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SUMMARY

Nonlinear adaptive filtering has been extensively studied in the literature, using for example Volterra

filters or Neural Networks. Recently, kernel methods have been offering an interesting alternative since

they provide a simple extension of linear algorithms to the nonlinear case. The main drawback of online

system identification with kernel methods is that the filter complexity increases with time, a limitation

resulting from the representer theorem which states that all past input vectors are required. To overcome

this drawback, a particular subset of these input vectors (called dictionary) must be selected to ensure

complexity control and good performance. Up to now, all authors considered that, after being introduced

into the dictionary, elements stay unchanged even if, due to nonstationarity, they become useless to predict

the system output. The objective of this paper is to present an adaptation scheme of dictionary elements,

which are considered here as adjustable model parameters, by deriving a gradient-based method under

collinearity constraints. The main interest is to ensure a better tracking performance. To evaluate our

approach, dictionary adaptation is introduced into three well known kernel-based adaptive algorithms:

Kernel Recursive Least Squares, Kernel Normalized Least Mean Squares and Kernel Affine Projection.

The performance is evaluated on nonlinear adaptive filtering of simulated and real data sets. As confirmed

by experiments, our dictionary adaptation scheme allows either complexity reduction or a decrease of the

instantaneous quadratic error, or both simultaneously.

Received . . .

KEY WORDS: Adaptive filters; machine learning; nonlinear systems; online system identification;

kernel methods.
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1. INTRODUCTION

Nonlinear system modeling and identification have been widely studied in the last decades

[1, 2], using for example Volterra filters [3–5] and neural networks [6]. More recently, function

approximation based on Reproducing Kernel Hilbert Spaces (RKHS) defined kernel-based

regression methods such as support vector regression [7–9]. Kernel-based regression generally

extends standard methods used in the linear case by replacing the computation of some inner

products by a Mercer kernel [10]. This provides an efficient way to implicitly map the data into

a high, even infinite, dimensional RKHS and apply the original algorithm in this space without

making direct reference to the nonlinear mapping of input vectors [11,12]. Kernel-based regression

requires the use of the Gram matrix composed of all the inner products (evaluated in the RKHS)

of the different input vectors. Accordingly, the size of the Gram matrix linearly increases with

time. Without introducing some rules to control the model complexity, this makes these methods

intractable for real time applications.

Various algorithms were proposed to overcome this difficulty. The basic idea consists in

introducing a new input sample to the model if it contributes in reducing the resulting approximation

error and of removing the less relevant element, if necessary. A sparsification rule based on

orthogonal projection was proposed in [13–16]. The computational burden of this method is its

main drawback. Another method considering the linear dependence criterion is detailed in [17,18].

The coherence criterion, introduced in [19, 20], has been used to control the number of kernel

functions introduced in the dictionary† so as to limit the model complexity and the size of the Gram

matrix. When using the coherence criterion, inclusion of a new input sample into the dictionary is

performed if this element cannot be approximated by a linear combination (in the RKHS) of the

actual elements of the dictionary. The main result in [20] is that the use of the coherence criterion

induces a finite size of the dictionary when time goes to infinity.

However, for all previous approaches, each element introduced into the dictionary remains

permanently unchanged, even if the non stationarity makes it later useless for estimating the

solution. Therefore, in this paper we also consider the dictionary elements as adjustable model

parameters in order to minimize the instantaneous output quadratic error. The main contribution

of this paper is to perform dictionary adaptation. We propose an adaptation scheme based on a

∗Correspondence to: Institut Charles Delaunay (CNRS), Université de technologie de Troyes, 10010 Troyes, France.

E-mail: paul.honeine@utt.fr
†The term dictionary stands for a selected set of inputs (or their corresponding kernel functions in the RKHS) used to

estimate the nonlinear model.
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stochastic gradient algorithm. Our algorithm fulfills the constraints resulting from the coherence

criterion. We also show that there is no universal dictionary adaptation algorithm, in the sense

that each kernel function requires a specific study. We consider here the widely used gaussian,

exponential and polynomial kernels and, depending on the used kernel function, we propose specific

heuristics for selecting, at each iteration, the dictionary element(s) to be adapted.

In order to demonstrate the effectiveness of our method, we compare the performance obtained

with and without dictionary adaptation on the following adaptive filtering algorithms: Kernel Affine

Projection Algorithm (KAPA), Kernel Normalized Least Mean Squares (KNLMS), and Kernel

Recursive Least Squares (KRLS). We analyze the performance obtained in terms of reduction of

the approximation error and/or reduction of the size of the dictionary on several simulated and real

data sets.

The paper is organized as follows. In section II, we propose a brief review of nonlinear system

modeling methods that make the use of complexity control techniques. Investigations to adapt the

elements of a dictionary using polynomial kernel functions and unit-norm kernel functions with

radial basis functions are explored in section III. Section IV gives a brief review of the kernel-based

adaptive algorithms used in our experiments (i.e., KAPA, KNLMS, and KRLS). The results obtained

on synthetic and real data sets are presented in section V. Finally, our conclusion is presented in

section VI.

2. A PRIMER ON KERNEL METHODS AND MODEL REDUCTION

Consider a nonlinear online prediction problem and let un ∈ U ⊂ R
ℓ be the input data vector and

dn ∈ R the corresponding desired output of the model at time step n. Mapping the input data un

into a high-dimensional space using some nonlinear function ϕ(·) allows the use of linear modeling

techniques to the transformed data ϕ(un).

