & ,,.
monomials of the form Learning both the parameter and the mixing coefficients
(3 in a single optimization problem is known as the multiple
kernel learning problem. See [41] and references therdip. T
with Zf;l k. = k. This means that, in addition to the linearest of this section is devoted to the formulation and retsmiu
mixture termM «, the auto and interaction terms consideredf a convex optimization problem.

by the kemel-based model are of the form!' ® m4? @  In order to tune the balance betwegm (m.,) = a'm,,

. ® my for every set of exponents in the Hadamarénd ¢nin(1m2,), it might seem tempting to substitute matrix
sense satisfying < 27 Lk, < ¢. Note that it would be K with matrix K, in the dual problem (19). Unfortunately,
computationally expensive to explicitly form these intera @ primal problem must be first formulated in order to identify
tion terms. Their number is indeed very large: there glre in the spirit of equation (18), explicit expressions faf and
monomials (26) of degreé, and then5Z°~ components ¢nin- We propose to conduct hyperspectral data unmixing by
in the entire¢-th order representation. Compared with th&olving the following primal problem

(Mxgs ma, )™ (mix, , mix, o) o (ma, o ma, ) (26)

methods introduced in [25], [26], which insert products of 1

pure material signatures as new endmembers, we do not nee#” ;" = argmin < [4in 134, + ||1Z1n|.n||m..n>
to extend the endmember matrix by adding such terms. The o

kernel trick makes the computation much more tractablenén t n 1 Z 2

experimentations reported hereafter, the follow2agd degree

polynomial kernel was used subject to e, = 1y —w(my,) and 0<u<1

2
1 — ol )
Knlin (m/\pm)\p) = (1 + ﬁ(m)‘f — 1/2)T(7’n/\p — 1/2)) where ¢ = Yjin + Vniin 29)
(27) _
where the constantd/R? and 1/2 serve the purpose of Whereu allows to adjust the balance betweem, and ¥nin
normalization. via their norms. The space;, and X, are RKHS of the

general form

C. Nonlinear unmixing by multiple kernel learning: the SK-

Hype algorithm {w - WHH OO} (30)
The proposed model relies on the assumption that th

mixing mechanism can be described by a linear mixture

endmember spectra, with additive nonlinear fluctuatiopg

defined in a RKHS. This justifies the use of a Gram matr

of the formK = MM " + K in the algorithm presented b

previously. Model (12) however has some limitations in th

the balance between the linear componaﬁtmhZ and the (

nonlinear componentin (12, ) cannot be tuned. This should

however be made possible as recommended by physica

inspired models such as model (22). In addition, kerngis

with embedded linear component such as the mhomogeneo

polynomial kernel (25) introduces a bias into the estinmatio min J(u) subjectto 0<wu<1 (31)

of a, unless correctly estimated and removed. Another diffi- “

culty is that the model (12) cannot captures the dynamic where.J(u) is defined by (32) (next page).

the mixture, which requires that or the m,,’s be locally The connection between (29) and this problem is as follows.

normalized. This unlikely situation occurs, e.g., if a iy We always have [42, p. 133]

of reflectance signatures is used for the unmixing process. | . .

order to address problems such as the above, we shall now IB,IJ}F(U’W T J(w) (33)

consider Gram matrices of the form

]?th the conventiong = 0 if = = 0, andco otherwise. This
|mpI|es that, ifu = 0, them/) belongs to spac#’ if and only if
g 0. By continuity consideration via this convention, it can
Be shown that problem (29) is a convex optimization problem
virtue of the convexity of the so-called perspective tiorc

¥) = ||¥||3,/u overIR; x H'. This has been shown in
[42, Chapter 3] in the finite-dimensional case, and exterled
A41] to the infinite-dimensional case. This allows to foratel
e two-stage optimization procedure, with respecitand
successwely, in order to solve problem (29).

where J(u) = miny F(u,), subject to all the constraints
K,=uMM' + (1 — u) Kniin (28) overwu and defined in (31)-(32). In addition, as proven in



