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Analyzing sparse dictionaries

for online learning with kernels
Paul Honeine, Member IEEE

Abstract—Many signal processing and machine learning meth-
ods share essentially the same linear-in-the-parameter model,
with as many parameters as available samples as in kernel-based
machines. Sparse approximation is essential in many disciplines,
with new challenges emerging in online learning with kernels. To
this end, several sparsity measures have been proposed in the lit-
erature to quantify sparse dictionaries and constructing relevant
ones, the most prolific ones being the distance, the approximation,
the coherence and the Babel measures. In this paper, we analyze
sparse dictionaries based on these measures. By conducting an
eigenvalue analysis, we show that these sparsity measures share
many properties, including the linear independence condition and
inducing a well-posed optimization problem. Furthermore, we
prove that there exists a quasi-isometry between the parameter
(i.e., dual) space and the dictionary’s induced feature space.

Index Terms—Sparse approximation, adaptive filtering, kernel-
based methods, Gram matrix, machine learning, pattern recog-
nition.

I. INTRODUCTION

S
PARSE approximation is essential in many disciplines due

to the advent of data deluge in the era of “Big Data”, as

illustrated by the extensive literature of compressed sensing

(see [1] and references therein). Sparsity promoting is crucial

in signal processing and machine learning, such as Gaussian

processes [2], kernel-based methods [3], Bayesian learning [4],

as well as neural networks [5] with pruning [6] and the more

recent dropout principle in deep learning [7].

Many learning machines share essentially the same model,

in a linear or a nonlinear — kernel — form, including support

vector machines [8], Gaussian processes [9] and radial-basis-

function networks such as resource-allocating networks [5]

and more recently neural networks for function approximation

[10]; see also the seminal work of Poggio and Smale [11]. All

these learning machines rely on the well-known “Represen-

ter Theorem” [12], which defines a linear-in-the-parameters

model with as many parameters as training samples.

A sparse approximation of this model is often required for

many interesting and desirable properties, such as enforcing

the interpretation of the results and providing a computational

tractable problem for large-scale datasets. Within the last 15

years in kernel-based machines, this issue has been largely

investigated in an offline setting, with pursuit algorithms [13],

[14] and more recently with sparse coding and dictionary

learning algorithms [15], [16], [17]; see also [18], [19], [20]

and references therein. Online learning brings new challenges

to sparsity in signal processing and machine learning, when
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a new sample is available at each instant, which leads to an

incrementation of the number of parameters. Therefore, one

needs to control such complexity growth, by selecting samples

that take part in the model formulation; in the literature, these

contributing samples are called atoms and are collected in a

set called dictionary1.

The construction from available samples of a pertinent

dictionary and the measure of its relevance have been in-

vestigated in the literature with several sparsification criteria,

each being coupled with a sparsity measure that defines

the diversity captured by the dictionary. The oldest sparsity

criterion is the distance introduced in [5] for controlling

the complexity of the structure of radial-basis-function net-

works in resource-allocating networks [27]; see also [28],

[29] for recent advances. The criterion constructs a dictionary

by lower-bounding the pairwise distance between its atoms.

Another criterion, the approximation criterion, explores a

deeper analysis of the atoms, by lower-bounding the error of

approximating any atom by the other atoms, as investigated

in [30] for Gaussian processes, in [31] for a kernel recursive

least squares algorithm, and more recently in [32] for a kernel

principal component analysis. A third criterion takes advantage

of recent developments in the sparse approximation literature

[33] and compressed sensing [23], by upper-bounding the

coherence between any pair of atoms. Initially introduced for

online learning with kernels [34], [35] and learning in sensor

networks [36], [37], it has been extensively considered for

one-class classification [38], [39], for online learning with

multiple kernels [40], [41] and multiple dictionaries [42] and

for multiple-output learning [43]. The Babel measure and

1In dictionary learning literature, there exists two complementary concepts
of sparsity of a dictionary, as illustrated next in the linear case.

The first one is the sparsity representation in the space of the learned
dictionary, which is usually realized by an ℓp-norm approximation for
0 ≤ p ≤ 1, namely by solving

min
x̀j ,αj

j=1···m

∑

i

‖zi − [x̀1 x̀2 · · · x̀m]αi‖
2 subject to ‖αi‖p ≤ c,

where x̀i is the i-th dictionary atom, all zi are given signals, and c is a
fixed threshold. This is a combinatorial and highly non-convex optimization
problem. Currently used algorithms determine a local minimum in an offline
setting [21], [22], by alternating between two steps, the sparse-coding (i.e.,
estimation of the sparse vectors αi) and the dictionary update (i.e., estimation
of the atoms x̀j ). See also [23] and references therein.

The second concept, which is the focus of this paper, consists in utilizing a
specific dictionary structure which essentially serves as a pool of atoms from
which a sub-dictionary could be efficiently selected, the sub-dictionary is also
called “sparse dictionary”. Algorithms have been proposed in either an offline
setting, essentially with basis and matching pursuit algorithms [24], [13], [14],
or an online setting as in resource-allocating networks [5] and online learning
with kernels [31], [35], [32], as studied in this paper. It is worth noting that,
while the atoms are selected from a fixed dictionary, one can also adapt them,
as investigated in [25]. See also Footnote 3.
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Reference: most known work [5] [30] [35] [33] III

Reference: more recent work [48] [32] [43] [44] III

Eigenvalues: lower bounds X [32] [34] X IV-A

Eigenvalues: upper bounds X [32] X X IV-A

Linear independence X X [34] [35] IV-B

Condition number X X X X IV-C

Isometry property: distances X X X X V-A

Isometry property: inner products X X X X V-B

TABLE I
A BIRDS EYE VIEW OF THE THEORETICAL INSIGHTS STUDIED IN THIS

PAPER. SOME OF THESE RESULTS WERE PREVIOUSLY DERIVED FOR

UNIT-NORM ATOMS, AS SHOWN WITH THE REFERENCES GIVEN IN THE

TABLE. IN THIS WORK, WE PROVIDE AN EXTENSIVE STUDY THAT

COMPLETES THE ANALYSIS TO ALL SPARSITY MEASURES. WE DERIVE

NEW THEORETICAL INSIGHTS ON CONNECTING THE DUAL SPACE WITH

THE DICTIONARY’S INDUCED FEATURE SPACE. ALL THE RESULTS ARE

GENERALIZED TO ANY TYPE OF KERNEL, BEYOND THE UNIT-NORM CASE.

its criterion provide a more comprehensive analysis of the

dictionary structure, by limiting the cumulative coherence [44].

To the best of our knowledge, there is no work that studies all

these sparsity measures and criteria.

