Tian Wang 
email: wangtian@buaa.edu.cn
  
Jie Chen 
email: dr.jie.chen@ieee.org
  
Paul Honeine 
email: paul.honeine@utt.fr
  
Hichem Snoussi 
email: hichem.snoussi@utt.fr
  
Abnormal event detection via multi-kernel learning for distributed camera networks

Keywords: Distributed camera networks, abnormal detection, optical flow, one-class SVM

   

Abnormal event detection via multikernel learning for distributed camera networks

I. INTRODUCTION

Detecting abnormal events via video sequence analysis is crucial for public security management. In complex scenes, distributed camera networks with overlapping views are capable to obtain additional information to surveil the movement of the crowds compared to the single camera setting. In the PETS dataset [START_REF] Pets | Performance evaluation of tracking and surveillance (pets) 2009 benchmark data. multisensor sequences containing different crowd activities[END_REF], camera locations are illustrated in Fig. 1 directions, implying that people are attracted by some particular events, consequently, these scenes are considered as abnormal.

The scenes are captured by different cameras. Fig. 2(a)(b) are captured by camera 1 which is set at the side of the road, the movement of the people are well captured. Figs. 2(c)(d) are captured by camera 2 which faces the movement direction of the people, and there is occlusion of the individuals in this view. Figs. 2(e)(f) are captured by camera 3 which is also set at the side of the road, with larger distance. The purpose of the distributed camera surveillance is to detect abnormal events by benefitting the multi-view video sequences. Distribute camera networks are now widely used for surveillance application.

In the literature papers [START_REF] Wan | Distributed bayesian inference for consistent labeling of tracked objects in nonoverlapping camera networks[END_REF], [START_REF] Jiuqing | Multiple people tracking using camera networks with overlapping views[END_REF], the framework for multiple pedestrian tracking by using overlapping cameras was presented.

In [START_REF] Sankaranarayanan | Distributed sensing and processing for multi-camera networks[END_REF], several major challenges in distributed video processing, including robust and computationally efficient inference, opportunistic and parsimonious sensing were discussed. Large-scale video networks starts to play an important rule for video surveillance, object recognition, abnormal event detection and people tracking in crowded environments.

Modeling the movement feature of pixels is fundamental for detecting the abnormal event. In [START_REF] Cui | Abnormal detection using interaction energy potentials[END_REF], a method that tracked the local spatio-temporal interest points was proposed, and the abnormal activity was indicated by uncommon energy-velocity of the feature points. In [START_REF] Wang | Evaluation of local spatio-temporal features for action recognition[END_REF], a spatio-temporal descriptor was computed based on computing the histograms of optical flow in the neighborhood of detected points. In [START_REF] Wang | Action recognition by dense trajectories[END_REF], dense points were sampled from each frame and were tracked based on displacement information from an optical flow field. But for the crowd event analysis, it is difficult to obtain the pre-detected pixels of the blob due to the occlusion of the individuals.

In order to deal with the uncertainty of observations existing in video events, Bayesian modeling approaches such as hierarchical Dirichlet processes were used in [START_REF] Haines | Delta-dual hierarchical dirichlet processes: A pragmatic abnormal behaviour detector[END_REF], probabilistic latent semantic analysis was used in [9]. A method based on the variable-duration hidden Markov model was proposed in [10], where the durations of states were modeled except for the transitions between states, and the temporal understanding of the structure of complex events was tackled. Latent Dirichlet allocation (LDA) was also a typical standard topic model which has been used to model video clips as being derived from a bag of topics drawn from a fixed set of proportions [11]. In [12], the covariance matrix descriptor fusing the optical flow to encode moving information of a frame was presented. These work focused on the single view scene video analyzing, the feature abstraction method or the event models were heavily researched in the abnormal detection problem. Moreover, the abnormal event detection problems in distributed camera networks have a considerable room.

The rest of the paper is organized as follows. In Section 2, the optical flow-based feature is presented. In Section 3, the abnormal detection framework based on one-class SVM classification method is presented, and then, a multi-kernel strategy is proposed to deal with abnormal event detection problem for distributed camera networks. In Section 4, the experimental results are illustrated and discussed. Finally, Section 5 concludes the paper and gives a perspective of future work.