L
. 1/1 1 1
H};HF(UW) =3 (aWnnH%{.m + m”lﬂnnn@nm) *3 ;65
J(u) = . . (32)
subject to e, =7 — ¥ (my,) With ¢ = iin + Ypiin

and jn(my,) =h'm,, with h>0

textbooks [42, p. 87], becaudeé is convex in(u, ) subject Let us briefly address the differentiability issue of the
to convex constraints ovef, it turns out that/(u) is convex problem (31)-(36). The existence and computation of the
in v and, as a consequence, that the constrained optimizatitamivatives of supremum functions such A6u) have been
problem (31) is convex. largely discussed in the literature. As pointed out in [443],
Compared to the preliminary algorithm described in Sethe differentiability ofJ at any pointu is ensured by the unic-
tion IlI-A, it is important to note that the sum-to-one conity of the corresponding minimiz€3;, v¢), and by the differ-
straint1 " h = 1 has been given up. We have adopted an altezntiability of the cost functior¥ (u, ¢) in (32). The derivative
native strategy, which consists of relaxing this constrand of J atu, can be calculated as if the minimize8;, v5) was
normalizing h afterward in order to be correctly interpretedndependent ofy, namely, dé(;) = W
as a vectorx of fractional abundances. The main reasons amis yields o
as follows. The weight vectoh is optimally scaled by the

u=ug "

factor w in order to achieve the b_est bal_an<_:_e betwegn (u) __ 1 (”MTﬁO +70H2 — 3 Kuin ,80)
andvnin. As a consequence, there is no significant advantage du |,_,, 2
of satisfying the sum-to-one constraibf » = 1 along the (38)

optimization process, which is consequently simplified .t~ Table | summarizes the proposed algorithm. Note that (31) is
contrary, we clearly observed that relaxing thenorm1"h @ very small-size problem. Indeed, it involves a one-dirrems
of the weight vectoh acts as an additional degree of freedorfiptimization variable and can thus be solved with an ad-hoc
to adjust the balance betweef, and ¢nin, which would Procedure. Using a gradient projection method, e.g., based
otherwise be limited to the factorsand 1 — . This has been Armijo rule along the feasible direction, makes practicaise
confirmed by experiments, which have revealed a significdft this case [39, Chapter 2]. See also [44]. Moreover, both
improvement in performance. problems can benefit of warm-starting between successive so
By the strong duality property, we shall now derive #ltions to speed-up the optimization procedure. The aflgori
dual problem that has the same solutidtu) = F(u,*) can be stopped based on conditions for optimality in convex
as the primal problem (32). Let us introduce the Lagrang®timization framework. In particular, the KKT conditioasd
multipliers 3, and~,.. The Lagrange function associated witdhe duality gap should be equal to zero, within a numerical

the problem (32) can be written as error tolerance specified by the user. The variation of the
. cost J(u) between two successive iterations should also be
1/1 1 1 considered as a potential stopping criterion.
G == =||h|* + ——||%nin|l3,. — 7 . . : .
2 (u' I+ 1— uwn"”'”"'“) * 24 ;eé Before testing our algorithms, and comparing their perfor-

(34) mance with state-of-the-art approaches, we shall now axpla

L R . . . .
. Z By (eg — ¢ +1b(my,)) — Z% h, how they differ from eX|st_|ng kernel-based techniques for
= -l hyperspectral data processing.
with v, > 0, where we have used théti (|3, = [h[>.
The conditions for optimality of+ with respect to the primal D. Comparison with existing kernel-based methods in hyper-
variables are given by spectral imagery
h*=u (ZELﬂ B my, +7*) Some kernel-based methods have already been proposed

. L o 7 (35) to process hyperspectral images, with application to elass

wf"j_ (1 u) 22¢=r B fonin(, M) fication, supervised or unsupervised unmixing, etc. Byrgki
€= 1h advantage of capturing nonlinear data dependences, some of

By substituting (35) into (34), we get the dual problem (3@hem have been shown to achieve better performance than

(next page). their linear counterpart. Let us now briefly discuss the main
Pixel reconstruction can be performed using difference between our kernel-based model and those fhgsen

