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Target tracking using machine learning and
Kalman filter in wireless sensor networks

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Jaufatah, and Hichem Snoussi

Abstract—This paper describes an original method for compared to other methods [10]. However, implementing
target tracking in wireless sensor networks. The proposed these techniques requires high-cost hardware, making them
method combines machine learning with a Kalman filter to impractical for most applications. Unlike these technigue

estimate instantaneous positions of a moving target. The ta . .
get's accelerations, along with information from the netwak, the RSSI-based ones achieve acceptable performance, with

are used to obtain an accurate estimation of its position. NO extra hardware.

To this end, radio-fingerprints of received signal strength Many RSSI-based tracking techniques have been pro-
indicators (RSSlIs) are first collected over the surveillane area.  posed. For instance, [11] proposes a target tracking tech-
The obtained database is then used with machine learning nique using a particle filter with the exact RSSI channel

algorithms to compute a model that estimates the position del. H h hi t reliabl ith th
of the target using only RSSI information. This model leads model. However, such an approach IS not refiable wi €

to a first position estimate of the target under investigatio. highly varying RSSils, due to the signal fading, the additive
The kernel-based ridge regression and the vector-output noise, etc. Also exploring RSSIs, authors of [12] and [13]
regularized least squares are used in the learning process. propose target tracking methods based on connectivity mea-
The Kalman filter is used afterwards to combine predictions  g\,.ements using the interval analysis or the variatiortaffil

of the target’s positions based on acceleration informatio . L

with the first estimates, leading to more accurate ones. The By exploring conn_ectlwty, these methods are more robust
performance of the method is studied for different scenaris  than the ones using the exact channel model. However,

and a thorough comparison to well-known algorithms is also the performance highly depends on the number and the

provided. positions of the sensors in the network. In [14], the authors
Index Terms—radio-fingerprinting, Kalman filter, machine ~ propose a tracking algorithm that works in indoor and
learning, RSSI, target tracking, wireless sensor networks outdoor environments. Indeed, it switches between GPS
information when the node is outdoors and an existing

. INTRODUCTION Wifi-based application when the GPS signals are no more

. . vailable. This android application yields several positi
Recently, advances in radio and embedded systems hgV%mates of the node Wklloepn the Wi?i is activated. I1)'hen, it

led to the emergence of Wireless Sensor Networks (WSNg , . .
ollowed by a Gaussian process regression that uses the

that have become a major research field during the last &

years. These networks are beginning to be deployed ateaﬁ%lmated positions, to reconstruct a smooth trajectody an

accelerated pace for many applications, ranging from horfcover the missing positions. In addition to measurements

monitoring [1] to industrial monitoring [2], and coveringtr&:fkmt% algo_r;_thms tc_an t_emgloy : stzi[te—spape mOdi! 0
medical applications [3]. refine the position estimation based on its previous psitio

Target tracking [4], [5] is an interesting research anFor instance, a first-order model is used with a Kalman

application field in WSNs, that consists of estimatin terlln [15], and V\gtthartlcle f||_l|ter in [1l]t,hwhereasd[1|6]
instantly the position of a moving target. Target trackin MPploys a second-order one. HOWEVer, these models are

can be viewed as a sequential localization problem, th gly reliable for targets having slighty varying veloes

requiring a real-time location estimation algorithm. T-ypi0r accelerations.

cally, sensors broadcast signals in the network, whileetarg In gt?er cor:jtext:ls, RIS.SI,;.baS?d \rrvestf'llods_ruave beetnh p(;o—
collect these signals for location estimation. Severaé&ypppse or nodes focalization n vs. 1hese methods
at location estimation by investigating observation

of measurements can be considered, such as received siﬁﬂgl

strength indicators (RSSIs) [6], angle of arrival (AOA) ,[7] 0 0”‘?6;“0” t\_N'th%uStStl"’ﬂgmg :?vanlt_ag;a_ of nodes E]Ob'“t)./'t
time difference of arrival (TDOA) [8] and time-of-arrival ne Interesting -based localization approach Cansis

(TOA) [9]. Previous studies have shown that investigating radio-fingerprinting [17], [18]. Such an approach allows

TOA and TDOA leads to more accurate position estimat kmg Into consideration th? stationary characterigiidhe
environment. Several studies have been made for sensors
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WKNN estimates using the Kalman filter with a secondtherefore collects a set of measurements, stored(i).