2.1. Reproducing kernel Hilbert space and nonlinear regression

Considering a Hilbert space of real-valued functions ψ(·) denoted H, a compact U ⊂ R
ℓ, and let

〈·, ·〉H be the inner product in H. According to Riesz’s representation theorem in [11], there exists

a unique positive definite kernel denoted by κ(·,uj) called representer of evaluation at uj , which

satisfies:

ψ(uj) = 〈ψ(·), κ(·,uj)〉H, ∀ψ ∈ H,

3



4 CHAFIC SAIDE ET AL.

for every fixed uj ∈ U . Replacing ψ(·) by κ(·,ui), yields

κ(ui,uj) = 〈κ(·,ui), κ(·,uj)〉H,

for all ui,uj ∈ U . If κ(·, ·) is a Mercer kernel [21], there exists a function ϕ(·) so that κ(ui,uj) =

〈ϕ(ui), ϕ(uj)〉H. The kernel then evaluates the inner product of any pair of elements of U mapped

into H without the explicit knowledge of ϕ(·) or H. This is known as the kernel trick.

Let κ(·, ·) : U × U → R be a kernel and H the RKHS associated with κ(·, ·). Using the kernel

trick, linear algorithms expressed in term of inner products are easily transformed into nonlinear

ones. The least-squares algorithm consists of determining a function ψ∗(·) of H that minimizes a

cost function i.e., the sum of the squared error between the actual response of the system (desired

output) dj and the corresponding output of the model ψ(uj) = 〈ψ(·), κ(·,uj)〉H, i.e., ψ∗(·) is the

solution of the regularized risk functional

min
ψ∈H

n
∑

j=1

|dj − ψ(uj)|2 + ξ g(‖ψ‖2), (1)

where ‖ · ‖ is the norm in the RKHS, ξ g(‖ψ‖2) is a regularization term (ξ ≥ 0) and g(·) is a strictly

monotonic function on R
+. According to the representer theorem [22–24], the optimum model ψ∗(·)

can be written

ψ∗(·) ≡ ψn(·) =
n
∑

j=1

αjκ(·,uj). (2)

The minimization of the risk functional (1) leads to an optimization problem with n variables which

are the coefficients of the model {αj}j=1···n.

2.2. A model reduction method using the coherence criterion

The main problem with online identification methods is the increasing number of observations with

time so that adaptation of the model (2) for every new observation becomes more and more complex.

The sparsification is the process of selecting the most relevant kernel functions among the past

observations and use them to predict the model. The selected kernel functions form the dictionary

and the number of these functions denotes its order m. Many sparsification measures have been

used to characterize a dictionary in linear sparse approximation techniques [18, 25–27]. It was also

introduced by Mallat and Zhang for matching pursuit [28]. In [20], Richard, Bermudez and Honeine

proposed to define the coherence parameter as

µ = max
i6=j

|〈κ(·,ui), κ(·,uj)〉H| = max
i6=j

|κ(ui,uj)|,

where κ is a unit-norm kernel. If κ is not a unit-norm kernel, κ(ui,uj) can be replaced by

κ(ui,uj)/
√

κ(ui,ui)κ(uj ,uj). The parameter µ is the largest absolute value of the off-diagonal

4
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entries in the Gram matrix and it reflects the largest cross-correlations in the dictionary. Therefore,

coherence equals zero for every orthogonal basis.

This measure of linear dependence in H is used to decide if, at each time step n, a candidate kernel

function κ(·,un) must be introduced into the dictionary or not. If this candidate kernel function can

be represented by a linear combination of the kernel functions of the dictionary it is dropped, else

it is included into the dictionary and the order m is incremented (m = m+ 1). Introduction of the

candidate function κ(·,un) into the dictionary is decided when coherence remains smaller than a

threshold µ0,

max
wj∈Jn−1

|κ(un,uwj
)| ≤ µ0, (3)

where µ0 is a parameter ∈ [0, 1[ determining the level of sparsity and the coherence of the dictionary,

Jn−1 denotes a subset of size m of {1, · · · , n− 1} and Dn−1 = {κ(·,uwj
)}mj=1 is the dictionary at

time step n− 1. A dictionary fulfilling (3) is said µ0-coherent‡. At time step n, if κ(·,un) satisfies

the condition (3) it will be introduced into the dictionary which becomes Dn = Dn−1 ∪ {κ(·,un)}

The key point in the use of the coherence criterion is, as shown in [20], that the size of the

dictionary remains finite with time n so the obtained model becomes of fixed-size. It can be written

ψn(·) =
m
∑

j=1

αn,j κ(·,uwj
), (4)

where m ≡ m(n) converges to some finite value as n→ ∞ for any value of µ0 < 1 and αn =

[αn,1, · · · , αn,m]t is the optimal solution vector at time step n.

3. DICTIONARY ADAPTATION

In all previous approaches using sparsification criterion to select dictionary elements, a kernel

function κ(·,uwi
) once introduced into the dictionary, remains unchanged even if it becomes useless

in evaluating the model output. This is due to possible non-stationarity. In our method, the dictionary

is adapted at each time step in order to minimize the instantaneous quadratic output error. In our

approach, the {uwj
}mj=1 become variables to be optimized, as well as {αn,j}mj=1. The main constraint

is that the dictionary must remain µ0-coherent after adaptation.

Let Dn = {κ(·,uwi
)}mi=1 be a µ0-coherent dictionary at time step n and let m denotes its

cardinality. Our objective is to adjust the elements of the dictionary Dn to obtain DA
n using an

adaptive method. We use an alternate directions optimization scheme thus, in a first step, the optimal

value of the solution vector αn = [αn,1, · · · , αn,m]t is found using an online adaptive algorithm.

‡A dictionary is µ0-coherent if all its kernel functions verify the following condition: maxi6=j |κ(uwi ,uwj )| ≤ µ0.
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un U → H
κ(·, uwj

)

j = 1 · · ·m

α

optimum

Learning

Algorithm

ψn(·)

dn

−
+

en

en Dictionary

Adaptation

κ(·, uA
wj

)

j = 1 · · ·m
ψA
n (·)

eAn
−

+

Figure 1. Global adaptation algorithm.