. . . - existing. The central idea underlying most of state-of-the

=[N (my,), .. 0T (M) art methods is to nonlinearly transform hyperspectral Ipixe

with ¢*(my,) = m] h* + ¢}, (m,,) defined in equation vectors prior to applying a linear algorithm, simply by repi
(35). Finally, the estimated abundance vector is given by Ng inner products with kernels in the cost function. Thisiba
principle is fully justified in detection/classificationgilems
. M'B" +~* 37) because a proper nonlinear distortion of spectral sigeatur
N 1T(MT5* + %) can increase the detectability/separability of materilghin




(BN (KutpI [aM N (B (rY (B
%%XG(U,,@,’Y)—_§ (T) ( uM " | ul )(T)+(T) (T)

subjectto +v = 0
with K, =uMM " + (1 — u)Kpjin

J(u) = (36)

TABLE |
NONLINEAR UNMIXING BY MULTIPLE KERNEL LEARNING : THE SK-HYPE ALGORITHM

Initialization
Choose the kernel knin and the regul arization constant p > 0.
Cal cul ate the kernel matrix Khyjin.
Repeat
Cal culate J(u) in (36) by using a generic QP sol ver
Sol ve the optinm zation problem
min, J(u) subject to 0<u<1
by performng one iteration of the gradient projection
al gorithm using (38)
until stopping criterion is satisfied
Estimate t he abundances by (37)

the context of hyperspectral unmixing, this leads to cagrsidkaolinite, buddingtonite. In the third scene, the eighteniats
mixtures of the form were used. For each scene, thrg@-by-50 hyperspectral
images were generated with different mixture models, each
O(r) = [®(ma), ®(my), ..., B(mp)]a + 7. (39) providing N = 2500 pixels for evaluating and comparing the
This model is inherent in the KFCLS algorithm [30], [31]performance of several algorithms. These three models were
which optimizes the following mean-square error criteriothe linear model (1), the bilinear mixture model defined as
where all the inner products have been replaced by kernels

R-1 R
Jo)=a"'Kpa—2a ke, + k(r,r), (40) TZMOH-Z Z a; o5 (m; @ myj) +n, (41)
i=1 j=i+1

whereK ,,, is the Gram matrix with{i, j)-th entryx(m;, m;), _ o .

and k., is a vector withi-th entry x(r, m,). Unfortunately, and a post-nonlinear mixing model (PNMM) [45] defined by

even though model (39) allows distortions of spectral signa _

tures, it does not explicitly include nonlinear interaomf the r=(Ma) +n (42)

endmember spectra. The analysis in Section IlI-B has shownere(.)ﬁ denotes the exponential valgeapplied to each

strong connections between our kernel-based model and welhtry of the input vector. Parametérwas set t00.7. The

characterized models, e.g., the generalized bilinear uréxt abundance vectors,,, with n = 1, ..., 2500, were uniformly

model. The experimental comparison on simulated and regnerated in the simplex defined by non-negative and sum-to-

data reported in the next section confirms this view. one constraints. Finally, all these images were corruptiéd w
an additive white Gaussian noige with two levels of SNR,

IV. EXPERIMENTAL RESULTS 30 dB and of15 dB.

We shall now conduct some simulations to validate the The following algorithms were considered
proposed unmixing algorithms, and to compare them with | The so-called Fully Constrained Least Square method

state-of-the-art methods, using both synthetic and reaf@s. (FCLS), [11]: This technique was derived based on linear
. o mixture model. It provides the optimal solution in the
A. Experiments on synthetic images least-mean-square sense, subject to non-negativity and

Let us first report some experimental results on synthetic sum-to-one constraints. A relaxation parametdras to
images, generated by linear and nonlinear mixing of several be tuned to specify a compromise between the residual
endmember signatures. The materials we have considered are error and the sum-to-one constraint.
alunite, calcite, epidote, kaolinite, buddingtonite, afrdine, o The extended endmember-matrix method
jarosite and lepidolite. They were selected from the ENVI  (ExtM), [25]: This method consists of extending
software library. These spectra consist of 420 contiguous the endmember matrid/ artificially with cross-spectra
bands, covering wavelengths ranging from 0.3951 to 2.56 of pure materials in order to model light scatter effects.