order state-space model. These measurements are described in detail in Section IV.
In this paper, we propose a new method for targéet the observation equation be given by its linear general

tracking in WSNs that combines radio-fingerprinting antbrmulation as follows:

accelerometer information. The proposed method consists

of setting reference positions alonpg trl?e network where RSSI z(k) = =(k)H + n(k), (2)

measurements are collected, leading to a radio-fingerptititere H is the observation matrix that relates the state

database. This database is used with machine learnip@:) to the measurement(k) and n(k) ~ N(0, R) is

algorithms to define a kernel-based model, whose inpiiie observation noise with normal distribution, zero mean

is the RSSI vector and whose output is the correspondiagd covariance matrixR. This variable is assumed to be

position. To estimate this model, we investigate two learindependent of)(k). The values ofH and R, as well as

ing algorithms: the ridge regression and the vector-outpiiite choice of the linear observation model, will also be

regularized least squares. A moving target then measutscussed in detail in Section IV.

its RSSIs and instantaneous acceleration. A first positionHaving defined both the state-space model and the obser-

estimate is obtained using the already-defined kernelebasations, we now propose to solve the tracking problem by

model and the measured RSSIs, then this estimateuising a Kalman filter [23], [24]. To this end, the proposed

combined with the acceleration information, by means offéiter first predicts the unknown position using the previous

Kalman filter, to achieve better accuracy. To this end, thregtimated position and the state-space equation (1). Then,

different orders of the tracking models are examined. Thige predicted position is corrected using the observan (

proposed method outperforms existing methods, especidhythe following step.

for hyperactive targets. Now let (k — 1) denote the target’s position estimated
The rest of the paper is organized as follows. The previth the Kalman filter at time step — 1. Therefore, the

posed tracking approach is presented in Section Il. Sectipredicted position can be written as:

Il describes three orders of the state-space model, while L R

Section IV defines the observation model and the use of @ (k) = &(k—1) A+ B(k). (3)

machine learning in our method. In Section V, we examingt  — 0, #(0) is assumed to be known. Then, the Kalman

the performance of the proposed method and compare itfi@er updates theD-by-D predicted estimation covariance
two recently derived methods. Finally, Section VI concleidess follows:

the paper. - .
T (k)=ATk-1)A +Q(k), 4)
whereT'(k — 1) is the final covariance estimation at time
. . . ) ) step k — 1 and T'(0) is null since the initial state is
Consider an environment d? dimensions, for instance known. Then, the predicted quantitiés (k) and T~ (k)

Il. TRACKING APPROACH

D = 2 for a two-dimensional environment, ans 50 corrected using the observation equation (2) as follows
stationary sensors having known locations, denoted by

s;, i € {1,...,N,}. In the following, all coordinates k)= (k) + (z(k) —2 (k) H)Gk(k) (5)
are D-dimension row vectors. For the sake of clarity, and T(k) = (Ip — Gk (k) H) T (k), (6)

without loss of generality, only one target with the unknown _ ) _ ) _
positionz (k) is consideredk being the current time step. Wherelp is the D-by-D identity matrix andG (k) is the
Nevertheless, the proposed method could be extended®®imal Kalman gain given by:

several movingtarggts, singe they are t_racked indepeiydgnt Gr(k)=T (k)H (HT (k) H' +R)"'. (7
from each other, using their accelerations and information

exchanged only with the stationary sensors. In the following section, the state-space model is desdribe
To this end, a linear state-space model is proposed ifbdetail by writing the model (1) in three different forms
describe the target's motion as follows: with the corresponding covariance matéX k). As for the
choice of the observatiog(k) in (2), it is explained in
x(k) = z(k —1)A+ B(k) + 6(k), (1) section IVv.
wherex(k — 1) is the target’s previous positiod is a D-
by-D state transition matrix that relates the current position Ill. STATE-SPACE MODELS

of the target to its previous ond3(k) is a control-input  This section highlights the definition of the state-space-
vector depending on the accelerations, Q¥ is a random model of the tracking problem, where the target is assumed
vector noise whose probability distribution is assumedeto to be equipped with an accelerometer, yielding at each time
normal, having zero mean and covariance ma@{% ), that step its currentD accelerations. The target is assumed to
is @(k)~N(0,Q(k)). More details about the definitions ofbe fixed at a known positior(0) at the beginning of the

A, B(k) andQ(k) are given in Section Ill, where differenttracking. The objective consists then of relating the aqurre
orders of the state-space model are considered. In additmosition of the target(k) to its previous positior (k—1),

to its accelerations, the target exchanges informatiohen tusing its measured accelerations. To do this, three orders o
network with the stationary sensors at each time step.thie state-space model are described: (i) a first-order,avher



the velocities are assumed to be constant between dhySecond-order state-space model

two consecutive time steps; (i) a second-order, where théthg gecond-order model assumes that the acceleration
accelerations are assumed to be constant between any W, is constant between two consecutive time steps
consecutive time steps; and finally, (iii) a third-order,am andk, and equal toy(k). The velocity vector is estimated

the accelerations are assumed to vary linearly between ayo the first-order model using equation (8). However, the

two consecutive time steps. In all these cases, the targelsro| vectorB (k) of the state-space equation is modified
trajectory is described by the equation (1). In the follogvin o< t5j10ws:

v(k) denotes the estimated velocity vector of the target
i i i At?
at the time stegk, (k) denotes its measured acceleration B(k) = v(k — 1) At + (k) = (12)
vector at the time step, andAt is the tracking period, that 2’
is the time period separating two consecutive time stepswith the transition matrixA equal to identity.