Second, the dictionary is adapted with the objective of reducing the instantaneous quadratic output

error e2n and in such a way that the new dictionary still fulfills the coherence criterion, as follows:

min
uwi

∈Jn

e2n, (5)

subject to the constraint

max
i6=j,i,j∈Jn

|κ(uwi
,uwj

)| ≤ µ0,

where en = dn − ψn(un) = dn −
∑m

i=1 αn,i κ(un,uwi
). Here, dn represents the desired output of

the model.

The global adaptation algorithm is represented in Figure 1. The i-th element of the dictionary uwi

is updated according to:

uAwi
= uwi

− νngwi
∀i = 1 · · ·m, (6)

where uAwi
is the i-th dictionary element after adaptation, gwi

is the gradient of the instantaneous

quadratic error with respect to uwi
, and νn represents the gradient step size used to adjust the

elements of the dictionary. Obviously, the gradient step size must be selected so as the new

dictionary remains in the feasible domain.

• By construction of our algorithm, the coherence criterion is satisfied at each time step n before

adaptation

max
i6=j

|κ(uwi
,uwj

)| ≤ µ0, ∀i, j = 1 · · ·m, (7)

and this must remain true after adaptation, so we must have

max
i6=j

|κ(uAwi
,uAwj

)| ≤ µ0. ∀i, j = 1 · · ·m. (8)

• Using (5), the gradient with respect to uwi
is:

gwi
= ∇uwi

(e2n) = 2 en∇uwi

(

dn −
m
∑

i=1

αn,i κ(un,uwi
)
)

= −2 en αn,i∇uwi

(

κ(un,uwi
)
)

.

(9)

From the expression of the gradient gwi
(9), it is obvious that the choice of the kernel function

to be used has a major influence in the adaptation process. In this paper, we explore the radial

basis kernel, which belongs to the class of translation-invariant kernels, and the polynomial

kernel.

6
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3.1. Case of the radial basis kernel

Most of translation-invariant kernels, mainly the gaussian and the exponential kernel functions, can

be expressed in the form:

κ(ui,uj) = f(‖ui − uj‖2), (10)

where f ∈ C∞. A sufficient condition for this function to be a valid positive-definite kernel is the

complete monotonicity of the function f , i.e.,

(−1)kf (k)(r) ≥ 0, ∀r ≥ 0, (11)

where f (k)(·) denotes the k-th derivative of f(·) [29]. From (10), we get

∇uj
κ(ui,uj) = −2(ui − uj) f

(1)(‖ui − uj‖2). (12)

Note that, in the case of a radial basis kernel, the condition in (7) for any two elements of a µ0-

coherent dictionary is expressed as follows:

f(‖uwi
− uwj

‖2) ≤ µ0. (13)

3.1.1. Gradient and coherence condition for the gaussian kernel

The kernel function for the i-th element of the dictionary is:

κ(·,uwi
) = exp

(

−‖ · −uwi
‖2

2σ2

)

,

where σ is the bandwidth of the kernel. Taking the derivative of this kernel w.r.t. uwi
, the gradient

of the instantaneous quadratic error defined in (9) and (12) yields

gwi
= −2

en αn,i
σ2

κ(un,uwi
) (un − uwi

).

the coherence condition for the gaussian kernel, according to expressions (7) and (8) is:

‖uAwi
− uAwj

‖2 ≥ −2 σ2 ln(µ0),

with −2 σ2 ln(µ0) ≥ 0 because µ0 ∈ [0, 1[.

3.1.2. Gradient and coherence condition for an exponential kernel

The kernel function for the i-th element of the dictionary is:

κ(·,uwi
) = exp

(

−‖ · −uwi
‖

2σ2

)

,

where σ is the bandwidth of the kernel function. The gradient of the instantaneous quadratic error

with respect to uwi
at time step n is:

gwi
= − en αn,i

σ2 ‖un − uwi
‖ κ(un,uwi

) (un − uwi
).

7
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Obviously, from the above expression, ‖un − uwi
‖ must be non zero, meaning that when

introducing un in the dictionary, the newly introduced element cannot be adjusted.

The coherence condition for an exponential kernel, according to equations (7) and (8) is:

‖uAwi
− uAwj

‖2 ≥
(

−2σ2 ln(µ0)
)2
.

3.1.3. Finding a feasible gradient step size in the case of a radial basis kernel

The main issue is clearly to find an adequate gradient step size to simultaneously adjust all the

dictionary elements without violating the coherence criterion. For any pair of dictionary elements,

we obtain

uAwi
− uAwj

= δu − νnδg ∀i, j = 1 · · ·m,

where δu = uwi
− uwj

and δg = gwi
− gwj

. Because of the constraint induced by the coherence

criterion, νn cannot be chosen arbitrarily. The problem is now to determine an appropriate νn at

time step n in order to adapt the dictionary. The coherence condition (8) leads to

f(‖δu − νn δg‖2) ≤ µ0. (14)

It is possible to construct a local model of the kernel function, by approximating it with a Taylor

series around νn ∼ 0:

f(‖δu − νnδg‖2)= f(‖δu‖2)− 2νn(δu
tδg − νn‖δg‖2)f (1)(‖δu‖2) +O(νn).

Using this approximation, condition (14) becomes

−
(

2‖δg‖2ν2n − 2νnδu
tδg)f (1)(‖δu‖2

)

+ µ0 − f(‖δu‖2) ≥ 0

−2‖δg‖2f (1)
(

‖δu‖2
)

ν2n + 2δutδgf (1)(‖δu‖2
)

νn + µ0 − f(‖δu‖2) ≥ 0 (15)

It is very important to note that the first derivative of a radial basis function is always negative on

R
+, which means that the coefficient of the second degree term in νn is always positive, namely

−2‖δg‖2f (1)(‖δu‖2) > 0. Second, from (13) we have µ0 − f(‖δu‖2) ≥ 0 as the coherence criterion

is fulfilled at any time step.