micrometers. In the experiments, all the second-order cross terms
In the first scene, only three materials were selected to m; ® m; were inserted so that it would correspond to
generate images: epidote, kaolinite, buddingtonite. énsbc- the generalized bilinear model. This approach also has a

ond scene, five materials were used: alunite, calcite, épido relaxation parameter for the sum-to-one constraint.



o The so-called Kernel Fully Constrained Least Square Table Il and Table IV respectively. Because the FCLS method
method (KFCLS), [30]: This is a kernel method, directly was initially derived for the linear mixing model, it achew
derived from FCLS, in which all the inner products ara very low RMSE for linearly-mixed images, and produces a
replaced by kernel functions. As for all the other kernetelatively large RMSE with nonlinearly-mixed images. With
based algorithms considered in this paper, the Gaussigatond-order cross terms that extend the endmember ma-
kernel was used for simulations. This algorithm has twimix M, the ExtM algorithm notably reduces the RMSE
parameters, the bandwidthof the Gaussian kernel, andwhen dealing with bilinearly-mixed images when compared
a relaxation parameter for the sum-to-one constraint. with FCLS. However, it marginally improves the performance

o The Bayesian algorithm derived for generalized bilin- in PNMM image ummixing. BilBay algorithm was derived
ear model (BilBay), [20]: This method is based on ap-for the bilinear mixing model, and thus achieves very good
propriate prior distributions for the unknown parametergerformance with bilinearly-mixed images. Nevertheldks,
which must satisfy the non-negativity and sum-to-ongerformance of BilBay clearly degrades when dealing with
constraints, and then derives joint posterior distributsd a nonlinear mixing model for which it was not originally
these parameters. A Metropolis-within-Gibbs algorithrdesigned. KFCLS with Gaussian kernel performs worse than
is used to estimate the unknown model parameters. TRELS, even with nonlinearly-mixed images as it does not
MMSE estimates of the abundances were computed blgarly investigate nonlinear interactions between niater
averaging the500 generated samples obtained afied For the less noisy scenes0( dB), our algorithms K-
burn-in iterations. Hype and SK-Hype exhibit significantly reduced RMSE when

« The first algorithm proposed in this paper (K-Hype): dealing with nonlinearly-mixed images. In the case of the
This is the preliminary algorithm described in Sectioilinear model, K-Hype and SK-Hype achieve very good
IlI-A. The Gaussian kernel (G) with bandwidth and the performance compared to the other algorithms. Indeed, they
polynomial kernel (P) defined by (27) were consideredre the best performers except in a few cases. In the case of
The Matlab optimization function Quadprog was used tihe PNMM model, they outperform all the other algorithms,
solve the QP problem. and it can be observed that SK-Hype outperforms K-Hype in

o The second algorithm proposed in this paper (SK- several scenarios. For the noisiest scenésdB), although
Hype): This is the main algorithm described in Sectionhe increase in the noise level significantly degrades the
IlI-C and Table I. As for K-Hype, the Gaussian kerneperformance of all the algorithms, K-Hype and SK-Hype
and the polynomial kernel were considered. In ordetill maintain an advantage. Last but not least, the mar§in o
to simplify the experiments, the weight vectar was performance over the other approaches becomes larger as the
constrained to be of the fornw = [u, 1 — u]" with number of endmembers increases.

0 < u < 1. Obviously, this allows to reduce the number To give a more meaningful comparison of the performance
of variables but does not change the structure of tléd these algorithms, one-tailed Welchstests with signifi-
algorithm. The variable was initially set t(%. A gradient cance leveD.05 were used to test the hypothesis

projection method, based on the Armijo rule to compute

the optimal step size along the feasible direction, was Ho:  RMSEproposed< RMSHiterature