Independently of the sparsification criterion and the re-

sulting dictionary, many algorithms have been introduced to

update the model. As it might be expected, the wide class

of linear adaptive filters has been extensively investigated for

online learning with kernels, by revisiting popular algorithms

such as the least mean squares (LMS), the normalized LMS

(NLMS), the affine projection (AP), and the recursive least

squares (RLS) algorithms; see for instance [45] for a review of

linear adaptive filters. There exists two frameworks to develop

adaptive algorithms in online learning with kernels, owing

to the underlying linear-in-the-parameters model: a functional

(i.e., feature) framework and a dual (i.e., parameter) one.

Within the functional framework, the optimization is oper-

ated in the feature space, by estimating and updating within

the subspace spanned by the atoms of the dictionary. This

framework has been widely investigated for online learning

with kernels; see for instance [46], [40] as well as [47] for a

theoretical analysis and [48] for a comprehensive study. The

second framework is based on estimating the parameters of the

model, thus solving an optimization problem in the so-called

dual space. This framework has been extensively explored in

the literature due to its simplicity, with a NLMS algorithm

[34], an AP algorithm [35], and a RLS algorithm [31], [49].

For an overview of this framework, see [50] and references

therein. To the best of our knowledge, only Yukawa pointed

out the distinction between these two frameworks in [51,

Section 6.6.4]. The relationship between the two frameworks

has not been studied before, namely connecting the feature

space to the dual space.

The aim of this paper is to study all the aforementioned spar-

sity measures and sparsification criteria (cf. Section III). To

this end, we provide an analysis of the eigenvalues associated

to a sparse dictionary, and provide upper and lower bounds

in terms of the sparsity measures (cf. Section IV-A). We

show that the lower bounds provide conditions on the linear

independence of the atoms (cf. Section IV-B). Moreover, we

show that the condition number of the Gram matrix associated

to a sparse dictionary is upper-bounded, illustrating the impact

of the sparsity measures on the conditioning of the optimiza-

tion problem (cf. Section IV-C). A major result provided in

this paper is the connection between the dictionary’s induced

feature space and the dual space, by showing that there exists a

quasi-isometry between these spaces when dealing with sparse

dictionaries. These results allow to bridge the gaps between the

two aforementioned frameworks (cf. Sections V-A and V-B).

The big picture is illustrated in TABLE I.

II. KERNEL-BASED LEARNING MACHINES

A learning problem aims to find the relation ψ(·) between

a compact subspace of a Banach space X of R
d and a

compact Y of R called output space, from a set of avail-

able samples, denoted {(x1, y1), (x2, y2), . . . , (xn, yn)} with

(xk, yk) ∈ X×Y.

A. Batch learning with kernels

Considering a given loss function C(·, ·) defined on Y×Y

that measures the error between the desired output and the

estimated one with ψ(·), the optimization problem consists in

minimizing a regularized empirical risk as follows

argmin
ψ(·)∈H

n
∑

i=1

C(ψ(xi), yi) + ǫR(‖ψ(·)‖2
H
), (1)

where H is the space of candidate functions and ǫ controls the

tradeoff between the fitness error (first term) and the regularity

of the solution (second term) where R(·) is a monotonically in-

creasing function. Examples of loss functions are the quadratic

loss |ψ(xi) − yi|2 and the hinge loss (1 − ψ(xi)yi)+ of the

support vector machines.

By using the formalism of the reproducing kernel Hilbert

space (RKHS) as the space H of candidate functions, kernel-

based machines incorporate prior knowledge by using a

kernel. Let κ : X × X → R be a reproducing kernel,

and (H, 〈·, ·〉H) the induced RKHS with its inner product.

The reproducing property states that any function ψ(·) of

H can be evaluated at any sample xi of X using ψ(xi) =
〈ψ(·), κ(xi, ·)〉H. This property shows that any sample xi of

X is represented with κ(·,xi) in the space H, also called

feature space. Moreover, the reproducing property leads to

the so-called kernel trick, that is for any pair of samples

(xi,xj), we have 〈κ(·,xi), κ(·,xj)〉H = κ(xi,xj). Com-

monly used kernels are the linear kernel with 〈xi,xj〉, the

polynomial kernel (〈xi,xj〉+ c)
p

and the Gaussian kernel

exp
(

−1
2σ2 ‖xi − xj‖2

)

.

The Representer Theorem is a cornerstone of kernel-based

machines [12]. It states that the solution of the optimization

problem (1) takes the form

ψ(·) =
n
∑

i=1

αi κ(xi, ·). (2)
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This theorem shows that the functional optimization prob-

lem (1) is equivalent to the estimation of n unknowns,

α1, α2, . . . , αn in (2). By injecting the above expression into

(2), we get the (often called) dual problem. This duality is

illustrated next for the kernel ridge regression problem.

B. Kernel ridge regression algorithms

In the kernel ridge regression, the quadratic loss and regu-

larization are used in the optimization problem, namely

argmin
ψ(·)∈H

1
2

n
∑

i=1

|ψ(xi)− yi|2 + ǫ 1
2‖ψ(·)‖

2
H
. (3)

By injecting the model (2) in the above expression, we get the

following dual optimization problem:

argmin
α∈Rn

1
2‖Kα− y‖2 + ǫ 1

2α
⊤Kα, (4)

where K is the Gram matrix whose (i, j)-th entry is κ(xi,xj),
y and α are vectors whose i-th entries are yi and αi,
respectively. In the above expression, we have used the relation

‖ψ(·)‖2H =
∥

∥

n
∑

i=1

αiκ(xi, ·)
∥

∥

2

H
=

n
∑

i,j=1

αiαjκ(xi,xj) = α⊤Kα.

The solution of this optimization problem is given by the “nor-

mal equations” [52, Chapter 5], (K⊤K + ǫK⊤)α = K⊤y,

which yields2

α =
(

K⊤K + ǫK⊤
)−1

K⊤y. (5)

Regularization: ‖ψ(·)‖H versus ‖α‖
The regularization in the dual optimization problem (4)

is essentially a Tikhonov regularization of the form ‖Γα‖2
(where we have in our case Γ

⊤
Γ = ǫK). In the literature,

the Tikhonov matrix Γ is often chosen as the identity matrix,

up to a multiplicative constant, giving preference to solutions

with smaller norms. The kernel ridge regression becomes

argmin
α∈Rn

1
2‖Kα− y‖2 + ǫ 1

2‖α‖2. (6)

With the “normal equations” (K⊤K + ǫ I)α = K⊤y, we get

α =
(

K⊤K + ǫ I
)−1

K⊤y.