The reduced discriminant of this quadratic expression in νn is:

∆ =
(

δutδg f (1)(‖δu‖2)
)2

+ 2‖δg‖2f (1)(‖δu‖2)(µ0 − f(‖δu‖2).

Let νijn be a valid gradient step size for adapting the two dictionary elements uwi
and uwj

(at time

step n). If ∆ < 0, there is no constraint on the value of the step size νijn. Otherwise, if ∆ ≥ 0, the

boundary points of (15) will be νi,j− and νi,j+ as follows:

νi,j± =
−δutδg f (1)(‖δu‖2)±

√
∆

−‖δg‖2f (1)(‖δu‖2) ,

8
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0

0

0

0

νi,j− νi,j+ ν0

νijn
= ν0

νi,j− νi,j+ν0

νijn
= ν0

νi,j− νi,j+ ν0

νijn
= νi,j−

νi,j− νi,j+ν0

νijn
= νi,j−

Figure 2. An illustration showing all the possibilities to select the gradient step size between any two

dictionary elements uwi and uwj in the case of a radial basis kernel. ν0 > 0 is a reference step size.

and the interval of possible values for νijn will be ]−∞, νi,j−] ∪ [νi,j+,+∞[, since the quadratic

expression in (15) must be positive:

νi,j− νi,j+

+
∣

∣

∣
−

∣

∣

∣
+

Figure 2 shows all the possibilities to select the gradient step size when adapting any two

dictionary elements uwi
and uwj

in the case of a radial basis kernel. Obviously, for each pair of

dictionary elements (uwi
,uwj

), νijn = 0 always belong to the feasible domain, since there is no

adaptation and the initial dictionary was µ0-coherent. This is also the reason for which we can

always use Taylor series around νn = 0. Finally because the coefficient of the second degree term

in νn and the constant term in (15) are positive, νi,j− and νi,j+ have the same sign.

Interpretation of the two bounds for νn is straightforward. When adjusting any two dictionary

elements, each one according to its own gradient of the quadratic error, the interval ]νi,j−, νi,j+[

must be eliminated to avoid any overlap of the influence regions of the two considered elements,

and thus violation of the coherence constraint (8); see Figure 3.

9
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νi,j+

νi,j− uAwi

uAwi

uwi

uAwj

−gwi

Figure 3. A 2D illustration showing the constraint of choosing νijn ≤ νi,j− or νijn ≥ νi,j+ to avoid the

overlap of the influence regions of uAwi
and uAwj

.

We initially select a reference step size ν0 > 0, similarly as for all adaptive algorithms with a

fixed step size. After calculating the m(m− 1)/2 intervals [νi,j−, νi,j+], the single adaptation step

νn used for all dictionary elements is selected as illustrated in Figure 2:

• if max
i,j

νi,j+ ≤ 0 ⇒ νn = ν0;

• if 0 ≤ min
i,j

νi,j− ≤ ν0 ⇒ νn = min
i,j

νi,j−;

• if 0 ≤ ν0 ≤ min
i,j

νi,j− ⇒ νn = ν0;

• if 0 ≤ min
i,j

(νi,j−)
+ ≤ ν0 ⇒ νn = min

i,j
(νi,j−)

+;

• if 0 ≤ ν0 ≤ min
i,j

(νi,j−)
+ ⇒ νn = ν0.

In these expressions, (νi,j−)
+ indicates the positive part of νi,j−. Note that ν0 must be selected

relatively small. If ν0 is too large, the elements of the dictionary can be spread over a non useful

region of the input space, inducing an increase of the size of the dictionary without reducing the

approximation error. Other heuristics for dictionary adaptation could be considered, but our main

objective is only to illustrate the potential efficiency of dictionary adaptation.

3.2. Case of a Polynomial Kernel

3.2.1. Gradient and coherence criterion

The polynomial kernel function is of the form:

k(ui,uj) = f(utiuj) = (1 + utiuj)
β , (16)

10



KERNEL ADAPTIVE FILTERING WITH DICTIONARY ADAPTATION 11

with β > 0. This kernel function is not unit-norm, hence, because of the use of the coherence

criterion, we need to normalize it to become a unit-norm kernel [20]. This is achieved by substituting

k(ui,uj) with:

k(ui,uj)
√

k(ui,ui)
√

k(uj ,uj)
.

Therefore, equation (5) becomes:

en = dn −
m
∑

i=1

αn,i
k(un,uwi

)
√

k(un,un)
√

k(uwi
,uwi

)
. (17)

The gradient gwi
of the instantaneous quadratic error with respect to uwi

is:

gwi
= −2 β en αn,i

k(un,uwi
)

√

k(un,un)
√

k(uwi
,uwi

)

(

un

k∗(un,uwi
)
− 1

2

uwi

k∗(uwi
,uwi

)

)

, (18)

where k∗(ui,uj) = (1 + utiuj).

The coherence criterion (7), when applied to the polynomial kernel, yields:

|(1 + utwi
uwj

)β |
√

(1 + utwi
uwi

)β
√

(1 + utwj
uwj

)β
≤ µ0, (19)

which can be written:

(1 + utwi
uwj

)2

(1 + ‖uwi
‖2) (1 + ‖uwj

‖2) ≤ (µ0)
2/β . (20)

Considering (20), it seems to be challenging to adjust simultaneously all the dictionary elements

while fulfilling the coherence criterion (3). This explains our choice of selecting, for the polynomial

kernel, only one element of the dictionary to be adapted at each time step. Heuristics for selecting

this element are presented in section 3.2.4.