used to determined. The algorithm was stopped When, e re RMSE;oposeqdenctes the RMSE of the K-Hype and SK-
the relative variation ot: between fwo successive lterayy e algorithms, with Gaussian and polynomial kemels, and
tions became less thay.. = 107, or the maximum pysE. - is the RMSE of the algorithms of the literature
number of iterations J. = 10 was reached. The Matlab gg|ected in this paper. Due to limited space, only the regoit
optimization function Quadprog was used to solve the Qtene 2 and the SNR levad dB are reported here, in Table V

problem. _ to VII. The letter. A means that the hypothesi, is accepted.
The root mean square error defined by Without ambiguity, these results confirm the advantage of ou
~ algorithms.
1 * |12
RMSE = N > o — el (43) TABLE V

n=1 WELSH' St-TESTS FOR SCENE WITH SNR = 30DB (LINEAR MODEL)
was used to compare these six algorithms. In order to tune
their parameters, preliminary runs were performed 100 FCLS | ExtM | KFCLS | BilBay
independent test pixels for each experiment. The bandwidth K-Hype (G) A
of the Gaussian kernel in the algorithms ExtM, K-Hype K-Hype (P) A

. L o SK-Hype (G) A

and SK-Hype was varied withid1,...,3} with increment SK-Hype (P) A

of % The parametep of K-Hype and SK-Hype algorithms
was varied within{1,107%,1072,5 - 10~3}. The parame-
ter v in algorithms FCLS, ExtM, KFCLS was chosen within The computational time of these algorithms mainly de-
{1,1071,1072,103,10~*}. All the parameters used in thepends on the constrained optimization problem to be solved.
experiments are reported in the Appendix. FCLS and KFLCS minimize a quadratic cost function of
Results for Scene 1 to Scene 3 unmixing, with three, fidimensiorR?, under inequality constraints of the same dimen-
and eight endmember materials, are reported in Table $ipn. ExtM solves a similar problem but with an increased