II. FEATURE SELECTION FOR ABNORMAL DETECTION

Horn-Schunck (HS) [START_REF] Horn | Determining optical flow[END_REF] is chosen to compute the optical flow which represents the movement information. The HS method formulates the optical flow as a global energy functional for the gray image sequence:

E = [(I x u + I y v + I t ) 2 + α( ∇u 2 + ∇v 2 )]dxdy (1) 
where I x , I y and I t are the derivatives of the image intensity values along the horizontal direction x, vertical direction y and time t dimension, respectively. u, v are the horizontal and vertical optical flow. α is a regularization constant.

Based on the optical flow, the histogram of the optical flow orientation (HOFO) [START_REF] Wang | Detection of abnormal visual events via global optical flow orientation histogram[END_REF] is computed to fuse the movement as a 

III. ONE-CLASS SVM WITH MULTIPLE KERNELS

The problem of non-linear one-class SVM [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], [START_REF] Canu | Svm and kernel methods matlab toolbox[END_REF] can be cast as a quadratic programming problem:

min ω,ξ,ρ 1 2 w 2 + 1 νn n i=1 ξ i -ρ, subject to w, Φ(x i ) ≥ ρ -ξ i , ξ i ≥ 0. (2) 
where x i ∈ X with i = 1 . . . n are n training samples in the original data space X . ξ i is the slack variable for penalizing the outliers. The hyperparameter ν ∈ (0, 1] is the weight for controlled slack variable, it tunes the number of acceptable outliers.

w, Φ(x i ) -b = 0 is the decision hyperplane. Φ is defined for building the non-linear classification problems, and it is a map from the set of the original input data X to a feature space H where the classification problem has a linear solution. The inner product in space H is defined by the kernel function κ(x i , x j ) = Φ(x i ) • Φ(x j ) . Introducing the Lagrangian multipliers α i , the decision function in the data space X is:

f (x) = sgn( n i=1 α i κ(x i , x) -ρ), (3) 
where x is a vector in the input data space X , κ is the kernel function implicitly mapping the data into a high dimensional feature space where a linear classifier can be designed.

The Gaussian kernel is chosen to handle movement feature in this work. It is a semi-positive definite kernel that satisfies the Mercer condition [START_REF] Vapnik | The nature of statistical learning theory[END_REF], [START_REF] Vapnik | Statistical learning theory[END_REF], and defined by

κ(x i , x j ) = exp - x i -x j 2 2σ 2 , (x i , x j ) ∈ X × X , (4) 
where x i , x j are the data in the original data space X , the variance σ indicates the scale factor at which the data should be clustered.

For constructing a more representative and discriminative feature descriptor for the distributed camera network, we take the scene captured by each view as a partial feature. The multi-kernel strategy considers the linear combination of candidates kernels:

κ(x i , x j ) = m s=1 µ s κ s (x i , x j ). (5) 
where κ s , s = 1, • • • , m are m candidate kernels that satisfy the Mercer condition, and µ s are nonnegative factors. Consequently, their combination κ is also a semi-positive definite kernel. In this expression, the Gaussian kernel is adopted with:

κ s (x i , x j ) = exp - x i [s] -x j [s] 2 2σ 2 . ( 6 
)
The kernels κ s , s = 1, • • • , m are the Gaussian kernels in this paper. Each sample vector

x consists of m parts [x 1 , x 2 , . . . , x m ].
For a given scene monitored by multi-camera, supposing that a set of training frames are obtained, based on the one-class SVM hypothesis, the abnormal behavior is the sample deviating from the training set. For example, a plaza is monitored by 3 cameras as show in Fig. 2. If s = 1, the frame captured by camera 1 is selected. We preset the weight µ s according to the characteristics of the image to tune the importance of each view. By considering this combination, the resulting kernel outperform each kernel κ s used individually. Based on the histogram of the optical flow orientation feature descriptor and the nonlinear one-class SVM, the abnormal event detection method is summarized in Algorithm 1, and explained as following.

Algorithm 1 Abnormal event detection algorithm.

Require:

Image set captured by the cameras.