3.2.2. Search for possible values of the gradient step size

We must now be sure that, after adaptation of the selected element, the new dictionary still fulfills

the coherence criterion. Let uwi
denote the dictionary element to be adapted. Introducing (6) in (20)

gives:
(

1 + (uAwi
)t uwj

)2

(1 + ‖uAwi
‖2) (1 + ‖uwj

‖2) ≤ (µ0)
2/β ∀j 6= i, j = 1 · · ·m. (21)

Since

(uAwi
)t uwj

= (uwi
− νngwi

)t uwj
= utwi

uwj
− νn utwj

gwi
,

and

‖uAwi
‖2 = ‖uwi

‖2 − 2νnutwi
gwi

+ ν2n ‖gwi
‖2,

inequality (21) becomes:

k∗
2

ij − 2 νn utwj
gwi

k∗ij + ν2n

(

utwj
gwi

)2

k∗jj
(

k∗ii − 2νnutwi
gwi

+ ν2n ‖gwi
‖2
) ≤ (µ0)

2/β , (22)

11



12 CHAFIC SAIDE ET AL.

where k∗ij = k∗(uwi
,uwj

) = (1 + utwi
uwj

). Setting D = k∗jj (µ0)
2/β , (22) becomes:

(

(

utwj
gwi

)2

−D‖gwi
‖2
)

ν2n − 2
(

k∗iju
t
wj

gwi
−Dutwi

gwi

)

νn +
(

k∗
2

ij −Dk∗ii

)

≤ 0, (23)

which is of the form:

Aν2n + 2B νn + C ≥ 0, (24)

with

A = D‖gwi
‖2 −

(

utwj
gwi

)2

,

B = k∗iju
t
wj

gwi
−Dutwi

gwi
,

C = Dk∗ii − k∗
2

ij .

Here,C is always positive for a coherent dictionary, this results from the fulfillment of the coherence

criterion:

kij
√

kii kjj
≤ µ0 ⇒

k∗
2

ij

k∗iik
∗
jj

≤ (µ0)
2/β .

The reduced discriminant is:

∆ = B2 −AC =
(

k∗iju
t
wj

gwi
−Dutwi

gwi

)2

−
(

D‖gwi
‖2 − (utwj

gwi
)2
) (

Dk∗ii − k∗
2

ij

)

.

As can be seen from (24), selecting a valid value of νn depends on the sign of A. The following

analysis, based on the study of the positiveness of a second degree polynomial, considers all possible

cases.

• Case of A < 0. In this case ∆ ≥ 0

– if ∆ > 0 then the polynomial defined in (23) has two roots with opposite signs:

νi,j± =
−
(

k∗iju
t
wj

gwi
−Dutwi

gwi

)

±
√
∆

D‖gwi
‖2 −

(

utwj
gwi

)2 ,

with:

νi,j− νi,j+

−
∣

∣

∣
+

∣

∣

∣
−

νn ∈ [νi,j−, νi,j+] with νi,j− ≤ 0 ≤ νi,j+, because νn = 0 is always possible since the

dictionary is not adapted in this case.

– if ∆ = 0, then B2 = AC and since A < 0 and C ≥ 0, this implies that B = 0 and

νi,j− = νi,j+ = −B
A = 0.

• Case of A > 0. In this case, three possibilities must be considered:

12
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– if ∆ > 0, the two roots have the same sign since C
A ≥ 0, with:

νi,j− νi,j+

+
∣

∣

∣
−

∣

∣

∣
+

and νn ∈ ]−∞, νi,j−] ∪ [νi,j+,+∞[. Of course νn = 0 lies in the interval of possible

values.

– if ∆ < 0 the polynomial does not have roots but is always positive, meaning that there

is no constraint for selecting νn ∈ ]−∞,+∞[.

– if ∆ = 0, the polynomial is positive or null and there is no constraint for selecting νn.

• Case of A = 0. The unique solution is νi,j =
−C
2B

– if B > 0, this means that νn ∈ ]νi,j ,+∞ [.

– if B ≤ 0, then −C
2B ≥ 0 and νn ∈ ] −∞, νi,j [.

3.2.3. Selection of the gradient step size

After selecting the element uwi
to adapt, the calculation is made to satisfy the (m− 1) constraints

with the other dictionary elements. We first select, as usual, a reference step size ν0 > 0. Second,

for j 6= i and j = 1 · · ·m, the value of νijn corresponding to the couple (uwi
,uwj

) is selected as

follows:

1. Case of A > 0 and ∆ > 0

• if νi,j− ≤ νi,j+ ≤ 0 ⇒ νijn = ν0

• if 0 ≤ νi,j− ≤ ν0 ≤ νi,j+ ⇒ νijn = νi,j−

• if 0 ≤ νi,j− ≤ νi,j+ ≤ ν0 ⇒ νijn = ν0 or νijn = νi,j−

• if 0 ≤ ν0 ≤ νi,j− ≤ νi,j+ ⇒ νijn = ν0 or νijn = νi,j−

2. Case of A > 0 and ∆ ≤ 0

• if such is the case, we select νijn = ν0

3. Case of A < 0 and ∆ > 0

in this case νi,j− ≤ 0 ≤ νi,j+

• if νi,j+ ≤ ν0 ⇒ νijn = νi,j+

• if ν0 ≤ νi,j+ ⇒ νijn = ν0 or νijn = νi,j+

4. Case of A < 0 and ∆ = 0

• we have νijn = 0

13



14 CHAFIC SAIDE ET AL.

5. Case of A = 0

• if −C
2B < 0 ⇒ νijn = ν0.

• if 0 ≤ −C
2B ≤ ν0 ⇒ νijn = −C

2B .

• if ν0 ≤ −C
2B ⇒ νijn = ν0.

When the (m− 1) values νijn are obtained, we select νn as νn = minj 6=i, j=1···m νijn .