TABLE Il

SCENE1 (THREE MATERIALS): RMSE COMPARISON

SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS 0.00372x10"° 0.0758+0.0019 | 0.0604+-0.0017 | 0.0212£0.0005 | 0.096Q£0.0060 | 0.0886+0.0063
ExtM 0.0079+0.0001 0.0312+0.0013 | 0.0601+0.0016 | 0.0404+0.0031 | 0.0991-0.096 0.0869+-0.0066
KFCLS 0.0054+3x10~° 0.2711-0.0516 | 0.2371:0.0197 | 0.0296£0.0009 | 0.2694+0.0498 | 0.2372+0.0235
BilBay 0.0384+-0.0013 0.0285+-0.0006 | 0.1158+-0.0058 | 0.1135t£0.0098 | 0.1059:0.0085 | 0.119H-0.0091
K-Hype (G) 0.0208+-0.0004 0.0349+0.0013 | 0.0446+0.0020 | 0.0562:0.0041 | 0.0611:0.0048 | 0.0786+0.0067
K-Hype (P) 0.0346+0.0011 0.0281-0.0011 | 0.0569+0.0031 | 0.0589t0.0041 | 0.0628t0.0053 | 0.0794+0.0066
SK-Hype (G) 0.0104+-0.0001 0.0315+0.0012 | 0.023G+0.0007 | 0.0562t0.0044 | 0.0598t0.0048 | 0.0757:0.0073
SK-Hype (P) 0.01061+-0.0002 0.0310+0.0011 | 0.0245+0.0007 | 0.0561t0.0043 | 0.0602:0.0048 | 0.0742+0.0075
TABLE Il
SCENE2 (FIVE MATERIALS): RMSE COMPARISON
SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS 0.0134+-0.0002 | 0.1137:0.0032 | 0.1428+0.0039 | 0.065A-0.0047 | 0.1444+0.0116 | 0.1611:0.0134
ExtM 0.015A-0.0003 | 0.0575+0.0024 | 0.1427-0.0040 | 0.0761-0.0060 | 0.1207:0.0160 | 0.1678:0.0139
KFCLS 0.020G6+0.0004 | 0.2051:-0.0148 | 0.1955+0.0115 | 0.089G+0.0080 | 0.1884+0.0113 | 0.1572:0.0114
BilBay 0.0585+0.0017 | 0.0441-0.0010 | 0.17414+0.0082 | 0.1465t£0.0109 | 0.10070.0063 | 0.1609+0.0124
K-Hype (G) 0.0231-0.0004 | 0.0307:0.0008 | 0.0398+0.0012 | 0.1076+-0.0093 | 0.0748:0.0046 | 0.0823:0.0053
K-Hype (P) 0.0218+0.0004 | 0.0465+0.0012 | 0.0386+0.0011 | 0.0738+0.0043 | 0.0847:0.0052 | 0.0828:0.0054
SK-Hype (G) 0.0196+-0.0004 | 0.0288+0.0007 | 0.0346+0.0010 | 0.0675+-0.0040 | 0.0778:0.0043 | 0.0942:0.0065
SK-Hype (P) 0.0195+-0.0004 | 0.0349+0.0008 | 0.0346+0.0010 | 0.0673+0.0040 | 0.083G+0.0046 | 0.0965:0.0071
TABLE IV
SCENE 3 (EIGHT MATERIALS): RMSECOMPARISON
SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS 0.0148+-0.0002 | 0.093G£0.0024 | 0.1079£0.0018 | 0.0652+-0.0031 | 0.117A0.0068 | 0.1252+0.0065
ExtM 0.0173+0.0003 | 0.0560+0.0017 | 0.1126+0.0019 | 0.0743+0.0038 | 0.1066+0.0062 | 0.1322+0.0063
KFCLS 0.0216+0.0004 | 0.1431£0.0059 | 0.1274+0.0039 | 0.0647A-0.0032 | 0.1270+0.0038 | 0.2250+0.0220
BilBay 0.0448+-0.0007 | 0.0369:0.0004 | 0.1159+0.0029 | 0.0745+-0.0020 | 0.0792+0.0026 | 0.104G£0.0430
K-Hype (G) 0.0203+-0.0003 | 0.0202:0.0003 | 0.030G+0.0006 | 0.0562+-0.0020 | 0.0548+-0.0018 | 0.0642+0.0024
K-Hype (P) 0.0195+0.0003 | 0.033G£0.0006 | 0.0297:0.0006 | 0.0585+-0.0021 | 0.0646+0.0024 | 0.0657:0.0026
SK-Hype (G) 0.0185+-0.0003 | 0.0221+0.0003 | 0.02910.0006 | 0.0561-0.0019 | 0.0573+0.0020 | 0.0696+0.0027
SK-Hype (P) 0.0184+-0.0002 | 0.0247:0.0004 | 0.0313+0.0007 | 0.0571-0.0021 | 0.0620+0.0021 | 0.0736+0.0031

TABLE VI

strategy. K-Hype solves a quadratic programming problem
of dimensionL + R + 1. It is interesting to note that the
computational cost is independent of the complexity of the

WELSH' St-TESTS FOR SCENE2 WITH SNR = 30DB (BILINEAR MODEL)

FCLS | ExtM | KFCLS | BilBay L . . .
K-Aype (G) ¥ Yl v v unmixing model. A sparsification strategy as described in
K-Hype (P) A A A [46] should be advantageously used to greatly reduce the
SK-Hype (G) A A A A computational complexity with negligible effect on the tjitya
SK-Hype (P)|| A A A A of the results. SK-Hype has similar advantages as K-Hype
except that the alternating optimization scheme requireem
TABLE VI time. The average computational times per pixel of all these

WELSH' St-TESTS FOR SCENE WITH SNR = 30DB (PNMM) algorithms are listed in Table VIA.

FCLS | ExtM | KFCLS | BilBay B. Experiment with AVIRIS image
K-Hype (G) A A A A . . .
K-Hype (P) A A A A Th!s section illustrates the perfprmance of the .proposed
SK-Hype (G) A A A A algorithms, and several other algorithms, when appliec#b r
SK-Hype (P)|| A A A A hyperspectral data. The scene that was used for our expgrime

is the well-known image captured on the Cuprite mining dis-

trict (NV, USA) by AVIRIS. A sub-image o250 x 191 pixels

was chosen to evaluate the algorithms. This area of interest
L = 188 spectral bands. The number of endmembers