Here, the covariance matri@ (k) is diagonal, given by:

2
A. First-order state-space model Q(k) = Cov (m(k 1) 4vk—1)At+ ~(k) ATt) ,
The first-order model makes two assumptions on the 1

motion of the target. It first assumes that the acceleration = Q(k —1) +Q, (k — 1) At + ZAt4 Diag (03),
vector of the target is constant between two consecutive (13)
time stepst — 1 andk, and equal tey(k). It thus computes
the target’s velocity vector iteratively by: where Q(k) is null at time stepk = 0 since the target’s

position is initially known, andQ (k) is given by (10) as

v(k)=v(k—1)+~(k) At, (8) for the first-order model.

The second-order state-space model outperforms the
with (0) null since the target is assumed to be fixed at thgst-order one, since it considers less approximations and
beginning of the tracking. It then assumes that the velociggsumptions. This model performs well with slightly vary-
betweenk — 1 and k is constant and equal (k). This ing accelerations motions. However, it is not well-adapted
leads to: to trajectories with abrupt changes in accelerations,esinc

B(k) = v(k) At, (9) estimates might be significantly deviated from the exact
trajectory due to cumulative model errors over time.
in the state-space equation (1) withequal to theD-by-D
identity matrix. It is obvious that this model only works forc  Third-order state-space model
slightly-varying-velocity targetsy ~ 0). With more active ) ] .
targets, the performance of this first-order model degrades-'—h'S model considers that th? target’s accelerat|on§ vary
very fast, because of its two assumptions. linearly between two consecutive time steps, that is the

As for the model noises, the acceleration noise is a@gcelgraﬂon vector varles’yflrfc))fn;((li_—l)l) atk — ,1 0 V(k?
sumed to be independent with zero-mean normal distrib@t * With a slope equal t6==—<3=—=. According to this
tion, having known variancesﬁ_d, d = 1,...,D. Their assumption, the velocity vector of the target at time gtep

values can be estimated by performing a calibration &t €stimated recursively by:

the accelerometer before the tracking stage. With noisy y(k) —~y(k — 1) At
accelerations, the estimated velocities have noise, with&) = v(k —1) +~y(k — 1) At + At 2
zero-mean normal distribution having the covariance matri (14)

Q, (k) updated recursively as follows:
where the target is also assumed to be fixed at the beginning
Q. (k) = Q,(k —1) + At* Diag (2, (10) of the tracking i.e., ~(0) = 0) with null accelerationi(e.,
~(0) = 0), and at a known positiom(0). Then, the vector
where Diag (62) is the D-by-D diagonal matrix with B(k) in (1) is given by:
entrieso? ;, d = 1,..,D, and Q,(0) is null. The state AL
noiseé(k) is then normally distributed with zero-mean and B(k)=v(k—1)At + ~(k—1) —
the covariance matri@Q (k) given as follows: 2 )
e 0 e TV LV
Q(k) = Cov (x(k — 1) + v(k) At), (11) At 6’
=Qk-1)+Q,(k—1)At% with the transition matrixA equal to identity, as for the
other two models.
where Q(0) is null since there is no uncertainty over the The covariance matrixQ (k) is also diagonal, given by
target’s position at time step = 0. It is worth noting that the following:
the covariance matrices of the target's velocity and state 11
noises are diagonal since noises over the coordinates @) = Q(k — 1) + Q, (k — 1) At* + £At4 Diag (¢2),
assumed to be independent. (16)



and its third column is defined by:
— cos 1 cos @ sin ¢ + sin ¥ sin
sin ) cos @ sin ¢ + cos ¥ sin ¢ . (22)
COS (p COS @

In a two-dimensional environmenitd., D = 2), where
(b) ©) ¥ = (11 72), the rotation is only possible in the plane

with the rotation angled. By settingp = ¢ = 0, one gets
Fig. 1: Rotations in a three-dimensional environment. the following transformation:

77,< cost¥  sind > 22)

where Q(0) is null since there is no uncertainty at time —sind - cos?

stepk = 0, andQ,, (k) is given by: During the tracking, the target measures its acceleration
vector in its coordinate system at each time step, then finds
Q,k)=Q,(k—1)+ §At2 Diag (03) , (17) its orientations using the gyroscope. Its accelerationthi
2 world coordinate system can then be computed and used in
with @Q,,(0) also null. This model outperforms the othethe localization algorithm. For simplicity, we only consid
models, since it brings the estimated trajectory closeh¢o trotationally constrained targets in our paper. However, as
real one compared to the others, especially for hyperactiust explained, the computations could be easily modified
targets having highly varying accelerations. to consider the target's rotations.