Connections between the regularization in the functional

space with ‖ψ(·)‖H and the regularization in the dual space

with ‖α‖ are not straightforward. The only result is based

on the fact that ‖ψ(·)‖2
H

= α⊤Kα, and therefore we have

from the Rayleigh’s quotient and the Courant-Fischer Minimax

Theorem [52, Theorem 8.1.2]:

λmin ≤ ‖ψ(·)‖2
H

‖α‖2 ≤ λmax

where λmin and λmax are the smallest and largest eigenval-

ues of the Gram matrix K. As a consequence, minimizing

2The expression (5) is often simplified to α = (K + ǫ I)−1y. This
equivalence is granted only when the matrix K is nonsingular, an assumption
that is unfortunately not satisfied in general. This is due to the linear
dependence of the training samples.

‖ψ(·)‖2
H

yields the upper bound on the norm of the parameter

vector with ‖α‖2 ≤ λ−1
min‖ψ(·)‖2H, while minimizing ‖α‖2

yields the following upper bound on the norm in the functional

space with ‖ψ(·)‖2
H
≤ λmax‖α‖2.

It turns out that sparse dictionaries provide models with

tighter bounds, as studied in detail in Section V.

C. Online learning with kernels

The Representer Theorem with its linear-in-the-parameters

model (2) constitutes a bottleneck for online learning, which

is required for real-time system identification, Big-Data pro-

cessing and distributed optimization (e.g., sensor networks).

Indeed, in an online setting, the solution should be updated

recursively based on a new information available at each

instant, namely a novel (xt, yt) at instant t. Thus, by including

the new pair (xt, yt) in the training set, the Representer

Theorem dictates a new parameter αt to be added to the set of

unknowns. As a consequence, the order of the linear-in-the-

parameters model is continuously increasing.

To overcome this drawback, one needs to control the growth

of the model order at each instant, by keeping only a fraction

of the kernel functions in the expansion (2). The reduced-order

model at instant t takes the form

ψt(·) =
m
∑

j=1

αj,t κ(x̀j , ·), (7)

for some order m, fixed or controlled, with m ≪ t. Each

x̀j is chosen from all available samples up to instant t,
namely3 {x̀1, x̀2, . . . , x̀m} ⊂ {x1,x2, . . . ,xt}. We denote by

dictionary the set D = {κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)}, by

atoms its elements, and by H̀ the space spanned by D. In this

paper, we do not restrictive ourselves to unit-norm4 atoms. Let

r2 = inf
x∈X

κ(x,x) and R2 = sup
x∈X

κ(x,x).

The optimization problem is two-fold at each

instant: selecting the proper dictionary D =
{κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)} and estimating the

corresponding parameters α1, α2, . . . , αm. Before studying in

detail the former in Section III, the latter is outlined next.

Notation

Throughout this paper, all quantities associated to the dic-

tionary have an accent (by analogy to phonetics, where stress

accents are associated to prominence). This is the case for

instance of the m-by-1 vector κ̀(·) whose j-th entry is κ(x̀j , ·)
and the Gram matrix K̀ of size m-by-m whose (i, j)-th
entry is κ(x̀i, x̀j). The eigenvalues of this matrix are denoted

λ̀1, λ̀2, . . . , λ̀m, given in non-increasing order.

3We consider that each x̀j is a sample selected from available samples,
that is x̀j is some xωj

with ωj ∈ {1, 2, . . . , t}. By using the notation x̀j

in this paper, as opposed to xωj
, the elements x̀j in the expansion (7) need

not be samples drawn from the distribution. This difference is investigated in
[25], [26], by updating x̀j at each instant in order to minimize the prediction
error.

4Throughout this paper, we outline the special case of unit-norm atoms
since such setting is often considered in the literature. Unit-norm atoms arise
when dealing either with the linear kernel when ‖x‖ = 1 for any x ∈ X, or
with unit-norm kernel, namely κ(x,x) = 1 for any x ∈ X.
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D. Parameter estimation for online learning

Before studying in Section III the dictionary in terms of

sparsity measures and sparsification criteria for constructing

a relevant dictionary, we assume for now that the dictionary

is known. From (7), the problem of determining the model

can be solved in two ways: the functional framework where

ψt(·) is updated from ψt−1(·), and the dual framework with

the update of the parameter vector αt from αt−1. These two

frameworks are summarized next, starting with the latter since

its vector-based formulation is straightforward.

We denote by et = yt − ψt−1(xt) the prediction error.

Dual framework

This framework explores the model (7) written, for any x,

ψt(x) = α⊤
t κ̀(x), (8)

where αt = [α1,t α2,t · · · αm,t]
⊤ is updated from the

previous estimate, i.e., αt−1, in the dual space R
m. It is easy

to see in (8) the structure of a a finite-impulse-response filter,

the filter input being κ̀(x) and its coefficient vector αt.

By considering the instantaneous risk 1
2 |yt −α⊤κ̀(xt)|2 +

ǫ 1
2‖α‖2, where the first term is the quadratic instantaneous

error e2t , we get the stochastic gradient descent rule

αt = αt−1 + ηt
(

et κ̀(xt)− ǫαt−1

)

. (9)

When dealing with the functional regularization ‖ψ(·)‖2
H

as

in (4), this regularization is approximated with α⊤K̀α, which

yields the modified version

αt = αt−1 + ηt
(

et κ̀(xt)− ǫ K̀αt−1

)

. (10)

The two rules (9) and (10) reduce to the LMS algorithm when

ǫ = 0. Another algorithm is the NLMS, which provides a scale

insensitive version with

αt = αt−1 +
ηt

‖κ̀(xt)‖2 + ǫ
et κ̀(xt).

See [34] for more details. An extension to an AP algorithm is

proposed in [35], while a RLS algorithm is presented in [31],

[49]. A comprehensive study of adaptive filter algorithms in

the dual framework is given in [50]. See also [40], [42], [44].

Functional framework

The functional framework considers the definition of the

model (7) in the RKHS, with the form

ψt(x) = 〈ψt(·), κ(x, ·)〉H, (11)

for any x ∈ X. The estimation of ψt(·) from the previous esti-

mate ψt−1(·) is operated in the RKHS H, or more specifically

in the span of the available dictionary, i.e., ψt(·) ∈ H̀ ⊂ H.

By considering the instantaneous risk 1
2 |ψ(xt) − yi|2 +

ǫ 1
2‖ψ(·)‖2H, the stochastic gradient descent in H is

ψt(·) = ψt−1(·) + ηt
(

et κ(xt, ·)− ǫ ψt−1(·)
)

.