was first estimated via the virtual dimensionality, aRdvas

accordingly set tal2 [4]. VCA algorithm was then used to

dimension due to the cross-spectra that are artificiallgriesl.
In the case where only the second-order cross spectra
added, the dimension of the optimization problenfis- (%)
with R = 3, 5 and 8 in this study. BilBay has to generate
numerous samples to estimate the model parameters, angsing matiab R2008a on a iMac with 3.06GHz Intel Core 2 Duo dnd
suffers from the large computational cost of this samplingo Memory
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TABLE VI
AVERAGED COMPUTATIONAL TIME PER PIXEL(IN SECONDY

L =420 L =210
R=3 R=5 R=38 R=3 R=5 R=38
FCLS 76x1072 ] 12x107% [ 24%x107° [ 64%x10°F | 1.1x10° %] 21x10°
ExtM 1.6 x 1072 | 5.5 x 1073 0.020 1.4x 1073 | 4.0x 1073 0.014
KFCLS || 6.0x107* | 1.3x1072 | 25x 1073 | 56x107* | 84 x107* | 1x 1073

BilBay 6.6 15 40 6.4 14 33

K-Hype 0.17 0.29 0.47 0.038 0.065 0.11

SK-Hype 4.3 7.5 134 0.92 1.7 3.1

extract the endmembers. Both our algorithms were compared V. CONCLUSION

with all the state-of-the-art algorithms considered poasly.

After preliminary experiments, the regularization parteng o e
of FCLS and ExtM algorithms were set to — 0.01. sensed hyperspectral data. This involves the decomposifio

K-Hype algorithm and SK-Hype algorithm were run witheaCh mixed pixel into its pure endmember spectra, and the
the polynomial kernel (27), and the Gaussian kernel T timation of the abundance value for each endmember. To be
bandwidth of the Gaussian kernel was setsto— 2. The physically int_erpretable,_the abundances are often reduiv

regularization parameter was fixed to2 - 103, To evaluate be nonnegative, and their sum must be equal to one. Although

the performance, the averaged spectral angle betweennairigfhe linear m!xturg mofje' hgs many practical advantag(_aeethe
 and reconstructed* pixel vectors was used are many situations in which it may not be appropriate. In

this paper, we formulated a new kernel-based paradigm that

Spectral unmixing is an important issue to analyze remotely

o — 1 XN:H(r ) relies on the assumption that the mixing mechanism can be
N &~ e described by a linear mixture of endmember spectra, with
. B _ » additive nonlinear fluctuations defined in a RKHS. This famil
where NV is the number of processed pixels afigr, r*) = of models has a clear physical interpretation, and allows to

- (r,r”) o ; . . .
cos™! (Hr] ||Tr*||)' It is important to note that the quality oftake complex interactions of endmembers into account. Two

reconstruction, estimated by the averaged spectral anglekernel-based algorithms for estimating the abundances wer
mean-square error for instance, is not necessarily in ptigwo proposed. The second one, based on the concept of multiple
to the the quality of unmixing, especially for real imagegernel learning, is the natural generalization of the first as
where the nonlinear mixing mechanism can be complex. finallows to automatically adapt the balance between linear
particular, more complicated model may better fit the datgpectral interactions and nonlinear ones. Future work will
Paramete® is only reported here as complementary informanclude studying the feasibility and constraints of design
tion. The averaged spectral angle of each approach is egpofshysically meaningful kernels, possibly based on manifold
in Table IX. Note that KFCLS was not considered in thesl@arning as in [47], [48]. We will also focus our attention
tests as there is no possible direct reconstruction of Rixebn adaptive kernel-based algorithms, in the spirit of [46],
Clearly, our algorithms have much lower reconstructiow®er unmix neighboring pixel-vectors sequentially and thusespe
than the other approaches. Six typical estimated abundaggeprocessing.