Remark 1. In the previous paragraphs, the target is
assumed to be rotationally constrained. Indeed, the ac-
celerations measured by the accelerometer in the targetfsThe aim_of this section is to defi_ne the o_bservation model
coordinate system are used directly in the equations, as(if€-» z(k) in (2)), based on the information gathered by
they are measured in the world coordinate system. Howevée target from the stationary sensors in the network. The
during its motion in real applications, the target couldProposed method is a radio-fingerprinting approach using
rotate, and the coordinate system, where the acceleratioft§ Received Signal Strength Indicators (RSSIs) of the
are given, might change. The solution to this problem @gnals exchanged between the target and the stationary
to equip each target with a gyroscope, which yields it3ensors. It is worth noting that the target is assumed to
orientations with respect to the world coordinate systemPe active and cooperative in the proposed approach, that is,

Assume that the localization is performed in a thredt €xchanges information with its neighborhood. Based on
dimensional environment.¢., D = 3). Consider that?, ¢, r_adlo—fmgerprmtmg, the approach nee_ds then a configura-
and¢ are the angles of the counter-clockwise rotation of th#on phase, before the tracking. To this end, reference
target, given by its gyroscope at a given time step arou@Sitions, denoted by,, ¢ € {1,..., N, }, are generated
the third coordinate axis of the world system, the first orffghiformly or randomly in the studied region. All stationary
and the second one respectively. The plots (a), (b) and §§NSors _contlnuously broadcast _S|gnals in the netw_ork ata
of Fig. 1 illustrate the single rotations around the third,iXed initial power, and a sensor is placed consecutively at
the first, and the second axes respectively, 1,2, and 3 bemﬁ reference_ positions to detect the broadcasted signdls a
the world coordinate axes, and 1',2", and 3' the targetdn€asure their RSSIs. Lek, = (ps,p, --- Psy.p,) b
ones. Lety = (1, 42 ~3) be the acceleration vector ofthe vect_qr of RSSIs sent by aN, sensors and received at
the target in the world coordinate system at the same tinffé€ Positionp,, £ € {1,..., Ny}. In this way, a set ofV,

step and lety’ = (v, 74 ~4) be its measured one in its pairs(p,, p,) is obtained. This radio-fingerprint database is
coordinate system. Then, having the rotation angiess considered in the estimation of the observation model, that

IV. OBSERVATION MODEL

computed as follows: is z(k).
v=7%R, (18) A. Definition of the observations
where the first column of the three-dimensional rotation While moving, the target collects the sensors signals
matrix R is defined by: and measures their RSSIs. Instead of using the target’s
RSSIs as observations, the proposed approach consists of
cos 1 cos ¢ finding a functionyy: R™ — IR”, based on the radio-
—sindcosg |, (19) fingerprint database, that associates to each RSSI vector
sin ¢ p, the corresponding positiop,, with the advantage of

not having to estimate the channel model. Kernel methods
in machine learning [25], [26], [27] provide an elegant
cos ¥ sin psin ¢ + sin ¥ cos ¢ framework to define the functioth (-), as it will be shown
—sin¥sin psin ¢ + cosvcosp |, (20) in the following subsection. It is worth noting that the
—sin ¢ cos ¢ database construction and the computationyof-) are

its second column is defined by:



performed only once, before the tracking phase. Once tiwberen is a positive tunable parameter that controls the
model is available, the target is able to perform all tragkintradeoff between the fithess error and the complexity of
computations and determine its own position. Indeed, cotfe solution, as measured by the norm in the Reproducing
sider the moving target collecting RSSIs in the network. Afernel Hilbert Space?. According to the representer
a given time stegk, it stores them into a vectgsi(k), and theorem [28], [26], the optimal function can be written as
then uses the defined modgl(-) to compute its position. follows:

The first estimated coordinates of the target at time &tep N
are then given by (p(k)). This estimate is considered as Ya() =Y acar(py,-), (25)
an observation of the desired value, namely =1
2(k) = ¢ (p(k)). (23) Wwherer : R™ xR — IR is a reproducing kernel, and
agq,.f € {1,...,N,}, are parameters to be estimated. Let

Both the observation and the state-space model (1) g[6), theN,, x D matrix whose(’, d)-th entry isay.¢, and

then used in the Kalman filter to compute a more accuraifose d-th column is denoted byv, 4 and (-th row by
position estimation, as shown in Section Il. Determining, -

the modely (-) is explained in the following paragraph.