3.2.4. Selection of the element to be adapted

Several approaches can be adopted to select the element that will be adapted. We only investigated

two methods. The first one chooses the element that corresponds to the smallest absolute value of

the components of the solution vector αn = [αn,1, · · · , αn,m]t. The second consists of calculating

the partial gradient of the quadratic error with respect to each element of the dictionary. Then we

select the one with the highest norm of the gradient. The advantage of the first heuristic is its

simplicity, while the second gives better results but requires more computations. Both methods

were implemented and are compared in the experimentation section.

4. A BRIEF REVIEW OF SOME ONLINE LEARNING ALGORITHMS

In this paper, and for reasons only related to the possibility to compare the performance obtained

with previously published results, we use the Kernel Recursive Least Squares algorithm (KRLS), the

Kernel Affine Projection Algorithm (KAPA), and the Kernel Normalized Least Squares algorithm

(KNLMS). These algorithms are used with and without dictionary adaptation. The output of the

model is:

ψn(·) =
m
∑

j=1

αn,j κ(·,uwj
). (25)

The optimal solution vector αn is found using one of the above mentioned online adaptive

algorithm.

4.1. Kernel Recursive Least Squares algorithm (KRLS)

In the Kernel Recursive Least Squares algorithm, the optimization problem (1) can be written as

follows [19]:

min
α

‖dn − Hnα‖2 + ξαtKnα, (26)

where Kn is the m×m Gram matrix of the dictionary at time n, ξ is a regularization coefficient,

and Hn is an (n×m) matrix with (i, j)-th element is κ(ui,uwj
). At time step n the solution of the

14
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problem (26) will be [19]:

αn = PnHt
ndn, (27)

provided that Pn = (HnHt
n + ξKn)

−1 exists. At time step n+1, there is a new input un+1 to the

model and one of the following cases can occur:

1. First case: maxj=1···m |κ(un+1,uwj
)| > µ0

The new input can be represented by the actual elements of the dictionary. It is not

introduced in the dictionary. The matrix Hn is updated by adding a (n+ 1)− th row

hn+1 = [κ(un+1,uw1
), · · · , κ(un+1,uwm

)]t and the new desired output dn+1 is added to the

output vector dn. Update of the model is performed as follows:

αn+1 = αn +
Pnhn+1

1 + h
t
n+1Pnhn+1

(

dn+1 − h
t
n+1αn

)

, (28)

and

Pn+1 = Pn − Pnhn+1h
t
n+1Pn

1 + h
t
n+1Pnhn+1

. (29)

2. Second case: maxj=1···m |κ(un+1,uwj
)| ≤ µ0

The new input cannot be represented by any actual element of the dictionary. Thus, it must be

introduced in the dictionary. The order of the dictionary becomes (m+ 1). First, the vector

αn and Pn are updated according to (28) and (29), leading to α̃n+1 and P̃n+1 respectively.

Second, in order to introduce a new coefficient in the model, the new αn+1 and Pn+1 are

given by:

αn+1 =







α̃n+1

0






+

dn+1 − h
t
n+1αn

1− h
t
n+1P̃n+1hn+1







P̃n+1hn+1

1/h0






, (30)

Pn+1 =







P̃n+1 0n

0tn 0






+

1

1− h
t
n+1P̃n+1hn+1

×







−P̃n+1hn+1

1/h0







[

− (P̃n+1hn+1)
t 1/h0

]

,

(31)

where h0 = κ(un+1,un+1).

4.2. Kernel Affine Projection Algorithm

The Kernel Affine Projection Algorithm, studied in the linear case in [30–32] and in the Kernelized

APA in [33, 34], results from the following optimization problem (while neglecting the regularized

term in (1)):

min
α

‖dn − Hnα‖2. (32)

The optimal solution αn of the problem (32) is:

αn = (Ht
n Hn)

−1Ht
n dn, (33)

15
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provided that (Ht
n Hn)

−1 exists and Hn is a n-by-m matrix whose (i, j)-th entry is κ(un−i+1,uwj
),

and the i-th element of the column vector dn is dn−i+1. At each time step n, the affine problem will

be:

min
α

‖α−αn−1‖2 subject to dn = Hnα, (34)

where, at each time step n, only the p most recent inputs {un, · · · ,un−p+1} and observations

{dn, · · · , dn−p+1} are used, so the i-th element of the column vector dn is dn−i+1, i = 1 · · · , p,

and Hn is the p×m matrix whose (i, j)-th entry is κ(un−i+1,uwj
). This means that αn is obtained

by projecting αn−1 onto the intersection of the p manifolds.

At time step n+ 1, a new input is fed to the model. One of the two following possibilities occurs:

1. First case: maxj=1···m |κ(un+1,uwj
)| > µ0

In this case, κ(·,un+1) is not introduced in the dictionary Dn and the solution vector αn+1 is

updated according to [20]:

αn+1 = αn + ηHt
n+1 (ǫ I + Hn+1Ht

n+1)
−1(dn+1 − Hn+1αn), (35)

where η is called the step-size control parameter and ǫ I is a regularization factor.

2. Second case: maxj=1···m |κ(un+1,uwj
)| ≤ µ0

In this case, κ(·,un+1) cannot be represented by the actual kernel functions of the dictionary

Dn and it is introduced as a new element and denoted κ(·,uwm+1
). The resolution of (34)

leads to the following recursive solution:

αn+1 =







αn

0






+ ηHt

n+1






ǫ I + Hn+1Ht

n+1)
−1(dn+1 − Hn+1







αn

0












. (36)

The set of recursions (35) and (36) are called the Kernel Affine Projection Algorithm (KAPA).

