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Target tracking using machine learning and
Kalman filter in wireless sensor networks

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, and Hichem Snoussi

Abstract—This paper describes an original method for
target tracking in wireless sensor networks. The proposed
method combines machine learning with a Kalman filter to
estimate instantaneous positions of a moving target. The tar-
get’s accelerations, along with information from the network,
are used to obtain an accurate estimation of its position.
To this end, radio-fingerprints of received signal strength
indicators (RSSIs) are first collected over the surveillance area.
The obtained database is then used with machine learning
algorithms to compute a model that estimates the position
of the target using only RSSI information. This model leads
to a first position estimate of the target under investigation.
The kernel-based ridge regression and the vector-output
regularized least squares are used in the learning process.
The Kalman filter is used afterwards to combine predictions
of the target’s positions based on acceleration information
with the first estimates, leading to more accurate ones. The
performance of the method is studied for different scenarios
and a thorough comparison to well-known algorithms is also
provided.

Index Terms—radio-fingerprinting, Kalman filter, machine
learning, RSSI, target tracking, wireless sensor networks.

I. I NTRODUCTION

Recently, advances in radio and embedded systems have
led to the emergence of Wireless Sensor Networks (WSNs),
that have become a major research field during the last few
years. These networks are beginning to be deployed at an
accelerated pace for many applications, ranging from home
monitoring [1] to industrial monitoring [2], and covering
medical applications [3].

Target tracking [4], [5] is an interesting research and
application field in WSNs, that consists of estimating
instantly the position of a moving target. Target tracking
can be viewed as a sequential localization problem, thus
requiring a real-time location estimation algorithm. Typi-
cally, sensors broadcast signals in the network, while targets
collect these signals for location estimation. Several types
of measurements can be considered, such as received signal
strength indicators (RSSIs) [6], angle of arrival (AOA) [7],
time difference of arrival (TDOA) [8] and time-of-arrival
(TOA) [9]. Previous studies have shown that investigating
TOA and TDOA leads to more accurate position estimates
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compared to other methods [10]. However, implementing
these techniques requires high-cost hardware, making them
impractical for most applications. Unlike these techniques,
the RSSI-based ones achieve acceptable performance, with
no extra hardware.

Many RSSI-based tracking techniques have been pro-
posed. For instance, [11] proposes a target tracking tech-
nique using a particle filter with the exact RSSI channel
model. However, such an approach is not reliable with the
highly varying RSSIs, due to the signal fading, the additive
noise, etc. Also exploring RSSIs, authors of [12] and [13]
propose target tracking methods based on connectivity mea-
surements using the interval analysis or the variational filter.
By exploring connectivity, these methods are more robust
than the ones using the exact channel model. However,
the performance highly depends on the number and the
positions of the sensors in the network. In [14], the authors
propose a tracking algorithm that works in indoor and
outdoor environments. Indeed, it switches between GPS
information when the node is outdoors and an existing
Wifi-based application when the GPS signals are no more
available. This android application yields several position
estimates of the node when the Wifi is activated. Then, it
is followed by a Gaussian process regression that uses the
estimated positions, to reconstruct a smooth trajectory and
recover the missing positions. In addition to measurements,
tracking algorithms can employ a state-space model to
refine the position estimation based on its previous position.
For instance, a first-order model is used with a Kalman
filter in [15], and with a particle filter in [11], whereas [16]
employs a second-order one. However, these models are
only reliable for targets having slightly varying velocities
or accelerations.

In other contexts, RSSI-based methods have been pro-
posed for nodes localization in WSNs. These methods
aim at location estimation by investigating observation
information without taking advantage of nodes mobility.
One interesting RSSI-based localization approach consists
of radio-fingerprinting [17], [18]. Such an approach allows
taking into consideration the stationary characteristicsof the
environment. Several studies have been made for sensors
localization using RSSI-based radio-fingerprinting, suchas
the weighted K-nearest neighbor (WKNN) algorithm [19].
We have recently proposed in [20] and [21] two localization
methods using radio-fingerprinting in WSNs, by taking
advantage of kernel methods in machine learning. These
methods outperform the WKNN approach. In order to
perform tracking, the authors of [22] propose to correct the
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WKNN estimates using the Kalman filter with a second-
order state-space model.

In this paper, we propose a new method for target
tracking in WSNs that combines radio-fingerprinting and
accelerometer information. The proposed method consists
of setting reference positions along the network where RSSI
measurements are collected, leading to a radio-fingerprint
database. This database is used with machine learning
algorithms to define a kernel-based model, whose input
is the RSSI vector and whose output is the corresponding
position. To estimate this model, we investigate two learn-
ing algorithms: the ridge regression and the vector-output
regularized least squares. A moving target then measures
its RSSIs and instantaneous acceleration. A first position
estimate is obtained using the already-defined kernel-based
model and the measured RSSIs, then this estimate is
combined with the acceleration information, by means of a
Kalman filter, to achieve better accuracy. To this end, three
different orders of the tracking models are examined. The
proposed method outperforms existing methods, especially
for hyperactive targets.