B* injecting (25) in (24), we get a dual optimization
Following the definition ofz(k), one can see that the y Il g (25) in (24) d P

: : . . problem in terms o, 4, whose solution is given by taking
matrix H qf (2? s set o identity. AS fom(k)_wj\/(o, R), its derivative with respect tev, 4 and setting it to zero. One
an approximation of the value of its covariance mathx can easily find the following form of the solution:

is done by generating a new set of reference pairs, an%n

by localizing the positions according to the defined model aq= (K +nNyIn,) ' P g, (26)
1(-). The error on the new set is computed and stored into ] ] . ] .

a vector, then the matri® is determined by computing theWhereLy, is the N,-by-N), identity matrix, andK is the
covariance of the error vector. This matrix is considered ©p* N Matrix whose(i, j)-th entry isx(p;, p;), for i, j

parameter;, the matrix between parenthesis is always non-
B. Definition oft) (-) using kernel methods singular.

In this paragraph, the objective is to determine the ON€ can see that the same maiii + 7,1y, ) needs

aforementioned functiog (-) that associates to each RSSO P€ inverted in order to estimate each coordinate. To
vector p, the corresponding positiop,. Determiningy (-) reduce tht_a com_putatlonal_co_mple>.<|ty, all estimations are
requires solving a nonlinear regression problem. We taggllected in a single matrix inversion problem, as follows:
advantage of kernel methods [25], [26], that have been o= (K +14N,Iy, )" P. 27)
remarkably successful for solving such problems. Let the !

vector-valued function)(-) be decomposed intd real- We then define a model that allows us to estimatelall

valued functions, namelw)(-) = (¥1(-) ... ¥p(-)), coordinates at once, using equation (25) and the definition
wherey: R — R,d € {1,..., D}, estimates thel- of the vector of functions)(-), as follows:

th coordinate inp, = (pe,1 ... pe,p), for an inputp,. N

Let P=(p{ ... pL,)'. The matrixP is then of size NiEs .

N,-by-D havingp, 4 for the (¢, d)-th entry, andp, for the v() = ;a“ K(pe:) (28)

¢-th row. In the following, we denotg, by P, . and the

d-th column of P by P, ,. Therefore, the vectaP, ; holds ~ 2) Vector-output regularized least squards: this para-

all N, points for a fixed coordinaté. graph, we take advantage of multi-task learning by using
Two different machine learning techniques are investiie vector-output regularized least squares (vo-RLS)-algo

gated in the following: the ridge regression and the vectdithm [29] to estimate allD coordinates at once. Instead of

output regularized least squares. The kernel-based ricRfdimating the set of functions, (), we now determine a

regression is considered in Subsection IV-B1, whére 1-by-D vector-output functionp (-).

optimization problems are set separately to definethe In multi-task learningg) (-) takes the form:

modelsyy (+), ..., ¥p(). In Subsection IV-B2, we explore N,
multi-task learning to determine a vector-output mogiél) N — P ) 29
that estimates simultaneously d@ll coordinates. vl ;ﬂé o 5(Pe: ), (29)
1) Ridge regressionThe kernel-based ridge regression ]
is considered in this paragraph to determine fhemod- Wherege, £ € {1,..., Ny}, are parameters to be defined. As
els, ¢1(-),...,¥p(-), by settingD separate optimization for the optimization problem, the objective stays the same.

problems. Indeed, each function, (-) is estimated by Indeed, the fur_lctionp(-) is determined by minimizing the
minimizing the mean quadratic error between the modef8ean quadratic error between the model’s outpfitp,)

outputsyy(p,) and the desired outpujs 4: and the desired output®; ., namely
1 & 1
: - _ 2 2 24 o P . — 2 2
NN, ;((m,d Ya(pe))” + nllvall3, (24) min oy ; 1 Pe = (p )" +nllB1°,  (30)



whereg = (81 ... BNP)T. Substituting the expres:
of 4(-) from (29) in the optimization problem (30), we T R A —

100F + + + + + + i i ,
in matrix form, the following problem formulation: ot
90 Real trajectory
min tI‘(PPT) — 2 €T,g —+ ﬁTG,g -+ ﬂNpﬁT,ﬁ, (3: i - N et T —— RR+Kalman
B 80 i 4 4 N N N Surveillance area | q
wheretr(-) is the matrix trace operato is the N,,-by-N -
matrix whose(j, k)-th entry is g | LA N
N, -E + + + +
o L
P;. PZ,*Z“(PjaPi)“(PkaPi)a g % T . L
=1 él 4or A A
and¢ is the N,-by-1 vector whosej-th entry is w T o+
Ny - ol T + + +
P; . P, k(p;, .
; s k, (pJ pk) ol + o . L0 4 N L o, 4
By taking the gradient of the objective function in (31) OF e
respect to3, namely—¢§ + GB + nN,3, and setting it 0 10 20 30 40 50 60 70 8 90 100
zero, we obtain the final solution: 15% coordinate

_ —1
B=(G+nNply,)" €. Fig. 2: Estimation of the first trajectory.