By analogy with the dual framework, other algorithms can

also be described such as an LMS, a NLMS, an AP, and a

RLS algorithms. See [48] for more details.

Unfortunately, all these formulations assume the finiteness

of the training set, as reported in [46] and [47]. This drawback

is due to the fact that the model is fed with a new kernel

function at each instant. In order to control this growth and

restrict ourselves to the span of the dictionary, we replace5 the

current κ(xt, ·) by its projection onto the subspace spanned

by the dictionary, namely κ̀xt
(·) = κ̀(xt)

⊤K̀
−1

κ̀(·); see

Appendix for details. This leads to the expression

ψt(·) = (1− ηt ǫ)ψt−1(·) + ηt et κ̀x(·).

To implement this formula, one needs to provide an update

rule of the parameters, with an expression of the form

αt = (1− ηt ǫ)αt−1 + ηt et κ̀(xt)
⊤K̀

−1
.

III. ONLINE SPARSIFICATION AND SPARSITY MEASURES

Independently of the investigated framework, online learn-

ing algorithms should be coupled with a sparsification scheme.

At each instant, the dictionary is updated if necessary, or it is

left unchanged. Indeed, the dictionary is augmented whenever

the novel kernel function κ(xt, ·) increases the diversity of the

dictionary. There exists several sparsity measures to quantify

this diversity, as described in the following.

Before detailing these sparsity measures, we outline the

online sparsification scheme. Two cases may arise:

• Case 1: the dictionary is left unchanged.

This case arises when the novel kernel function κ(xt, ·)
does not contribute significantly to the diversity of the

dictionary, and therefore it could be discarded.

• Case 2: the kernel function is added to the dictionary.

This case arises when the kernel function κ(xt, ·) is

significantly different from the atoms of the dictionary.

One may also use a removal process in the latter case in order

to provide a fixed-budget learning [54], [55], by discarding

the atom that has the least contribution to the diversity of the

dictionary, as investigated for instance in [56].

A. The distance measure

A simple measure to characterize a sparse dictionary is the

least distance between all pairs of its atoms. A dictionary is

said to be δ-distant when

min
i,j=1···m

i6=j

min
ξ

‖κ(x̀i, ·)− ξ κ(x̀j , ·)‖H ≥ δ, (12)

where we have included a scaling factor ξ. This corresponds

to the reconstruction error of projecting κ(x̀i, ·) onto κ(x̀j , ·),
with ξ = κ(x̀i, x̀j)/κ(x̀j , x̀j). By substituting this value in

(12), we get for any pair (x̀i, x̀j):

κ(x̀i, x̀i)−
κ(x̀i, x̀j)

2

κ(x̀j , x̀j)
≥ δ2. (13)

5Besides the approximation with the projection which can be computation-
ally expensive, one may replace the current kernel function with its most
collinear atom. This leads to a quantization strategy [53].
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A sparsification criterion based on this measure constructs

a dictionary with a large distance measure, thus including the

candidate kernel function κ(xt, ·) in the dictionary if

min
j=1···m

(

κ(xt,xt)−
κ(xt, x̀j)

2

κ(x̀j , x̀j)

)

≥ δ2, (14)

for some threshold parameter δ. This sparsification criterion

is related to the novelty criterion given in [5], which is the

sparsification criterion without the scaling factor followed by

a prediction error mechanism.

B. The approximation measure

The distance measure defined in (12)-(13) relies only on

two atoms, that is the closest pair in the dictionary. A more

comprehensive analysis of the dictionary composition is the

capacity of approximating any atom by a linear combination

of the other atoms. A dictionary is designated δ-approximate

if the following is satisfied:

min
i=1···m

min
ξ1···ξm

∥

∥

∥
κ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj κ(x̀j , ·)
∥

∥

∥

H

≥ δ. (15)

This corresponds to the reconstruction error of projecting any

kernel function κ(x̀i, ·) onto the subspace spanned by the other

kernel functions. Following the derivation given in Appendix

ξ = K̀
−1

\{i}
κ̀

\{i}
(x̀i), (16)

where K̀
\{i}

and κ̀
\{i}
(x̀i) are obtained from K̀ and κ̀(x̀i),

respectively, by removing the entries associated to x̀i. As a

consequence, expression (15) becomes

min
i=1···m

κ(x̀i, x̀i)− κ̀
\{i}
(x̀i)

⊤ K̀
−1

\{i}
κ̀

\{i}
(x̀i) ≥ δ2. (17)

The (linear) approximation criterion is based on construct-

ing a dictionary with a high approximation measure, as investi-

gated for Gaussian processes in [2], for a kernel-based filter in

[31] and more recently for kernel principal component analysis

in [32]. The kernel function κ(xt, ·) is added to the dictionary

if

min
ξ1···ξm

∥

∥

∥
κ(xt, ·)−

m
∑

j=1

ξj κ(x̀j , ·)
∥

∥

∥

2

H

≥ δ2, (18)

where δ is a positive threshold parameter that controls the level

of sparseness. This leads to the following condition, written

in matrix form κ(xt,xt)− κ̀(xt)
⊤K̀

−1
κ̀(xt) ≥ δ2.

C. The coherence measure

The coherence is a fundamental measure to characterize

a dictionary in the literature of sparse approximation. It

corresponds to the largest correlation between atoms of a given

dictionary, or mutually between atoms of two dictionaries. The

coherence measure has been investigated for the analysis of

the quality of representing a signal with a dictionary, initially

with the work [57], [33], and more recently in the abundant

publications on compressed sensing [23]. While most work

consider the use of a linear measure, we explore in the

following the coherence on kernel functions in order to derive

the coherence criterion, as initially proposed in [34], [35].

A dictionary D is said γ-coherent if

max
i,j=1···m

i6=j

|κ(x̀i, x̀j)|
√

κ(x̀i, x̀i)κ(x̀j , x̀j)
≤ γ. (19)

The coherence corresponds to the cosine of the angle between

the kernel functions, since the above quotient can be written

|〈κ(x̀i, ·), κ(x̀j , ·)〉H|
‖κ(x̀i, ·)‖H‖κ(x̀j , ·)‖H

.

For unit-norm kernels, (19) becomes max
i,j=1···m

i6=j

|κ(x̀i, x̀j)| ≤ γ.

The coherence criterion constructs a low-coherent dictionary

[34], [35]. It includes the candidate kernel function κ(xt, ·) in

the dictionary if the coherence of the latter does not exceed a

given threshold γ ∈ ]0 ; 1], namely

max
j=1···m

|κ(xt, x̀j)|
√

κ(xt,xt)κ(x̀j , x̀j)
≤ γ. (20)

This condition enforces an upper bound on the cosine of the

angle between each pair of kernel functions. The threshold

γ controls the level of sparseness of the dictionary, where a

null value yields an orthogonal basis. This criterion is com-

putationally efficient as given in expression (20), where the

denominator reduces to 1 for unit-norm atoms, thus becomes

in this case max
j=1···m

|κ(xt, x̀j)| ≤ γ.