The rest of the paper is organized as follows. The pro-
posed tracking approach is presented in Section II. Section
III describes three orders of the state-space model, while
Section IV defines the observation model and the use of
machine learning in our method. In Section V, we examine
the performance of the proposed method and compare it to
two recently derived methods. Finally, Section VI concludes
the paper.

II. T RACKING APPROACH

Consider an environment ofD dimensions, for instance
D = 2 for a two-dimensional environment, andNs
stationary sensors having known locations, denoted by
si, i ∈ {1, . . . , Ns}. In the following, all coordinates
areD-dimension row vectors. For the sake of clarity, and
without loss of generality, only one target with the unknown
positionx(k) is considered,k being the current time step.
Nevertheless, the proposed method could be extended to
several moving targets, since they are tracked independently
from each other, using their accelerations and information
exchanged only with the stationary sensors.

To this end, a linear state-space model is proposed to
describe the target’s motion as follows:

x(k) = x(k − 1)A+B(k) + θ(k), (1)

wherex(k− 1) is the target’s previous position,A is aD-
by-D state transition matrix that relates the current position
of the target to its previous one,B(k) is a control-input
vector depending on the accelerations, andθ(k) is a random
vector noise whose probability distribution is assumed to be
normal, having zero mean and covariance matrixQ(k), that
is θ(k)∼N (0,Q(k)). More details about the definitions of
A,B(k) andQ(k) are given in Section III, where different
orders of the state-space model are considered. In addition
to its accelerations, the target exchanges information in the
network with the stationary sensors at each time step. It

therefore collects a set of measurements, stored inz(k).
These measurements are described in detail in Section IV.
Let the observation equation be given by its linear general
formulation as follows:

z(k) = x(k)H + n(k), (2)

whereH is the observation matrix that relates the state
x(k) to the measurementz(k) and n(k) ∼ N (0,R) is
the observation noise with normal distribution, zero mean
and covariance matrixR. This variable is assumed to be
independent ofθ(k). The values ofH andR, as well as
the choice of the linear observation model, will also be
discussed in detail in Section IV.

Having defined both the state-space model and the obser-
vations, we now propose to solve the tracking problem by
using a Kalman filter [23], [24]. To this end, the proposed
filter first predicts the unknown position using the previous
estimated position and the state-space equation (1). Then,
the predicted position is corrected using the observation (2)
in the following step.

Now let x̂(k − 1) denote the target’s position estimated
with the Kalman filter at time stepk − 1. Therefore, the
predicted position can be written as:

x̂−(k) = x̂(k − 1)A+B(k). (3)

At k = 0, x̂(0) is assumed to be known. Then, the Kalman
filter updates theD-by-D predicted estimation covariance
as follows:

T−(k) = AT (k − 1)A⊤ +Q(k), (4)

whereT (k − 1) is the final covariance estimation at time
step k − 1 and T (0) is null since the initial state is
known. Then, the predicted quantitieŝx−(k) and T−(k)
are corrected using the observation equation (2) as follows:

x̂(k) = x̂−(k) + (z(k)− x̂−(k)H)GK(k) (5)

T (k) = (ID −GK(k)H)T−(k), (6)

whereID is theD-by-D identity matrix andGK(k) is the
optimal Kalman gain given by:

GK(k) = T−(k)H⊤ (H T−(k)H⊤ +R)−1. (7)

In the following section, the state-space model is described
in detail by writing the model (1) in three different forms
with the corresponding covariance matrixQ(k). As for the
choice of the observationz(k) in (2), it is explained in
Section IV.

III. STATE-SPACE MODELS

This section highlights the definition of the state-space-
model of the tracking problem, where the target is assumed
to be equipped with an accelerometer, yielding at each time
step its currentD accelerations. The target is assumed to
be fixed at a known positionx(0) at the beginning of the
tracking. The objective consists then of relating the current
position of the targetx(k) to its previous positionx(k−1),
using its measured accelerations. To do this, three orders of
the state-space model are described: (i) a first-order, where
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the velocities are assumed to be constant between any
two consecutive time steps; (ii) a second-order, where the
accelerations are assumed to be constant between any two
consecutive time steps; and finally, (iii) a third-order, where
the accelerations are assumed to vary linearly between any
two consecutive time steps. In all these cases, the target’s
trajectory is described by the equation (1). In the following,
ν(k) denotes the estimated velocity vector of the target
at the time stepk, γ(k) denotes its measured acceleration
vector at the time stepk, and∆t is the tracking period, that
is the time period separating two consecutive time steps.