4.3. Kernel Normalized Least Mean Squares algorithm (KNLMS)

This algorithm is similar to the Kernel Affine Projection Algorithm with a number of manifolds p

equal to 1. In this case, the constraint appearing in problem (34) becomes dn = h
t
nαn where hn is

a column vector with i-th entry equal to κ(un,uwi
). Relations (35) and (36) become:

1. First case: maxj=1···m |κ(un+1,uwj
)| > µ0

αn+1 = αn +
η

ǫ + ||hn+1||2
(

dn+1 − h
t
n+1αn

)

hn+1. (37)

2. Second case: maxj=1···m |κ(un+1,uwj
)| ≤ µ0

αn+1 =







αn

0






+

η

ǫ+ ||hn+1||2






dn+1 − h

t
n+1







αn

0












hn+1, (38)

16
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with hn+1 = [κ(un+1,uw1
), · · · , κ(un+1,uwm+1

)]t.

5. EXPERIMENTATIONS

In this section, we illustrate the benefits of dictionary adaptation. To compare results, we choose ν0,

the reference step-size for dictionary adaptation, and µ0, the coherence parameter, in such a way

that the final mean quadratic errors are the same, with and without adaptation, and we compare the

final sizes of the dictionaries. Another possibility is to select ν0 and µ0 to get almost identical sizes

of the dictionaries so we can directly compare the residual quadratic error.

5.1. The Kernel Recursive Least Squares Algorithm (KRLS) performance

Our first experiment consists in predicting the Henon time series generated by:

dn = 1− γ1d
2
n−1 + γ2dn−2,

with d0 = −0.3, d1 = 0, γ1 = 1.4, and γ2 = 0.3. Modeling is performed with a model of the form

ψn(dn−1, dn−2) and makes the use of a series of 2000 samples. The gaussian kernel is used with

parameter σ = 0.35. To compare our results with the ones in [19], we use the same parameters

settings and a coherence criterion µ0 = 0.6. The adaptation step size is ν0 = 0.05. Modeling is

performed with and without dictionary adaptation (see Figure 4 and Figure 5).

With adaptation, the dictionary size decreases from 17 to 16 elements which corresponds to

a decrease of 5.88%. The instantaneous quadratic error is averaged over the last 500 samples.

Without adaptation, the mean of the quadratic error is 0.01036 versus 0.001628 with adaptation.

This corresponds to a decrease of 84.29% of this error.

5.2. Kernel Affine Projection Algorithm (KAPA)

We now present two other experiments using KAPA algorithm. The first consists in predicting the

logistic time series using gaussian and exponential kernels. The second is extracted from [20] and

makes the use of the polynomial kernel.

5.2.1. Radial basis kernels

In this experiment, the radial basis kernel is used with the Logistic Map which is a deterministic

chaotic non linear model of the form:

dn+1 = adn(1 − dn),

17
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Figure 4. Henon system modeling using KRLS with µ0 = 0.6 and ν0 = 0.05.

with initial conditions a = 4 and d0 = 0.2027. A zero mean white gaussian noise with standard

deviation 0.25 is added to the desired output. Here again the experiment is conducted with and

without dictionary adaptation. Note that in the case of radial basis kernels we adapt all the dictionary

element using the same gradient step size.

The coherence parameter is µ0 = 0.3. Results using the gaussian kernel with a bandwidth 0.418,

are shown in Figure 6. These results demonstrate that dictionary adaptation (using ν0 = 0.2) leads to

a strong reduction of the mean squared error which is 0.0016778 with adaptation versus 0.0060538

without adaptation. This corresponds to a reduction of 72.285% of the error, with the same final

dictionary size m = 2.

Results using an exponential kernel with a bandwidth 0.5, are shown in Figure 7. They indicate

that dictionary adaptation (ν0 = 0.01) leads to a mean squared error of 0.0099111 with a dictionary

size m = 2. Without adaptation, the mean squared error is 0.01601 with the same dictionary size

m = 2. This means that with the same dictionary size m = 2, the quadratic error is reduced with

38.09%.

18
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Figure 5. Quadratic error of Henon system modeling using KRLS with µ0 = 0.6 and ν0 = 0.05.
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Figure 6. Logistic Map: Quadratic Error - KAPA with gaussian kernel

5.2.2. Polynomial kernel

In this experiment,we use the same benchmark parameters setting as in [20]. It consists of a one

19



20 CHAFIC SAIDE ET AL.

0 500 1000 1500 2000 2500 3000

10
−2

10
−1

10
0

iteration

Q
ua

dr
at

ic
 e

rr
or

 

 
without adaptation
with adaptation

µ0= 0.3, ν0 = 0.01

m = 2.0, MSE=0.0099111

µ0= 0.3

m = 2.0, MSE=0.01601

Figure 7. Logistic Map: Quadratic Error - KAPA with exponential kernel

step prediction of the following discrete-time nonlinear dynamical system:










sn = 1.1 exp(−|sn−1|) + un

dn = s2n

where un and dn are the input and the desired output, respectively. The data were generated from

the initial condition s0 =0.5. The input was sampled from a zero-mean gaussian distribution with

standard deviation 0.25. The system output was corrupted by an additive zero-mean white gaussian

noise with standard deviation equal to 1. The model is of the form ψn(un, un−1).

The KAPA algorithm is used with the following parameters setting: number of manifolds p = 3,

step-size control parameter η = 0.01, regularization factor ǫ = 0.07. A set of 200 time series of 3000

samples each is used to compare KAPA and AKAPA [35] using the Normalized Mean Squared

Error (NMSE) which is computed over the last 500 samples according to:

NMSE = E











3000
∑

i=2501

(dn − ψn(un, un−1))
2

3000
∑

i=2501

d2n











.

The expected value is estimated over the 200 realizations of the time series.