V. PRACTICAL SIMULATIONS AND RESULTS

In this section, we evaluate the performance of oyplerance, and generalization of the solution. The choice
method on simulated data. In the first paragraph, sevegglthe values fom and o is done using a grid search on
trajectories with different orders for the state-space ehod, v — 9~ with r € {—20,-19,---,—1} ando = 2"
are examined. In the second paragraph, we study §§&h ' c {1,2,---,10}, where the corresponding error is
impact of the noises standard deviatiang anda, on the  estimated using the0-fold cross-validation scheme. This
estimation error. In the third paragraph, we study the impagcheme consists of dividing the data into folds: 9 for

of the number of stationary sensors and the number @hining the model and the remaining one for validating it
reference positions on the estimation error. Finally, ltesu[33).

are compared to ones obtained with the WKNN algorithm
combined with a Kalman filter [30] and tracking using
particle filtering [31]. A
The same practical setup is considered for the twoWe consider three different trajectories ®90 points
following paragraphs, given as follows. We consider with At = 1s. For the trajectory illustrated in Fig. 2, the
100m x 100m area, and generate6 stationary sensors accelerations are assumed equal to zero, leading to constan
and 100 reference positions uniformly distributed over th&elocities. As for the second and the third trajectories of
area. The RSSI values are obtained using the well-knoWig. 3 and Fig. 4 respectively, their respective accelenati

. Evaluation of our method on three trajectories

Okumura-Hata model [32] given by: are given in the top plots and in the bottom plots of Fig. 5,
~1 and~, being the first and the second acceleration coordi-
Psip, = po — 10np logig [|si — Pl + €ie, (32) nates respectively. One can see that the accelerations of th

where ps, », (in dBm) is the power received from the third trajectory have more variations than the accelenatio
sensor at positiors; by the node at positiop,, that is Of the second trajectory. The coordinates expressions are
the i-th entry of the vectop,, po is the initial power (in obtained by taking twice the primitive integral of the aecel
dBm) set t0100, np is the path-loss exponent set 10 erations. By taking these three trajectories, the perfagea
as often given in the literaturds; — p,|| is the Euclidian of the proposed method is evaluated for different types of
distance between the positipp of the considered node andscenarios, considering first a monotonously moving target,
the positions; of a stationary sensor, ang is the noise then more hyperactive ones.

affecting the RSSI measures withy its standard deviation.  Since a noiseless setup is not realistic in a practical
We also generate a trajectory and calculate the RSSI valg@éyironment, we consider that noises are present in all
collected by the moving target using (32). For the definitiopcenarios. Here, we take both componentsgfequal to

of +(-) using kernel methods, we consider the Gaussi&f)1lm/s*, ando, equal toldB. Let the estimation error

kernel given by: be evaluated by the root mean squared distance between
5 the exact positions and the estimated ones. Fig. 2, Fig. 3,

K(Pys Pur) = €XP (M) , and Fig. 4 show the estimated trajectories when using the

20 proposed method with the ridge regression (RR) for the

where o is its bandwidth that controls, together with thehird-order state-space model described in Section Ibléfa
regularization parametey;, the degree of smoothness, noisé shows the average ovéf simulations of the estimation
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Fig. 3: Estimation of the second trajectory. o . .
TABLE [: Estimation errors (in meters) for different orders
of the state-space models and the three trajectories.
100 e * % el < % + + + 1
%l J Traj. 1 | Traj. 2 | Traj. 3
sol i RR + model order 1 0.94 1.12 2.15
ok | RR + model order 2 0.94 1.10 1.97
% £ RR + model order 3 0.93 1.09 1.09
S 60 % 1
° vo-RLS + model order 1| 1.17 1.41 2.43
Q sof ]
3 vo-RLS + model order 2 1.16 1.38 2.25
T aof i
& Vvo-RLS + model order 3 1.14 | 136 | 1.21
30 1
20 +  Offline positions b
A Stationary sensors A A . . . .
10t Real trajectory oo Tt 1 is considered. The third-order state-model from Section
—— RR+Kalman : H . H H
ol surveilance area |+ 44 | IlI-C is used since it yields the best results as shown in
R — RS the previous section. Indeed, even though the first-order