A. First-order state-space model

The first-order model makes two assumptions on the
motion of the target. It first assumes that the acceleration
vector of the target is constant between two consecutive
time stepsk−1 andk, and equal toγ(k). It thus computes
the target’s velocity vector iteratively by:

ν(k) = ν(k − 1) + γ(k)∆t, (8)

with ν(0) null since the target is assumed to be fixed at the
beginning of the tracking. It then assumes that the velocity
betweenk − 1 and k is constant and equal toν(k). This
leads to:

B(k) = ν(k)∆t, (9)

in the state-space equation (1) withA equal to theD-by-D
identity matrix. It is obvious that this model only works for
slightly-varying-velocity targets (γ ≃ 0). With more active
targets, the performance of this first-order model degrades
very fast, because of its two assumptions.

As for the model noises, the acceleration noise is as-
sumed to be independent with zero-mean normal distribu-
tion, having known variancesσ2

γ,d, d = 1, ..., D. Their
values can be estimated by performing a calibration of
the accelerometer before the tracking stage. With noisy
accelerations, the estimated velocities have noise, with a
zero-mean normal distribution having the covariance matrix
Qν(k) updated recursively as follows:

Qν(k) = Qν(k − 1) + ∆t2 Diag
(

σ2
γ

)

, (10)

where Diag
(

σ2
γ

)

is the D-by-D diagonal matrix with
entriesσ2

γ,d, d = 1, ..., D, andQν(0) is null. The state
noiseθ(k) is then normally distributed with zero-mean and
the covariance matrixQ(k) given as follows:

Q(k) = Cov (x(k − 1) + ν(k)∆t) , (11)

= Q(k − 1) +Qν(k − 1)∆t2,

whereQ(0) is null since there is no uncertainty over the
target’s position at time stepk = 0. It is worth noting that
the covariance matrices of the target’s velocity and state
noises are diagonal since noises over the coordinates are
assumed to be independent.

B. Second-order state-space model

The second-order model assumes that the acceleration
vector is constant between two consecutive time stepsk−1
andk, and equal toγ(k). The velocity vector is estimated
as for the first-order model using equation (8). However, the
control vectorB(k) of the state-space equation is modified
as follows:

B(k) = ν(k − 1)∆t+ γ(k)
∆t2

2
, (12)

with the transition matrixA equal to identity.
Here, the covariance matrixQ(k) is diagonal, given by:

Q(k) = Cov

(

x(k − 1) + ν(k − 1)∆t+ γ(k)
∆t2

2

)

,

= Q(k − 1) +Qν(k − 1)∆t2 +
1

4
∆t4 Diag

(

σ2
γ

)

,

(13)

whereQ(k) is null at time stepk = 0 since the target’s
position is initially known, andQν(k) is given by (10) as
for the first-order model.

The second-order state-space model outperforms the
first-order one, since it considers less approximations and
assumptions. This model performs well with slightly vary-
ing accelerations motions. However, it is not well-adapted
to trajectories with abrupt changes in accelerations, since
estimates might be significantly deviated from the exact
trajectory due to cumulative model errors over time.

C. Third-order state-space model

This model considers that the target’s accelerations vary
linearly between two consecutive time steps, that is the
acceleration vector varies fromγ(k − 1) at k − 1 to γ(k)
at k with a slope equal toγ(k)−γ(k−1)

∆t . According to this
assumption, the velocity vector of the target at time stepk
is estimated recursively by:

ν(k) = ν(k − 1) + γ(k − 1)∆t+
γ(k)− γ(k − 1)

∆t

∆t2

2
,

(14)

where the target is also assumed to be fixed at the beginning
of the tracking (i.e., ν(0) = 0) with null acceleration (i.e.,
γ(0) = 0), and at a known positionx(0). Then, the vector
B(k) in (1) is given by:

B(k) = ν(k − 1)∆t + γ(k − 1)
∆t2

2

+
γ(k)− γ(k − 1)

∆t

∆t3

6
, (15)

with the transition matrixA equal to identity, as for the
other two models.

The covariance matrixQ(k) is also diagonal, given by
the following:

Q(k) = Q(k − 1) +Qν(k − 1)∆t2 +
11

36
∆t4 Diag

(

σ2
γ

)

,

(16)
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Fig. 1: Rotations in a three-dimensional environment.

whereQ(0) is null since there is no uncertainty at time
stepk = 0, andQν(k) is given by:

Qν(k) = Qν(k − 1) +
3

2
∆t2 Diag

(

σ2
γ

)

, (17)

with Qν(0) also null. This model outperforms the other
models, since it brings the estimated trajectory closer to the
real one compared to the others, especially for hyperactive
targets having highly varying accelerations.