1: Computing the optical flow of the training frame set

[I v i 1 , . . . , I v i m ],
where vi means the scene is monitored by camera i via the HS optical flow method:

[I v i 1 , . . . , I v i m ] -→ [O v i 1 , O v i 2 , . . . , O v i m ]
2: Computing the histogram of the optical flow orientation (HOFO) of the image in different views:

[O v i 1 , O v i 2 , . . . , O v i m ] -→ [H v i 1 , . . . , H v i m ] 3:
The feature sample of the image k under c distributed camera network is:

H k = [H v 1 k , H v 2 k , . . . , H vc k ] 4:
Training feature sample are learned by the nonlinear one-class SVM method to obtain the support vectors:

[H1, . . . , Hm] -→ support vector [S v i 1 , . . . , S v i m 1 ]
5: Each incoming frame Hp,...,q is classified by the decision function of one-class SVM.

6: The normal event or abnormal event is detected.

Step 1: The optical flow features are computed. The training frame set [I vi 1 , . . . , I vi m ] monitored by multi-camera network describing the normal behavior is available. I vi j means that the j-th image is captured by the i-th camera. The Horn-Schunck method is applied to acquire the optical flow feature. This step can be presented as:

[I vi 1 , . . . , I vi m ] -→ [O vi 1 , O vi 2 , . . . , O vi m ]
where Step 3: Fusing the 1-st to c-th HOFO feature to one high dimension feature vector. It is described in the equation below:

H k = [H v1 k , H v2 k , . . . , H vc k ]
where H k is the feature vector fusing the multi-view movement information. H v1 k is the HOFO feature of the k-th image in view i.

Step 4: Nonlinear one-class SVM is applied on the training frame HOFO descriptor in multi-view to obtain the support vector. It is described as the following:

[H 1 , . . . , H m ] -→ support vector [S 1 , . . . , S m1 ]
where Step 5: In the online detection phase, based on the support vectors obtained in the taring step, the one-class SVM classifies each incoming frame feature [H p , . . . , H q ]. Thus, the normal or abnormal event of the frame is classified, thus the abnormal event is detected.

IV. ABNORMAL EVENTS DETECTION RESULTS

We then conduct experiments to evaluate the performance of the one-class SVM classification method for abnormal frame event detection with a distributed camera network. The PETS [START_REF] Pets | Performance evaluation of tracking and surveillance (pets) 2009 benchmark data. multisensor sequences containing different crowd activities[END_REF] dataset is used for the evaluation purpose. In the experiments of PETS [START_REF] Pets | Performance evaluation of tracking and surveillance (pets) 2009 benchmark data. multisensor sequences containing different crowd activities[END_REF] dataset, each event is represented by 3 separately scenes, thus, the event is described by 3 separated HOFO features which is marked as "3 HOFO". Otherwise, we mark the feature as "1 HOFO". If the multi-kernel strategy is used, we mark it as "3 kernels", otherwise, we mark the kernel strategy as "1 kernel". The detection accuracy of the detection results are shown for the experiments.

The normal and abnormal event of sequence Time 14-17 in the PETS dataset are shown in Fig. 4. The training samples and the normal samples for testing are the frames in 3 views chosen from the sequence (Time 14-55) where the people are walking in different directions. 400 training frames (Frame0000 to Frame0399), and 90 normal testing frames (Frame0400 to Frame0489) are selected from Time14-55. The abnormal testing samples are selected from the sequence (Time 14-17) where the people are walking or running in the same direction. 89 abnormal testing frames (Frame0000 to Frame0089) are selected from Time14-17.

The AUC (area under the curve) value of the abnormal detection results in different views and different multi-kernel strategies are shown in TABLE ??. "Single View" means "1 HOFO 1 kernel" strategy, and "Multi-view" means "3 HOFO 3 kernels".

"View 1" means the scene is monitored by camera 1, the abnormal detection results are shown in Figs. View 2 has the lowest area under the ROC (receiver operating characteristic curve), since as previously mentioned, the camera 2 faces the movement direction of the crowd, the occlusion influences the computation of the optical flow. Thus the HOFO feature based on the optical flow cannot represent the accurate movement information. The results show that the abnormal detection algorithm of HOFO feature can obtain satisfactory detection results. Moreover, the multi-kernel strategy can generally improve the performance. The parameters of the multi-kernel influence the performance. Thus, the optimal parameters should be sought.