D. The Babel measure

From a norm perspective, the coherence is essentially the

∞-norm when dealing with unit-norm atoms. The Babel

notion explores such analogy with the norm operator, thus

providing a more complete description of the dictionary struc-

ture [58], [33]. The Babel is related to the 1-norm of the Gram

matrix, with the definition

Babel = max
i=1···m

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|. (21)

It corresponds to the maximum cumulative correlation between

an atom and all the other atoms of the dictionary. It is easy to

see that, when dealing with unit-norm atoms, the coherence

of the dictionary cannot exceed its Babel measure.

The Babel criterion is defined as follows. A candidate

kernel function κ(xt, ·) is included in the dictionary if

maxi=1···m

∑m

j=1,j 6=i |κ(x̀i, x̀j)|+|κ(x̀i,xt)| ≤ γ, for a given

positive threshold γ. This definition can be viewed as an

extension of the coherence criterion in the same sense as the

approximation is an extension of the distance criterion. See

[44] for the use of the Babel measure for sparsification.

IV. AN EIGENVALUE ANALYSIS

Since the Gram matrix is fundamental in the analysis of

the dictionary, we study in the following its eigenvalues, and

provide theoretical bounds. These results provide an analysis

of the span defined by a sparse dictionary, given in terms of the
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sparsity measure under scrutiny. Lower bounds are used in the

forthcoming linear independence analysis (cf. Section IV-B),

while lower and upper bounds are investigated in the forth-

coming study of the condition number (cf. Section IV-C) and

in the main results derived in next section (cf. Section V). Let

λ̀1, λ̀2, . . . , λ̀m be the eigenvalues of the matrix K̀, given in

non-increasing order, namely λ̀1 ≥ λ̀2 ≥ . . . ≥ λ̀m.

A. Bounds on the eigenvalues

Before proceeding, we bring to mind the well-known

Geršgorin Discs Theorem [59, Chapter 6], revisited here for

the Gram matrix of a sparse dictionary. It is also well known

that the trace of a matrix equals the sum of its eigenvalues.

We get for unit-norm atoms:
∑m

j=1 λ̀j = Trace(K̀) =
∑m

j=1 κ(x̀j , x̀j) = m, thus 1 ≤ λ̀1 and λ̀m ≤ 1.

Theorem 1 (Geršgorin Discs Theorem): Every eigenvalue

of an m-by-m matrix K̀ lies in the union of the m discs,

centered on each diagonal entry of K̀ with a radius given by

the sum of the absolute values of the other m−1 entries from

the same row. In other words, for each λ̀i, there exists at least

one j ∈ {1, 2, . . . ,m} such that

|λ̀i − κ(x̀j , x̀j)| ≤
m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|.

This theorem is a cornerstone in our study, as described next

by providing upper and lower bounds on the eigenvalues of the

Gram matrix associated to a sparse dictionary, by investigating

its sparsity measure.

Distance measure

When the distance measure of a given sparse dictionary

is known, namely δ, we have from (12)-(13) that any pair

(x̀i, x̀j) satisfies

|κ(x̀i, x̀j)| ≤
√

κ(x̀j , x̀j)
(

κ(x̀i, x̀i)− δ2
)

.

Therefore, we have

∑

j

|κ(x̀i, x̀j)| ≤
∑

j

√

κ(x̀j , x̀j)
(

κ(x̀i, x̀i)− δ2
)

=
√

κ(x̀i, x̀i)− δ2
∑

j

√

κ(x̀j , x̀j).

By applying the Geršgorin Discs Theorem (Theorem 1) with

the above relation in mind, we get that, for each eigenvalue

λ̀k, there exists at least one i such that

|λ̀k − κ(x̀i, x̀i)| ≤
m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|

≤
√

κ(x̀i, x̀i)− δ2
m
∑

j=1

j 6=i

√

κ(x̀j , x̀j).

By exploring these results, the proof of the following theorem

is straightforward.

Theorem 2: The eigenvalues of the Gram matrix associated

to a δ-distant dictionary are bounded as follows:

r2 − (m− 1)R
√

R2 − δ2 ≤ λ̀m ≤ · · ·
· · · ≤ λ̀1 ≤ R2 + (m− 1)R

√

R2 − δ2,

where r2 = infx κ(x,x) and R2 = sup
x
κ(x,x). For unit-

norm atoms, we get

1−(m−1)
√

1− δ2 ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ 1+(m−1)
√

1− δ2.

Approximation measure

The following theorem follows from the previous theorem.

Theorem 3: The eigenvalues of the Gram matrix associated

to a δ-approximate dictionary are bounded as follows:

r2 − (m− 1)R
√

R2 − δ2 ≤ λ̀m ≤ · · ·
· · · ≤ λ̀1 ≤ R2 + (m− 1)R

√

R2 − δ2,

where r2 = infx κ(x,x) and R2 = sup
x
κ(x,x). For unit-

norm atoms, we get

1−(m−1)
√

1− δ2 ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ 1+(m−1)
√

1− δ2.

Proof: To prove this theorem, we show that a δ-

approximate dictionary is also δ-distant. Indeed, a δ-

approximate dictionary (i.e., satisfying definition (15)) verifies

δ2 ≤ min
i=1···m

min
ξ1···ξm

∥

∥

∥
κ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj κ(x̀j , ·)
∥

∥

∥

2

H

≤ min
i,j=1···m

i6=j

min
ξj

‖κ(x̀i, ·)− ξj κ(x̀j , ·)‖H,

where the special case for the ξ1, ξ2, . . . ξm is considered, with

all entries null except a single one to be optimized, the one

denoted ξj . This corresponds to a δ-distant dictionary, as given

in (12).

Due to the rough approximation of the approximate measure

with a distance measure, the bounds given in Theorem 3 are

not tight. Still, this theorem allows to extend any result, from

the δ-distant to the δ-approximate dictionaries.