Remark 1. In the previous paragraphs, the target is
assumed to be rotationally constrained. Indeed, the ac-
celerations measured by the accelerometer in the target’s
coordinate system are used directly in the equations, as if
they are measured in the world coordinate system. However,
during its motion in real applications, the target could
rotate, and the coordinate system, where the accelerations
are given, might change. The solution to this problem is
to equip each target with a gyroscope, which yields its
orientations with respect to the world coordinate system.

Assume that the localization is performed in a three-
dimensional environment (i.e.,D = 3). Consider thatϑ, ϕ,
andφ are the angles of the counter-clockwise rotation of the
target, given by its gyroscope at a given time step around
the third coordinate axis of the world system, the first one
and the second one respectively. The plots (a), (b) and (c)
of Fig. 1 illustrate the single rotations around the third,
the first, and the second axes respectively, 1,2, and 3 being
the world coordinate axes, and 1’,2’, and 3’ the target’s
ones. Letγ = (γ1 γ2 γ3) be the acceleration vector of
the target in the world coordinate system at the same time
step and letγ′ = (γ′1 γ′2 γ′3) be its measured one in its
coordinate system. Then, having the rotation angles,γ is
computed as follows:

γ = γ′
R, (18)

where the first column of the three-dimensional rotation
matrix R is defined by:





cosϑ cosφ
− sinϑ cosφ

sinφ



 , (19)

its second column is defined by:




cosϑ sinϕ sinφ+ sinϑ cosϕ
− sinϑ sinϕ sinφ+ cosϑ cosϕ

− sinϕ cosφ



 , (20)

and its third column is defined by:




− cosϑ cosϕ sinφ+ sinϑ sinϕ
sinϑ cosϕ sinφ+ cosϑ sinϕ

cosϕ cosφ



 . (21)

In a two-dimensional environment (i.e., D = 2), where
γ = (γ1 γ2), the rotation is only possible in the plane
with the rotation angleϑ. By settingφ = ϕ = 0, one gets
the following transformation:

γ = γ′

(

cosϑ sinϑ
− sinϑ cosϑ

)

. (22)

During the tracking, the target measures its acceleration
vector in its coordinate system at each time step, then finds
its orientations using the gyroscope. Its accelerations inthe
world coordinate system can then be computed and used in
the localization algorithm. For simplicity, we only consider
rotationally constrained targets in our paper. However, as
just explained, the computations could be easily modified
to consider the target’s rotations.

IV. OBSERVATION MODEL

The aim of this section is to define the observation model
(i.e., z(k) in (2)), based on the information gathered by
the target from the stationary sensors in the network. The
proposed method is a radio-fingerprinting approach using
the Received Signal Strength Indicators (RSSIs) of the
signals exchanged between the target and the stationary
sensors. It is worth noting that the target is assumed to
be active and cooperative in the proposed approach, that is,
it exchanges information with its neighborhood. Based on
radio-fingerprinting, the approach needs then a configura-
tion phase, before the tracking. To this end,Np reference
positions, denoted bypℓ, ℓ ∈ {1, . . . , Np}, are generated
uniformly or randomly in the studied region. All stationary
sensors continuously broadcast signals in the network at a
fixed initial power, and a sensor is placed consecutively at
the reference positions to detect the broadcasted signals and
measure their RSSIs. Letρℓ = (ρs1,pℓ

. . . ρsNs ,pℓ
)⊤ be

the vector of RSSIs sent by allNs sensors and received at
the positionpℓ, ℓ ∈ {1, . . . , Np}. In this way, a set ofNp
pairs(ρℓ,pℓ) is obtained. This radio-fingerprint database is
considered in the estimation of the observation model, that
is z(k).

A. Definition of the observations

While moving, the target collects the sensors signals
and measures their RSSIs. Instead of using the target’s
RSSIs as observations, the proposed approach consists of
finding a functionψ : IRNs 7→ IRD, based on the radio-
fingerprint database, that associates to each RSSI vector
ρℓ the corresponding positionpℓ, with the advantage of
not having to estimate the channel model. Kernel methods
in machine learning [25], [26], [27] provide an elegant
framework to define the functionψ (·), as it will be shown
in the following subsection. It is worth noting that the
database construction and the computation ofψ (·) are
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performed only once, before the tracking phase. Once the
model is available, the target is able to perform all tracking
computations and determine its own position. Indeed, con-
sider the moving target collecting RSSIs in the network. At
a given time stepk, it stores them into a vectorρ(k), and
then uses the defined modelψ (·) to compute its position.
The first estimated coordinates of the target at time stepk
are then given byψ(ρ(k)). This estimate is considered as
an observation of the desired value, namely

z(k) = ψ(ρ(k)). (23)

Both the observation and the state-space model (1) are
then used in the Kalman filter to compute a more accurate
position estimation, as shown in Section II. Determining
the modelψ (·) is explained in the following paragraph.