The experiment detecting the running activity as the abnormal event is shown in Fig. 6 and Fig. In the future work, the optimal coefficients of the multi-kernel strategy should be obtained automatically based on the scene, while these parameters were pre-set in current work. Additional datasets will be considered to show the advantages of distributed camera networks, such as single person action recognition or action tracking in multi-view scenes, etc.

detect:walk 

  . Several normal and abnormal scenes from different angles of view are shown in Fig. 2. In Figs. 2(a)(c)(e), all people are walking in different directions, which are considered as normal. In Figs. 2(b)(d)(f), people are walking or running towards the same

Fig. 1 :

 1 Fig. 1: The plan of the multi-camera localizations in the PETS dataset. Three cameras are set in the campus.

Fig. 2 :

 2 Fig. 2: Examples of the normal and abnormal scenes captured by distributed cameras of PETS dataset. (a)(c)(e): The people are walking in different directions, the normal scenes of Time 14-55 sequence; (b)(d)(f): The people are walking in the same direction, the abnormal scenes of Time 14-17 sequence; (a)(b): scenes captured by camera 1; (c)(d): scenes captured by camera 2; (e)(f): scenes captured by camera 3.

  high dimension vector. A 2 × 2 rectangular cell HOFO descriptor of the image is shown in Fig. 3. The orientation is computed by horizontal and vertical optical flow, and then it is voted into n bins. Each cell contains h c pixels in height dimension, and w c in width dimension. A block contains h b × w b cells, it is set as 2 × 2 in this paper.

Fig. 3 :

 3 Fig. 3: Histogram of the optical flow orientation (HOFO) feature descriptor of the image.

  [H 1 , . . . , H m ] are the histogram of optical flow orientation descriptors of the training frames under multi-view environment. [S 1 , . . . , S m1 ] are support vectors that are the minority of the training vectors contribute to the decision function.

Fig. 4 :

 4 Fig. 4: Detection results of the normal and abnormal scenes of Time 14-17 captured by distributed camera network. (a)(c)(e): The detection result of one normal frame. (b)(d)(f): The detection result of one abnormal frame.
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Fig. 5 :

 5 Fig. 5: ROC curve of abnormal detection result of sequence Time 14-17 under different views or different kernel strategies.

Fig. 6 :Fig. 7 :

 67 Fig. 6: Detection results of the normal and abnormal scenes of Time 14-16 captured by thedistributed camera network, the individuals are moving from right to left. (a)(c)(e): The detection result of one normal frame, the individuals are walking in one direction. (b)(d)(f): The detection result of one abnormal frame, the individuals are running in one direction.

TABLE I :

 I The abnormal detection results of sequence Time 14-17. The comparison of the abnormal frame event detection results in single view scene and in distributed camera scenes via multi-kernel strategies. in PETS dataset where the individuals are walking in one direction. In this experiment, 61 frames (Frame0000 to Frame0060) where people are walking from left to right in sequence Time14-17, and 50 frames (Frame0000 to Frame0049) where the individuals are walking from right to left in sequence Time14-31. Corresponding, 104 normal samples and 118 abnormal frames in sequence Time 14-16 are detected. The abnormal detection performance is improved by multi-kernel strategy also. For example, the AUC values of the the sequence where the individuals are moving from left to right are shown

	Strategy	Area under ROC
		View 1 View 2	View 3
	Single View	0.9036	0.7807	0.9270
	Multi-view(1)		0.9441	
	Multi-view(2)		0.9643	
	Time14-31)			

in TABLE ??.

TABLE II :

 II The abnormal detection results of sequence Time 14-16. The comparison of the abnormal frame event detection results in single view scene and in distributed camera scenes via multi-kernel strategies. abnormal frame event detection with distributed camera networks is proposed in this paper. The histogram of optical flow is computed as the descriptor to represent the movement of a frame. A multi-kernel strategy is presented to benefit the characteristics of distributed camera network, and the performance of the abnormal detection results via nonlinear one-class SVM is improved. The benchmark dataset PETS has been tested to demonstrate the effectiveness of the proposed algorithm.

	Strategy	Area under ROC
		View 1 View 2	View 3
	Single View	0.8637	0.8071	0.9205
	Multi-view(1)		0.9312	
	Multi-view(2)		0.9403	
	V. CONCLUSIONS	
	A method for			
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