The following theorem illustrates that the largest eigenvalue

Theorem 4: The largest eigenvalue of the Gram matrix

associated to a δ-approximate dictionary is lower-bounded as

follows:

max
i=1···m

κ̀
\{i}
(x̀i)

⊤κ̀
\{i}
(x̀i)

κ(x̀i, x̀i)− δ2
≤ λ̀1

Proof: On the first hand, by applying the Courant-Fischer

Minimax Theorem [52, Theorem 8.1.2] to the inverse of the

matrix K̀
\{i}

, we get

1

λ̀1
≤ κ̀

\{i}
(x̀i)

⊤ K̀
−1

\{i}
κ̀

\{i}
(x̀i) ≤

1

λ̀m−1

,

where we have used the fact that, for any eigenvalue λ̀j of

a given matrix, the inverse of the matrix has an eigenvalue

1/λ̀j . On the second hand, since a δ-approximate dictionary

satisfies (17), we have for any i = 1, 2, . . . ,m:

κ̀
\{i}
(x̀i)

⊤ K̀
−1

\{i}
κ̀

\{i}
(x̀i) ≤ κ(x̀i, x̀i)− δ2.

The proof of the theorem is obtained by combining these two

results.
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Coherence measure

When measuring the sparsity of the dictionary with the

coherence measure, we have the following theorem. Only the

lower bound has been previously investigated in the literature

when dealing with unit-norm atoms; see [34].

Theorem 5: The eigenvalues of the Gram matrix associated

to a γ-coherent dictionary of m atoms are bounded as follows:

r2 − (m− 1)γR2 ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ R2 + (m− 1)γR2,

where R2 = sup
x
κ(x,x) and r2 = infx κ(x,x). For unit-

norm atoms, we get

1− (m− 1) γ ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ 1 + (m− 1) γ.

Proof: A γ-coherent dictionary satisfies

max
j=1···m

j 6=i

|κ(x̀i, x̀j)|
√

κ(x̀i, x̀i)κ(x̀j , x̀j)
≤ γ,

for any i = 1, 2, . . . ,m, which yields

max
j=1···m

j 6=i

|κ(x̀i, x̀j)| ≤ γ max
j=1···m

j 6=i

√

κ(x̀i, x̀i)κ(x̀j , x̀j)

= γ
√

κ(x̀i, x̀i) max
j=1···m

j 6=i

√

κ(x̀j , x̀j)

≤ γR
√

κ(x̀i, x̀i).

Finally, the proof results from applying the Geršgorin Discs

Theorem (Theorem 1), since

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)| ≤ (m− 1) max
j=1···m

j 6=i

|κ(x̀i, x̀j)|

≤ (m− 1)γR
√

κ(x̀i, x̀i)

≤ (m− 1)γR2.

Babel measure

When dealing with the Babel measure as a sparsity measure,

the eigenvalues of the Gram matrix associated to the dictionary

are bounded as given in the following theorem.

Theorem 6: The eigenvalues of the Gram matrix associated

to a γ-Babel dictionary are bounded as follows:

r2 − γ ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ R2 + γ,

where R2 = sup
x
κ(x,x) and r2 = infx κ(x,x). For unit-

norm atoms, we get 1− γ ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ 1 + γ.

Proof: The proof follows from the Geršgorin Discs The-

orem (Theorem 1) since, for any eigenvalue λ̀k, there exists

an i ∈ {1, 2, . . . ,m} with

|λ̀k − κ(x̀i, x̀i)| ≤
m
∑

j=1

j 6=i

|κ(x̀i, x̀j)| ≤ γ.

B. Linear independence

It is relevant to construct a dictionary with linearly indepen-

dent atoms, a condition that allows to represent any feature

of DH in a unique linear way. For a dictionary of m kernel

functions, the atoms are linearly independent if the following is

satisfied: any linear combination
∑m

j=1 ξj κ(x̀j , ·) is the zero

element if and only if all the weighting coefficients ξj are null.

It is trivial that a dictionary with a nonzero approximation

measure has linear independent atoms, since we have

∥

∥

∥

m
∑

j=1

ξj κ(x̀j , ·)
∥

∥

∥

H

=
∥

∥

∥
ξiκ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj κ(x̀j , ·)
∥

∥

∥

H

(for any i)

= |ξi|
∥

∥

∥
κ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj
ξi
κ(x̀j , ·)

∥

∥

∥

H

≥ |ξi| min
ξ1···ξm

∥

∥

∥
κ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj κ(x̀j , ·)
∥

∥

∥

H

≥ |ξi| δ,
for any decomposition, i.e., i ∈ {1, 2, . . . ,m}. Thus, the linear

combination is the zero element only when all coefficients ξi
are null or when the threshold δ is null.

In the following, we show that all the sparsity measures

provide sufficient conditions for linear independence of the

dictionary’s atoms. To this end, we investigate the duality

between linear independence and the non singularity of the

associated Gram matrix, which is essentially considered in [57]

for the coherence of a linear dictionary with unit-norm atoms

and extended in [35] for kernel-based dictionaries. Indeed, we

have
∥

∥

∥

m
∑

j=1

ξj κ(x̀j , ·)
∥

∥

∥

2

H

= ξ⊤K̀ξ ≥ λ̀m‖ξ‖2,

where the Courant-Fischer Minimax Theorem is used [52,

Theorem 8.1.2]. As a consequence, we prove the linear in-

dependence of a atoms by providing a lower bound on the

eigenvalues of the associated Gram matrix. The following the-

orem summarizes this property for different sparsity measures.

Theorem 7 (Linear independence): A sufficient condition

for the linear independence of the m atoms is:

• (m− 1)R
√
R2 − δ2 < r2 for a δ-distant dictionary.

• δ > 0 for a δ-approximate dictionary.

• (m− 1)γR2 < r2 for a γ-coherent dictionary.

• γ < r2 for a γ-Babel dictionary.

These results generalize the bounds given for only unit-norm

atoms, in [34] for the coherence measure with (m− 1)γ < 1
and in [35] for the Babel measure with γ < 1.

C. Condition number

The condition number of a matrix K̀, for a given matrix

norm, is defined by cond(K̀) = ‖K̀‖‖K̀−1‖, which reduces

for the ℓ2-norm to:

cond(K̀) =
|λ̀1|
|λ̀m|

. (22)
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It is an important measure of the sensitivity, with respect to

variations within the matrix K̀ , of the resolution of a problem

of the form K̀α = y, α being the unknown. It gives a bound

on how inaccurate the solution α will be after approximation.

When its value is small, i.e., close to 1, the solution is robust

to perturbations, as opposed to large values that lead to ill-

conditioned problems, if not even ill-posed.

For instance, consider a gradient descent procedure to solve

the linear system K̀α = y. It is shown in [60] that the error

reduction at each iteration is bounded by an upper bound

that is proportional to the condition number of the matrix

K̀. The condition number has been studied more recently in

kernel-based machine learning; see for instance [61]. Next,

we provide an upper bound on the condition number, in terms

of the sparsity measure of the dictionary. The proof of the

following theorem is straightforward from the definition of

the condition number (22) and the aforementioned theorems

on lower and upper bounds on the eigenvalues.