Following the definition ofz(k), one can see that the
matrixH of (2) is set to identity. As forn(k)∼N (0,R),
an approximation of the value of its covariance matrixR
is done by generating a new set of reference pairs, and
by localizing the positions according to the defined model
ψ(·). The error on the new set is computed and stored into
a vector, then the matrixR is determined by computing the
covariance of the error vector. This matrix is considered to
be constant over time and for all targets.

B. Definition ofψ (·) using kernel methods

In this paragraph, the objective is to determine the
aforementioned functionψ (·) that associates to each RSSI
vectorρℓ the corresponding positionpℓ. Determiningψ (·)
requires solving a nonlinear regression problem. We take
advantage of kernel methods [25], [26], that have been
remarkably successful for solving such problems. Let the
vector-valued functionψ(·) be decomposed intoD real-
valued functions, namelyψ(·) = (ψ1(·) . . . ψD(·)),
whereψd : IR

Na 7→ IR, d ∈ {1, . . . , D}, estimates thed-
th coordinate inpℓ = (pℓ,1 . . . pℓ,D), for an inputρℓ.
Let P = (p⊤1 . . . p⊤Np

)⊤. The matrixP is then of size
Np-by-D havingpℓ,d for the (ℓ, d)-th entry, andpℓ for the
ℓ-th row. In the following, we denotepℓ by Pℓ,∗ and the
d-th column ofP byP∗,d. Therefore, the vectorP∗,d holds
all Np points for a fixed coordinated.

Two different machine learning techniques are investi-
gated in the following: the ridge regression and the vector-
output regularized least squares. The kernel-based ridge
regression is considered in Subsection IV-B1, whereD
optimization problems are set separately to define theD
modelsψ1(·), . . . , ψD(·). In Subsection IV-B2, we explore
multi-task learning to determine a vector-output modelψ(·)
that estimates simultaneously allD coordinates.

1) Ridge regression:The kernel-based ridge regression
is considered in this paragraph to determine theD mod-
els, ψ1(·), . . . , ψD(·), by settingD separate optimization
problems. Indeed, each functionψd (·) is estimated by
minimizing the mean quadratic error between the model’s
outputsψd(ρℓ) and the desired outputspℓ,d:

min
ψd∈H

1

Np

Np
∑

ℓ=1

((pℓ,d − ψd(ρℓ))
2 + η‖ψd‖

2
H, (24)

whereη is a positive tunable parameter that controls the
tradeoff between the fitness error and the complexity of
the solution, as measured by the norm in the Reproducing
Kernel Hilbert SpaceH. According to the representer
theorem [28], [26], the optimal function can be written as
follows:

ψd(·) =

Np
∑

ℓ=1

αℓ,d κ(ρℓ, ·), (25)

whereκ : IRNs ×IRNs 7→ IR is a reproducing kernel, and
αℓ,d, ℓ ∈ {1, . . . , Np}, are parameters to be estimated. Let
α be theNp×D matrix whose(ℓ, d)-th entry isαℓ,d, and
whosed-th column is denoted byα∗,d and ℓ-th row by
αℓ,∗.

By injecting (25) in (24), we get a dual optimization
problem in terms ofα∗,d, whose solution is given by taking
its derivative with respect toα∗,d and setting it to zero. One
can easily find the following form of the solution:

α∗,d = (K + ηNpINp
)−1P∗,d, (26)

whereINp
is theNp-by-Np identity matrix, andK is the

Np×Np matrix whose(i, j)-th entry isκ(ρi,ρj), for i, j ∈
{1, ..., Np}. For an appropriate value of the regularization
parameterη, the matrix between parenthesis is always non-
singular.

One can see that the same matrix(K + ηNpINp
) needs

to be inverted in order to estimate each coordinate. To
reduce the computational complexity, allD estimations are
collected in a single matrix inversion problem, as follows:

α = (K + ηNpINp
)−1P . (27)

We then define a model that allows us to estimate allD
coordinates at once, using equation (25) and the definition
of the vector of functionsψ(·), as follows:

ψ(·) =

Np
∑

ℓ=1

αℓ,∗ κ(ρℓ, ·). (28)

2) Vector-output regularized least squares:In this para-
graph, we take advantage of multi-task learning by using
the vector-output regularized least squares (vo-RLS) algo-
rithm [29] to estimate allD coordinates at once. Instead of
estimating the set of functionsψd (·), we now determine a
1-by-D vector-output functionψ (·).