maps out of twelve available are shown in Figure 1. It can be

observed that the estimated locations of the different rnzdse

are quite similar for the four methods, except the US Highway REFERENCES

95 in the last colum_n which is m_uch more accurately depiqteﬂ] N. Keshava and J. F. Mustard, “Spectral unmixing/EEE Signal

by our methods. Finally, the distributions of reconstroti Processing Magazine, vol. 19, no. 1, pp. 44-57, 2002.
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-Hype (P) : [6] A. Plaza, G. Martin, J. Plaza, M. Zortea, and S. Sanch&ecent
SK-Hype (G) || 0.0078 developments in endmember extraction and spectral ungyixin Op-
SK-Hype (P) || 0.0104 tical Remote Sensing: Advances in Signal Processing and Exploitation
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Fig. 1. Abundances maps of selected materials. From top timrho FCLS, BilBay, K-Hype (G), SK-Hype (G). From left to hg calcedony, alunite,
kaolinite, buddingtonite, sphene, US highway 95.
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Fig. 2. Maps of reconstruction error. From left to right: F&LBilBay, K-Hype (G), SK-Hype (G).
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APPENDIX



TABLE X

SIMULATION PARAMETERS CORRESPONDING TGSCENE 1 (CF. TABLE Il)
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SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS v = 0.001 v=1 v=1 v = 0.001 v=1 v=1
ExtM v = 0.001 v = 0.001 v=1 v=0.1 v = 0.001 v=1
KFCLS vr=20.1,0=3 v =0.01,0 =3 v =0.01,0 =5 v =20.01,0 =5 vr=0.1,0=1 v =20.01,0 =3
BilBay - - - - - -
K-Hype G) || pn=5-10"3206=3| pn=10""0=3 | u=5-103206=3 | p=10"1 =3 | p=101 0=2 | p=10""0=25
K-Hype (P) pw=>5-10"3 w=10"2 w=>5-10"3 uw=10"1 uw=10"1 =101
SK-Hype (G) p=10"2%0=2 n=102%06=25| p=5-103%0=3 | p=10"4, 0= nw=10"1o=15 p=10=25
SK-Hype (P) pw=>5-10"2 u=10"2 uw=>5-10"3 uw=10"1 uw=10"1 =101
TABLE XI
SIMULATION PARAMETERS CORRESPONDING TGSCENE 2 (CF. TABLE I11)
SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS v = 0.001 v=1 v=1 v = 0.001 v=1 v=1
EXtM v = 0.001 v=0.1 v=1 v =0.001 v = 0.001 v=1
KFCLS v=0.1,0=3 v=1,0=1.5 v=10=1 v=0.1,0=3 v=10=3 v=1,0=3
BilBay - - - - - -
K-Hype G) || p=10"%0=3 | u=10"2%,0=15 | u=5-10206=3 | p=102%0=2 | p=1l,0=1 | p=1,0=3
K-Hype (P) u=10"2 u=10""1 w=>5-10"3 n=1 =1 "=
SK-Hype G) || p=10"Y, 6 =3 | p=10"2c0=2 n=10"2%¢0=3 n=10"2%06=3 | p=1l,0=1 | p=10=1
SK-Hype (P) uw=10"1 pw=>5-10"2 uw=>5-10"2 w=1 w=1 w=1
TABLE XII
SIMULATION PARAMETERS CORRESPONDING TCBCENE 3 (CF. TABLE V)
SNR =30 dB SNR =15 dB
linear bilinear PNMM linear bilinear PNMM
FCLS v = 0.01 v=1 v=1 v =0.01 v=1 v=1
ExtM v =0.01 v =0.01 v=1 v =0.01 v =0.01 v =0.01
KFCLS v=0.1,0=3 v=10= v=1,o0=1 v=0.1,0=25 v=1,0=2 v=01,0=1.>5
BilBay - - - - - -
K-Hype G) || p=10"2%06=3 | p=10" 0 =15 | u=10"2%06=3 | pu=1,0=1.5 pn=10=1 w=10=15
K-Hype (P) w=10"2 =101 w=>5-10"3 =1 w=1 =1
SK-Hype G) || p=10""1, 0 = pn=10"140=25| p=10"10=3 p=10=15 pw=10=15 pn=10=1
SK-Hype (P) =101 =101 uw=10"2 =1 w=1 =1