Theorem 8 (Condition number): The condition number of

the Gram matrix associated to a sparse dictionary is upper-

bounded by:

•
R2 + (m− 1)R

√
R2 − δ2

r2 − (m− 1)R
√
R2 − δ2

for a δ-distant dictionary and

a δ-approximate dictionary.

•
R2 + (m− 1)γR2

r2 − (m− 1)γR2
for a γ-coherent dictionary.

•
R2 + γ

r2 − γ
for a γ-Babel dictionary.

The case of unit-norm atoms is obtained from the relation r =
R = 1, which yields for instance the upper bound

1+(m−1)γ
1−(m−1)γ

for a γ-coherent dictionary. These results demonstrate how

the choice of the threshold value in the sparsification criterion

impacts on the conditioning of the system, towards a well-

posed optimization problem.

V. CONNECTING THE DICTIONARY’S INDUCED FEATURE

SPACE AND THE DUAL SPACE

In this section, we show that both feature subspace and the

dual space are intimately related in their topologies, when the

feature subspace is spanned by the atoms from a sparse dic-

tionary. To this end, we show in Section V-A that the pairwise

distances in both spaces are almost preserved. This quasi-

isometry property associated to a given sparse dictionary is

quantified in terms of each of the sparsity measures presented

in Section III, namely the distance, approximation, coherence,

and Babel measures. These results on the isometry are ex-

tended in Section V-B to the issue of preserving the pairwise

inner-products in both spaces. All these results establish the

structural-preserving map that connects both spaces, namely

the map ΘD defined as follows

ΘD : Rm 7−→ H̀ ⊂ H

α −→ ψ(·) = α⊤κ̀(·)

It is worth noting that these results require that the atoms

of the dictionary are linear independent, since this condition

guarantees that any feature ψ(·) of H̀ can be uniquely rep-

resented by atoms of the dictionary. See Section IV-B and in

particular Theorem 7 which provides weak conditions in terms

of the sparsity measure of the dictionary.

A. Isometry property

Without limiting ourselves to online learning by comparing

ψt(·) with ψt−1(·), we consider here any two features from

the feature space H̀, denoted ψ′(·) =
∑m
j=1 α

′
j κ(x̀j , ·) and

ψ′′(·) =
∑m
j=1 α

′′
j κ(x̀j , ·). Their representations in the dual

space R
m are denoted α′ and α′′, respectively. There exists

an isometry between these two spaces if the distance between

any pair of features corresponds to the distance between their

parameter vectors, namely ‖ψ′(·)− ψ′′(·)‖H = ‖α′ −α′′‖.

While the isometry property is too restrictive, we relax it with

the following definition of quasi-isometry, by showing that the

quotient of these two distances is close to unity. We denote

ψ(·) = ψ′(·)−ψ′′(·), then its parameter vector is α = α′−α′′.

Definition 9 (Quasi-isometry): Given a dictionary of kernel

functions {κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)}, and H̀ the space

spanned by its atoms, we say that the spaces R
m and H̀

are quasi-isometric if there exists an isometry constant ν (the

smallest number) such that, for any vector α of entries αj ,
the feature ψ(·) = α⊤κ̀(·) satisfies

1− ν ≤ ‖ψ(·)‖2
H

‖α‖22
≤ 1 + ν. (23)

This means that the map ΘD : α → α⊤κ̀(·) approximately

preserves the distances in both spaces Rm and H̀. It is easy to

see that a dictionary with an isometry constant ν = 0 provides

a “total” isometry between these spaces.

In the following, we show that the quasi-isometry property

is satisfied for sparse dictionaries, by relying on the investi-

gated sparsity measure. Before generalizing with Theorem 11,

we restrict ourselves in Theorem 10 to the case of unit-norm

atoms, which is often sufficient in most work in the literature

of sparse approximation, e.g., when using the Gaussian kernel.

Theorem 10 (Isometry property –unit-norm atoms–): A

dictionary of unit-norm atoms has an isometry constant ν
defined as follows:

• ν = (m − 1)
√
1− δ2 for a δ-distant dictionary and a

δ-approximate dictionary.

• ν = (m− 1)γ for a γ-coherent dictionary.

• ν = γ for a γ-Babel dictionary.

Proof: For any ψ(·) with its parameter vector α we have

‖ψ(·)‖2
H
= ‖∑m

j=1 αj κ(x̀j , ·)‖2H = α⊤K̀α, then the quotient

in (23) is the Rayleigh-Ritz quotient of the Gram matrix K̀.

By applying the Courant-Fischer Minimax Theorem, we get

λ̀m ≤ ‖ψ(·)‖2
H

‖α‖22
≤ λ̀1,

where λ̀m and λ̀1 and the smallest and largest eigenvalues of

the matrix K̀. We can easily identify from (23) the following

pair of inequalities:

1− ν ≤ λ̀m and λ̀1 ≤ 1 + ν.

By exploring the results derived in Section IV, we can iden-

tify the isometry constants of the dictionary in terms of its

distance, approximation, coherence and Babel measures. All



HONEINE: ANALYZING SPARSE DICTIONARIES 9

these expressions are straightforward from Theorems 2, 3, 5,

6, owing to the bounds on the eigenvalues that are symmetric

about 1.

When dealing with non-unit-norm atoms, expressions are a

bit more difficult to derive, due to the asymmetry of the bounds

on the eigenvalues, as shown by the following theorem.

Theorem 11 (Isometry property): A dictionary has an

isometry constant ν defined as follows:

• ν =
R2 − r2 + 2(k − 1)R

√
R2 − δ2

R2 + r2
for a δ-distant

dictionary and a δ-approximate dictionary.

• ν =
R2 − r2 + 2(k − 1)γR2

R2 + r2
for a γ-coherent dictionary.

• ν =
R2 − r2 + 2γ

R2 + r2
for a γ-Babel dictionary.

In these expressions, R2 = sup
x
κ(x,x) and r2 =

infx κ(x,x).
Proof: Consider the general asymmetric bounds

lk ≤ λ̀m ≤ ‖ψ(·)‖2
H

‖α‖22
≤ λ̀1 ≤ uk,

for some lower bound lk and upper bound uk, such that

0 < lk ≤ uk < ∞. In order to get bounds that are

symmetric about 1, as in Definition 9, we divide each term

by (uk + lk)/2. This yields the isometry constant ν = (uk −
lk)/(uk + lk) for the rescaled atoms of the dictionary, where

each atom is divided by
√

(uk + lk)/2. Finally, the proof

of the theorem follows the same steps as in the proof of

Theorem 10.