In multi-task learning,ψ (·) takes the form:

ψ(·) =

Np
∑

ℓ=1

βℓPℓ,∗ κ(ρℓ, ·), (29)

whereβℓ, ℓ ∈ {1, . . . , Np}, are parameters to be defined. As
for the optimization problem, the objective stays the same.
Indeed, the functionψ (·) is determined by minimizing the
mean quadratic error between the model’s outputsψ(ρℓ)
and the desired outputsPℓ,∗, namely

min
ψ

1

Np

Np
∑

ℓ=1

‖Pℓ,∗ −ψ(ρℓ)‖
2 + η‖β‖2, (30)
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whereβ =
(

β1 . . . βNp

)⊤
. Substituting the expression

of ψ(·) from (29) in the optimization problem (30), we get,
in matrix form, the following problem formulation:

min
β

tr(PP⊤)− 2 ξ⊤β + β⊤Gβ + ηNpβ
⊤β, (31)

wheretr(·) is the matrix trace operator,G is theNp-by-Np
matrix whose(j, k)-th entry is

Pj,∗P
⊤
k,∗

Np
∑

i=1

κ(ρj ,ρi)κ(ρk,ρi),

andξ is theNp-by-1 vector whosej-th entry is

Np
∑

k=1

Pj,∗P
⊤
k,∗ κ(ρj ,ρk).

By taking the gradient of the objective function in (31) with
respect toβ, namely−ξ +Gβ + ηNpβ, and setting it to
zero, we obtain the final solution:

β = (G+ ηNpINp
)−1ξ.

V. PRACTICAL SIMULATIONS AND RESULTS

In this section, we evaluate the performance of our
method on simulated data. In the first paragraph, several
trajectories with different orders for the state-space model
are examined. In the second paragraph, we study the
impact of the noises standard deviationsσγ andσρ on the
estimation error. In the third paragraph, we study the impact
of the number of stationary sensors and the number of
reference positions on the estimation error. Finally, results
are compared to ones obtained with the WKNN algorithm
combined with a Kalman filter [30] and tracking using
particle filtering [31].

The same practical setup is considered for the two
following paragraphs, given as follows. We consider a
100m × 100m area, and generate16 stationary sensors
and100 reference positions uniformly distributed over the
area. The RSSI values are obtained using the well-known
Okumura-Hata model [32] given by:

ρsi,pℓ
= ρ0 − 10nP log10 ‖si − pℓ‖+ εi,ℓ, (32)

where ρsi,pℓ
(in dBm) is the power received from the

sensor at positionsi by the node at positionpℓ, that is
the i-th entry of the vectorρℓ, ρ0 is the initial power (in
dBm) set to 100, nP is the path-loss exponent set to4
as often given in the literature,‖si − pℓ‖ is the Euclidian
distance between the positionpℓ of the considered node and
the positionsi of a stationary sensor, andεi,ℓ is the noise
affecting the RSSI measures withσρ its standard deviation.
We also generate a trajectory and calculate the RSSI values
collected by the moving target using (32). For the definition
of ψ(·) using kernel methods, we consider the Gaussian
kernel given by:

κ(ρu,ρu′) = exp

(

−‖ρu − ρu′‖2

2σ2

)

,

whereσ is its bandwidth that controls, together with the
regularization parameterη, the degree of smoothness, noise
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Fig. 2: Estimation of the first trajectory.

tolerance, and generalization of the solution. The choice
of the values forη and σ is done using a grid search on
ηNp = 2r with r ∈ {−20,−19, · · · ,−1} and σ = 2r

′

with r′ ∈ {1, 2, · · · , 10}, where the corresponding error is
estimated using the10-fold cross-validation scheme. This
scheme consists of dividing the data into10 folds: 9 for
training the model and the remaining one for validating it
[33].

A. Evaluation of our method on three trajectories

We consider three different trajectories of100 points
with ∆t = 1s. For the trajectory illustrated in Fig. 2, the
accelerations are assumed equal to zero, leading to constant
velocities. As for the second and the third trajectories of
Fig. 3 and Fig. 4 respectively, their respective accelerations
are given in the top plots and in the bottom plots of Fig. 5,
γ1 andγ2 being the first and the second acceleration coordi-
nates respectively. One can see that the accelerations of the
third trajectory have more variations than the accelerations
of the second trajectory. The coordinates expressions are
obtained by taking twice the primitive integral of the accel-
erations. By taking these three trajectories, the performance
of the proposed method is evaluated for different types of
scenarios, considering first a monotonously moving target,
then more hyperactive ones.