I I I
0 10 20 30 40 50 60 70 80 90 100

15t coordinate model and the second-order model yield good results for the
trajectories of Fig. 2 and 3, the estimation error increases
Fig. 4: Estimation of the third trajectory. significantly compared to the third-order model when the

target is hyperactive (Fig. 4) as shown in Table I.
Let us now study the impact of the noises standard

errors for the three trajectories and the three differeatest deviationso, ando, on the estimation error. We first take
space models, using the RR and the vo-RLS in the learnifiiferent percentages of the standard deviation of thelacce
process. The three models yield almost the same results ation, going from % to 10%, along with a fixedr,, equal

the first two trajectories. However, for the third trajegtor to 5% of standard deviation of the RSSI measures, and
the smallest estimation error is obtained when using tf@peat the simulatioh0 times to obtain an average value
third-order state-space model. This result is expectecksirPf the estimation errors. The average value of the estimatio
the accelerations in this trajectory have high variation§ITors is stored. Itis worth noting that the standard dewiat

and as explained in Section IlI, the third-order state-spa€f the RSSI is equal ta0.79dBm; therefore,o,, is equal
model is well suited for such cases. to 0.54dBm. Fig. 6 shows the impact of the variation of

o~ on the estimation error. One can see that the results
obtained in Fig. 6 with the ridge regression and the vo-
RLS are independent from the acceleration noise, whereas
In this section, we will test our method using the trajecestimations using only accelerometer information arellgigh
tory of Fig. 4, where the general case of a hyperactive targdtected by the variations af.. The RR combined with

B. Impact ofe, and o,
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Fig. 6: Estimation error as a function of the noise on thiig. 7: Estimation error as a function of the noise on the
accelerations. RSSI.

the Kalman filter yields the best results. In fact, the filtesensors. We then take a fixed number of stationary sen-
corrects the results, and the error is always smaller thaors equal tol6, and we vary the number of reference
the error in the case of the ridge regression alone, apdsitions, N, = 5%,...,25%. Fig. 9 shows the evolution
aroundeo ., equal to7% of the standard deviation of theof the estimation error in terms of the number of reference
acceleration, the error becomes constant. positions. By comparing the obtained results, one can @otic
We then take several percentages of the standard devfet both the increase in the number of stationary sensors
tion of the RSSI measures, going fra¥t to 50%, with o, and in the number of reference positions yield a better
fixed to1% of the standard deviation of the acceleratiop. estimation of the target’s positions. Indeed, Fig. 8 shows
is then varying from0dBm to 5.40dBm. The simulation that when usingl6 stationary sensors, the average over
is also repeated0 times, and the errors are averaged ovéi0 simulations of the estimation error is10m compared
the 50 simulations. Fig. 7 shows the impact of the variatioto an error of0.82m when using11? = 121 stationary
of o, on the estimation error. One can see that localizatieensors. Fig. 9 shows that faf, = 100, the average over
using only accelerometer information is independent frof0 simulations of the estimation error is08m compared
the noise on the RSSIs, which is expected. The RR and tioean error of0.68m when increasingV,, to 24% = 576.
vo-RLS are highly affected by the noise variations, sinda fact, with a higher number of stationary sensors and
they use these RSSI measurements for the estimation. r&ference positions, we get better coverage and knowledge
for the method combining the RR with the Kalman filterpf the environment, which explains the improvement in the
it outperforms the method using only accelerations. It igsults. However, increasing the number of stationary sen-
interesting here to see the effectiveness of the Kalmaors increases the total cost in material, while increatsiag
filter. Indeed, one can see in Fig. 7 that the RR useudimber of reference positions induces a significant inereas
alone yields better results than the vo-RLS also used aloirethe algorithm’s complexity. Therefore, depending on the
however, after adding the Kalman filter, the results of thgractical system constraints, a tradeoff should be found
two techniques become very similar and the error becomastween the algorithm’s accuracy and the computational
almost constant for both methods whepnexceeds30% of  load.
the standard deviation of the RSSI measures.

D. Comparison to other tracking techniques

C. Impact ofN; and N, The objective in this section is to compare the proposed

We now study the impact of the number of stationargnethod to two recently proposed tracking methods. For the
sensorsN; and the number of reference positions on first comparison, we use the method proposed in [22], that
the performance of the tracking method. We consider tladéso makes use of the Kalman filter to correct the trajec-
trajectory of Fig. 4, with both components of, equal to tory estimated by radio-fingerprints. We then compare our
0.01m/s? and o, equal toldB. The ridge regression is method to the centralized version of the method described
used in this section. Nevertheless, it is worth noting that [31], which involves the use of a particle filter and RSSI
varying Ny and N,, has the same impact on the trackingneasurements. We consider the three trajectories dedcribe
method if we use the vo-RLS in the learning process. in Section V-A for our comparisons. In order to have a fair