It is easy to see that Theorem 10 is a special case of this

theorem when dealing with unit-norm atoms, i.e., R = r = 1.

B. Preserving inner products

Theorems 10 and 11 show that a sparse dictionary provides a

quasi-isometry, with respect to the distances, between the dual

space and the subspace spanned by its atoms. In the following,

we show that this property of quasi-isometry extends to inner

products. It is worth noting that, when dealing with a “total”

isometry, the isometry with respect to inner products extends

naturally to the isometry with respect to distances, and vice

versa6. This is not the case when using the quasi-isometry

definition. We aim to bridge this gap in the following.

Definition 12 (Quasi-isometry w.r.t. inner products):

Given a dictionary of kernel functions

{κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)}, and H̀ the space spanned

by its atoms, we say that the spaces R
m and H̀ are quasi-

isometric with respect to inner products if there exists an

isometry constant ν (the smallest number) such that, for any

pair of vectors (α′,α′′), we have
∣

∣

∣

〈

∑m
j=1 α

′
j κ(x̀j , ·),

∑m
j=1 α

′′
j κ(x̀j , ·)

〉

H

−α′⊤α′′
∣

∣

∣

‖α′‖2 ‖α′′‖2
≤ ν.

(24)

6For any linear operator A from an inner product space to another inner
product space, there exists an equivalence between 〈Au,Av〉 = 〈u, v〉 for
any (u,v) and ‖Au‖ = ‖u‖ for any u.This equivalence is less obvious
when dealing with quasi-isometry.
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distance approximation coherence babel

Fig. 1. Illustration of Theorem 10 for the four studied sparsification criteria.
The corresponding upper and lower bounds are illustrated with “▽” and
“△”, respectively, and the isometry ratio in (23) is evaluated on a set of
200 samples, illustrated with “·”.

It is easy to see that the “total” isometry with respect to

inner products corresponds to ν = 0 in (24). This expression

becomes
〈
∑m

j=1 α
′
j κ(x̀j , ·),

∑m
j=1 α

′′
j κ(x̀j , ·)

〉

H
= α′⊤α′′,

and as a consequence the condition (23) is satisfied as a special

case where α′ = α′′.

In the general case, the quotient in (24) can be written as
∣

∣α′⊤K̀α′′ −α′⊤α′′
∣

∣

‖α′‖2 ‖α′′‖2
=

∣

∣α′⊤(K̀ − I)α′′
∣

∣

‖α′‖2 ‖α′′‖2
,

and therefore the inequality (24) becomes

−ν ≤ α′⊤(K̀ − I)α′′

‖α′‖2 ‖α′′‖2
≤ ν. (25)

To tackle this expression, several issues need to be addressed.

First of all, the above quotient needs to be connected to the

Rayleigh-Ritz quotient of the matrix K̀ − I, in order to apply

the Courant-Fischer Minimax Theorem. Indeed, this theorem

can be also applied to study a quotient of the form

u⊤Av

‖u‖2 ‖v‖2
,

for any pair (u,v), as shown in [52, Theorem 8.6.1]; see also

[62, Theorem 3] for a detailed proof. As a consequence, the

quotient in (25) is bounded by the extreme eigenvalues of the

matrix K̀ − I. Second, it is easy to see that both matrices

K̀ and K̀ − I share the same eigenvectors, while for any

eigenvalue λ̀j of K̀ corresponds the eigenvalue λ̀j − 1 of

K̀−I. Indeed, any eigenpair (v̀, λ̀j) of K̀ satisfies
(

K̀−I
)

v̀ =

K̀v̀ − Iv̀ = λ̀j v̀ − Iv̀ =
(

λ̀j − 1
)

v̀, therefore (v̀, λ̀j − 1) is

an eigenpair of the matrix K̀ − I.

As a consequence, one can take advantage of bounds on

the eigenvalues from Theorems 2, 3, 5 and 6 to provide

expressions for the isometry constant w.r.t. inner products, as

detailed in Theorems 10 and 11.

VI. EXPERIMENTAL RESULTS

In order to illustrate the relevance of these results, we

consider the Henon map given in 2D with xt = [xt xt−1]
⊤

where xt = 1 − a1x
2
t−1 + a2xt−2. In the following, we set

a1 = 1.4 and a2 = 0.3, and use the initialization x0 = −0.3
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Fig. 2. The evolution of the isometry ratio in (23), as well as the upper
and lower bounds in Theorem 10 for different threshold values of the Babel
criterion. Same legend as Fig. 1.

and x1 = 0, which yields a chaotic time-series [49]. A set

of 200 samples is generated, the Gaussian kernel is used with

the bandwidth σ = 0.35, and the stochastic gradient descent

rule (9) with ǫ = 0 is used to generate 200 values of the

isometry ratio given in (23). Fig. 1 shows that these values

are close to 1, and bounded as demonstrated in Theorem 10.

To provide a comparative analysis, we have fixed the size of

the dictionaries to m = 5 for all the sparsification criteria. The

impact of the threshold value of the sparsification criterion is

shown in Fig. 2 for the Babel criterion.

VII. FINAL REMARKS

This paper provided a framework, based on an eigenvalue

analysis, to study sparsity measures and sparsification criteria.

We proposed a unified study for the well-conditioning of the

optimization problem and for the condition on the uniqueness

of the solution. We established a quasi-isometry between the

dual space and the dictionary’s induced feature space, thus

connecting the functional to the dual frameworks and illus-

trating the impact of the sparsity measures on the topologies.

As for future work, we are extending this framework to include

new insights on sparse dictionary analysis.

APPENDIX

The projection of any kernel function κ(x, ·) onto the

subspace spanned by a dictionary of kernel functions κ(x̀j , ·),
for j = 1, 2, . . . ,m, takes the form

κ̀x(·) =
m
∑

j=1

ξj κ(x̀j , ·),

or equivalently κ̀x(·) = ξ⊤κ̀(·), where ξ is obtained by

minimizing the quadratic reconstruction error

‖κ(x, ·)− ξ⊤κ̀(·)‖2
H
. (26)

The expansion of this norm is given by κ(x,x)− 2 ξ⊤κ̀(x)+
ξ⊤K̀ξ. By taking its derivative with respect to ξ and nullifying

it, we get

K̀ξ = κ̀(x).

Therefore, the projection is given by

κ̀x(·) = κ̀(x)⊤K̀
−1

κ̀(·).
The quadratic reconstruction error of such approximation is

obtained by substituting this expression into (26), yielding

κ(x,x)− κ̀(x)⊤K̀
−1

κ̀(x).
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