Since a noiseless setup is not realistic in a practical
environment, we consider that noises are present in all
scenarios. Here, we take both components ofσγ equal to
0.01m/s2, andσρ equal to1dB. Let the estimation error
be evaluated by the root mean squared distance between
the exact positions and the estimated ones. Fig. 2, Fig. 3,
and Fig. 4 show the estimated trajectories when using the
proposed method with the ridge regression (RR) for the
third-order state-space model described in Section III. Table
I shows the average over50 simulations of the estimation
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Fig. 3: Estimation of the second trajectory.
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Fig. 4: Estimation of the third trajectory.

errors for the three trajectories and the three different state-
space models, using the RR and the vo-RLS in the learning
process. The three models yield almost the same results for
the first two trajectories. However, for the third trajectory,
the smallest estimation error is obtained when using the
third-order state-space model. This result is expected since
the accelerations in this trajectory have high variations,
and as explained in Section III, the third-order state-space
model is well suited for such cases.

B. Impact ofσγ and σρ

In this section, we will test our method using the trajec-
tory of Fig. 4, where the general case of a hyperactive target
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Fig. 5: Acceleration signals for the second trajectory in the
top plots and for the third trajectory in the bottom plots.

TABLE I: Estimation errors (in meters) for different orders
of the state-space models and the three trajectories.

Traj. 1 Traj. 2 Traj. 3

RR + model order 1 0.94 1.12 2.15

RR + model order 2 0.94 1.10 1.97

RR + model order 3 0.93 1.09 1.09

vo-RLS + model order 1 1.17 1.41 2.43

vo-RLS + model order 2 1.16 1.38 2.25

vo-RLS + model order 3 1.14 1.36 1.21

is considered. The third-order state-model from Section
III-C is used since it yields the best results as shown in
the previous section. Indeed, even though the first-order
model and the second-order model yield good results for the
trajectories of Fig. 2 and 3, the estimation error increases
significantly compared to the third-order model when the
target is hyperactive (Fig. 4) as shown in Table I.

Let us now study the impact of the noises standard
deviationsσγ andσρ on the estimation error. We first take
different percentages of the standard deviation of the accel-
eration, going from1% to 10%, along with a fixedσρ equal
to 5% of standard deviation of the RSSI measures, and
repeat the simulation50 times to obtain an average value
of the estimation errors. The average value of the estimation
errors is stored. It is worth noting that the standard deviation
of the RSSI is equal to10.79dBm; therefore,σρ is equal
to 0.54dBm. Fig. 6 shows the impact of the variation of
σγ on the estimation error. One can see that the results
obtained in Fig. 6 with the ridge regression and the vo-
RLS are independent from the acceleration noise, whereas
estimations using only accelerometer information are highly
affected by the variations ofσγ . The RR combined with
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Fig. 6: Estimation error as a function of the noise on the
accelerations.

the Kalman filter yields the best results. In fact, the filter
corrects the results, and the error is always smaller than
the error in the case of the ridge regression alone, and
aroundσγ equal to7% of the standard deviation of the
acceleration, the error becomes constant.

We then take several percentages of the standard devia-
tion of the RSSI measures, going from0% to 50%, with σγ
fixed to1% of the standard deviation of the acceleration.σρ
is then varying from0dBm to 5.40dBm. The simulation
is also repeated50 times, and the errors are averaged over
the50 simulations. Fig. 7 shows the impact of the variation
of σρ on the estimation error. One can see that localization
using only accelerometer information is independent from
the noise on the RSSIs, which is expected. The RR and the
vo-RLS are highly affected by the noise variations, since
they use these RSSI measurements for the estimation. As
for the method combining the RR with the Kalman filter,
it outperforms the method using only accelerations. It is
interesting here to see the effectiveness of the Kalman
filter. Indeed, one can see in Fig. 7 that the RR used
alone yields better results than the vo-RLS also used alone;
however, after adding the Kalman filter, the results of the
two techniques become very similar and the error becomes
almost constant for both methods whenσρ exceeds30% of
the standard deviation of the RSSI measures.

C. Impact ofNs andNp

We now study the impact of the number of stationary
sensorsNs and the number of reference positionsNp on
the performance of the tracking method. We consider the
trajectory of Fig. 4, with both components ofσγ equal to
0.01m/s2 and σρ equal to1dB. The ridge regression is
used in this section. Nevertheless, it is worth noting that
varyingNs andNp has the same impact on the tracking
method if we use the vo-RLS in the learning process.

We first vary the number of stationary sensors (Ns =
12, . . . , 152), while keeping a fixed number for the refer-
ence positions (Np = 100). Fig. 8 shows the evolution of
the estimation error in terms of the number of stationary
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Fig. 7: Estimation error as a function of the noise on the
RSSI.

sensors. We then take a fixed number of stationary sen-
sors equal to16, and we vary the number of reference
positions,Np = 52, . . . , 252. Fig. 9 shows the evolution
of the estimation error in terms of the number of reference
positions. By comparing the obtained results, one can notice
that both the increase in the number of stationary sensors
and in the number of reference positions yield a better
estimation of the target’s positions. Indeed, Fig. 8 shows
that when using16 stationary sensors, the average over
50 simulations of the estimation error is1.10m compared
to an error of0.82m when using112 = 121 stationary
sensors. Fig. 9 shows that forNp = 100, the average over
50 simulations of the estimation error is1.08m compared
to an error of0.68m when increasingNp to 242 = 576.
In fact, with a higher number of stationary sensors and
reference positions, we get better coverage and knowledge
of the environment, which explains the improvement in the
results. However, increasing the number of stationary sen-
sors increases the total cost in material, while increasingthe
number of reference positions induces a significant increase
in the algorithm’s complexity. Therefore, depending on the
practical system constraints, a tradeoff should be found
between the algorithm’s accuracy and the computational
load.