We first vary the number of stationary sensofé, (= comparison of our technique towards these two methods,
12,...,15%), while keeping a fixed number for the referwe consider a setup that is the closest possible to the one
ence positions/{, = 100). Fig. 8 shows the evolution of the authors use in their papers. For this purpose, we take the
the estimation error in terms of the number of stationaryumber of stationary sensofé; = 4, even though taking



TABLE II: Comparison of the estimation error (in meters)
for the three tracking methods.

i::’zf,, | Trajectory 1| Trajectory 2| Trajectory 3
g Particle filter 142 6.25 8.17

-é i i WKNN-+Kalman 1.30 3.93 4.23
-%157 4 Proposed method 1.27 1.91 2.38

L

the Kalman filter, the authors use a second-order stateespac
model similar to the one in Section IlI-B. The estimation
errors (in meters) obtained when using this algorithm for
Fig. 8: Estimation error as a function of the number ahe three trajectories of Section V-A are compuiédimes
stationary sensors. for each case, and their averages are shown in Table II.
Our method clearly outperforms the one in [22]. Indeed,
the estimation error obtained with the proposed method is
significantly smaller than the one obtained with the WKNN
1 algorithm followed by the Kalman filter, for all three types
' of trajectories.
As for the second method used for our comparison, it
1 employs a particle filter along with RSSI measurements
and a first-order state-space model [31]. The particle filter
approximates the minimum mean-square error (MMSE)
estimate of the emitter state given all present and past
observations, i.e. RSSI measurements. It seeks to represen
the posterior distribution of the hidden states by a prgperl
weighted set of time-varying random samples such that, as
05 T P ] = 0 o 700 the number of samples go to infinity, the weighted average
Number of reference positions of those samples converges at each time step, in some
Fig. 9: Estimation error as a function of the number Osrtatistical sense, to the tr_ue global MMSE estimate of the
current unknown states given all present and past network
measurements [31]. For the first trajectory, we used the first
order state-space model as described in the authors work.
X = 16 g beter resls i the case of ur metholl ® 21208 ematlon e obabnn s dose o e e
as one can see from Fig. 8. We takg = 14/ and both and third trajectories wegused thé second-érderstakees a
components ot equal to0.01m /s> J ' P

We proceed by briefly describing the method in [22 r_nodel, because the first-order model did not work well due

It consists of estimating the position using the weighteﬁ’ the abruptkt_rajector%/v(:jarlqtlllons. Onfe can Sﬁe fro:ri;l'ablel
K-nearest neighbor (WKNN) algorithm, then applying th% at our trac N9 method st outper o_rms_t € well-known

Kalman filter to enhance the estimation. A target’s firs{a(:kIng technique based on particle filtering.

position estimate using WKNN is given by weighted com-

binations of theK nearest neighboring positions from the VI. CONCLUSION

training database, with the nearness indicator being basedn this paper, we proposed a new method for target
on the Euclidean distance between RSSIs. The weight usestking in wireless sensor networks by combining machine

05l I I I

11.‘)0 . 150 200 250
Number of stationary sensors

Estimation error (m)

-

reference positions.

for the WKNN algorithm in [22] is given by: learning and Kalman filtering. For the learning process,
1/6, we investigated the use of two kernel-based machine

Wy = W, learning algorithms: the ridge regression and the vector-
z€l 71 7E output regularized least squares. We also described three

whered,, is the Euclidean distance between the RSSI vectdifferent orders for the state-space models to be used
p(k) of the target at time step andp,,, n € I, andI is in the Kalman filtering, and highlighted the difference

the set of indices ofp, of the database yielding th& between them and how they can affect the performance
smallest distances (i.e/ nearest neighbors), at time of the tracking procedure. Simulation results showed that
step k. The estimated target’s position is then given bythe proposed method outperforms two recently developed
> ner Wn P,. The number of neighbor&™ is taken equal approaches. The method allows accurate tracking, and is
to 8 as in the simulations of [22]. As for the correction usingroved to be robust in the case of noisy data, whether
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the noise affects the acceleration information or the RS8b] H. Koyuncu and S. H. Yang, “A 2D positioning system using
measures. Future works will handle further improvements WSNs in indoor anronment,'lnternatlonal Journal of Electrical

. . . . and Computer Sciences IJECS-IJENSI. 11, no. 3, 2011.
of this method, such as introducing a model that estimatgs;

: X S ) S. Mahfouz, F. Mourad-Chehade, P. Honeine, H. Snouasd
distances between sensors instead of positions. Solutions  J. Farah, “Kernel-based localization using fingerprintingvireless

cases where zones of the surveillance area are not covered Sensor networks,” iNEEE 14th Workshop on Signal Processing

by all stationary sensors could also be provided.
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