D. Comparison to other tracking techniques

The objective in this section is to compare the proposed
method to two recently proposed tracking methods. For the
first comparison, we use the method proposed in [22], that
also makes use of the Kalman filter to correct the trajec-
tory estimated by radio-fingerprints. We then compare our
method to the centralized version of the method described
in [31], which involves the use of a particle filter and RSSI
measurements. We consider the three trajectories described
in Section V-A for our comparisons. In order to have a fair
comparison of our technique towards these two methods,
we consider a setup that is the closest possible to the one
the authors use in their papers. For this purpose, we take the
number of stationary sensorsNs = 4, even though taking
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reference positions.

Ns = 16 gives better results in the case of our method
as one can see from Fig. 8. We takeσρ = 1dB and both
components ofσγ equal to0.01m/s2.

We proceed by briefly describing the method in [22].
It consists of estimating the position using the weighted
K-nearest neighbor (WKNN) algorithm, then applying the
Kalman filter to enhance the estimation. A target’s first
position estimate using WKNN is given by weighted com-
binations of theK nearest neighboring positions from the
training database, with the nearness indicator being based
on the Euclidean distance between RSSIs. The weight used
for the WKNN algorithm in [22] is given by:

wn =
1/δn

∑

z∈I 1/δz
,

whereδn is the Euclidean distance between the RSSI vector
ρ(k) of the target at time stepk andρn, n ∈ I, andI is
the set of indices ofρℓ of the database yielding theK
smallest distances (i.e.,K nearest neighbors)δℓ at time
step k. The estimated target’s position is then given by:
∑

n∈I wn pn. The number of neighborsK is taken equal
to 8 as in the simulations of [22]. As for the correction using

TABLE II: Comparison of the estimation error (in meters)
for the three tracking methods.

Trajectory 1 Trajectory 2 Trajectory 3

Particle filter 1.42 6.25 8.17

WKNN+Kalman 1.30 3.93 4.23

Proposed method 1.27 1.91 2.38

the Kalman filter, the authors use a second-order state-space
model similar to the one in Section III-B. The estimation
errors (in meters) obtained when using this algorithm for
the three trajectories of Section V-A are computed50 times
for each case, and their averages are shown in Table II.
Our method clearly outperforms the one in [22]. Indeed,
the estimation error obtained with the proposed method is
significantly smaller than the one obtained with the WKNN
algorithm followed by the Kalman filter, for all three types
of trajectories.

As for the second method used for our comparison, it
employs a particle filter along with RSSI measurements
and a first-order state-space model [31]. The particle filter
approximates the minimum mean-square error (MMSE)
estimate of the emitter state given all present and past
observations, i.e. RSSI measurements. It seeks to represent
the posterior distribution of the hidden states by a properly
weighted set of time-varying random samples such that, as
the number of samples go to infinity, the weighted average
of those samples converges at each time step, in some
statistical sense, to the true global MMSE estimate of the
current unknown states given all present and past network
measurements [31]. For the first trajectory, we used the first-
order state-space model as described in the authors work.
The average estimation error obtained is close to the error
obtained with our tracking method. However, for the second
and third trajectories, we used the second-order state-space
model, because the first-order model did not work well due
to the abrupt trajectory variations. One can see from Table II
that our tracking method still outperforms the well-known
tracking technique based on particle filtering.

VI. CONCLUSION

In this paper, we proposed a new method for target
tracking in wireless sensor networks by combining machine
learning and Kalman filtering. For the learning process,
we investigated the use of two kernel-based machine
learning algorithms: the ridge regression and the vector-
output regularized least squares. We also described three
different orders for the state-space models to be used
in the Kalman filtering, and highlighted the difference
between them and how they can affect the performance
of the tracking procedure. Simulation results showed that
the proposed method outperforms two recently developed
approaches. The method allows accurate tracking, and is
proved to be robust in the case of noisy data, whether
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the noise affects the acceleration information or the RSSI
measures. Future works will handle further improvements
of this method, such as introducing a model that estimates
distances between sensors instead of positions. Solutionsto
cases where zones of the surveillance area are not covered
by all stationary sensors could also be provided.
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