We also compute the final size of the dictionary m averaged over the 200 realizations. The

dictionary adaptation is performed for the element giving the highest value of the norm of the

20
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Figure 8. KAPA: Mean Squared Error with and without adaptation - Polynomial kernel (β = 2)

Table I. KAPA Experimental Setup and Performance, with η = 0.01, and ǫ = 0.07 - Polynomial kernel

Third order polynomial kernel β = 2 Second order polynomial kernel β = 3

Adaptation of the element with Adaptation of the element with

the highest norm of the gradient the smallest value of |αn,i|

Adaptation Parameters Settings m NMSE Parameters Settings m NMSE

Without µ0=0.3 1.62 0.27649 µ0=0.3 2.315 0.21308

Without µ0=0.49 2.715 0.15338 µ0=0.3662 2.915 0.15078

With µ0=0.3, ν0=0.05 2.75 0.07523 µ0=0.3, ν0=0.05 2.91 0.12448

With µ0=0.15, ν0=0.0004 1.19 0.27825 µ0=0.15, ν0=0.00055 1.735 0.21577

gradient along with a polynomial kernel of degree β = 2 (see Figure 8). Also, the other strategy

to choose the element to adapt which is the one giving the smallest value of |αn,i| was test with a

polynomial kernel of degree β = 3 (see Figure 9).

Using Table I, the following observations can be extracted:
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Figure 9. KAPA: Mean Squared Error with and without adaptation - Polynomial kernel (β = 3)

• for the same average final dictionary size, the NMSE decreases of 50.95% if the adjusted

element is the one with the highest gradient norm (β = 2), and of 17.44% if the adjusted

element is the one with the the smallest value of |αn,i| (β = 2).

• for approximately the same NMSE, the average dictionary size has decreased of 26.54% if

the adjusted element is the one with the highest gradient norm (β = 2), and of 25.05% if the

adjusted element is the one with the the smallest value of |αn,i| (β = 2).

5.3. Kernel Normalized Least Mean Squares algorithm (KNLMS)

In this section we consider the same nonlinear benchmark as proposed in [14]. The desired system

output dn is given by:

dn = (0.8− 0.5e−d
2
n−1)dn−1 − (0.3− 0.9e−d

2
n−1)dn−2 + 0.1 sin(dn−1π).

The initial conditions are (0.1;0.1). The output is corrupted with an additive zero mean white noise

with standard deviation equal to 0.1. The model is of the form ψn(dn−1, dn−2).

The same parameters as in [20] are used, and 200 time series with 3000 samples each are

generated. The parameters used for comparison between different cases are the average final size

of the dictionary m and the Normalized Mean Squared Error (NMSE) calculated over the last 500

samples of each time series and averaged over the 200 realizations. Both exponential and gaussian
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Figure 10. KNLMS: Mean Squared Error with and without adaptation - gaussian kernel
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Figure 11. KNLMS: Mean Squared Error with and without adaptation - exponential kernel

kernels are used and the learning curves are shown in Figure 10 and Figure 11. Table II gives a

recapitulation for the obtained results and leads to the following observations:
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Table II. KNLMS Experimental Setup and Performance, with η = 0.09, and ǫ = 0.03

Gaussian kernel Exponential kernel

Adaptation Parameters Settings m NMSE Parameters Settings m NMSE

Without µ0=0.5 16.895 0.00628 µ0=0.3 9.495 0.019287

Without µ0=0.44 14.38 0.00845 µ0=0.31 10.255 0.012407

With µ0=0.5, ν0=0.1 14.36 0.0021 µ0=0.3, ν0=0.25 10.585 0.00324

With µ0=0.3, ν0=0.25 11.065 0.006262 µ0=0.2, ν0=0.012 6.5 0.01932

• When performing dictionary adaptation, and for the same average final size of the dictionary,

NMSE has decreased of 75.148% for the gaussian kernel and of 73.885% for the exponential

kernel.

• For the same final average NMSE, the average size of the dictionary has decreased of 34.50%

for the gaussian kernel and of 31.54% for the exponential kernel.

Note that for both kernels, algorithm converges faster when performing dictionary adaptation, which

is not surprising. KNLMS and KRLS are compared in Figure 12.

5.4. Sun spots prediction using KAPA

We now apply our adaptation algorithm to a real time series which consists of the number of

sunspots per month between January 1749 and February 2012. This data set has been obtained

from [36]. For this time series, we use the Kernel Affine Projection Algorithm coupled with the

gaussian kernel function. The model is of the form ψn(un−1, un−2, un−3). Using the following

parameter settings η = 0.1, ǫ = 0.07, p = 3, the NMSE is calculated over the last 300 samples.

Comparing NMSE while obtaining approximately the same final dictionary size m ≈ 536, without

adaptation, setting µ0 = 0.12415 the NMSE is 0.016839 while with adaptation and setting µ0 = 0.1

and ν0 = 0.0175, we observe that the NMSE has decreased to 0.0033112 inducing a reduction of

80.336%. The details are shown in Figure 13.

24



KERNEL ADAPTIVE FILTERING WITH DICTIONARY ADAPTATION 25

0 500 1000 1500 2000 2500 3000

10
−2

10
−1

10
0

iteration

M
ea

n−
sq

ua
re

d 
er

ro
r

KNLMS

without adjustement, GRBF

µ0 = 0.5 , m= 16.895

KRLS

without adjustement, GRBF

µ0 = 0.5 , m= 16.895

KRLS

with adjustement, GRBF

µ0= 0.5, ν0 = 0.2, m = 13.28

KNLMS

with adjustement, GRBF

µ0= 0.5, ν0 = 0.085, m = 14.445

Figure 12. KNLMS versus KRLS - gaussian kernel

0 500 1000 1500 2000 2500 3000

10
−4

10
−2

iteration

Q
ua

dr
at

ic
 e

rr
or

Without adaptation, GRBF
µ

0
 = 0.12415 

m = 535 & NMSE = 0.016839

With adaptation, GRBF
µ

0
 = 0.1 & ν

0
=0.0175

m = 536 & NMSE = 0.0033112

Figure 13. Sunspots prediction using the gaussian kernel

25



26 CHAFIC SAIDE ET AL.

6. CONCLUSION

In kernel based adaptive algorithms, model complexity increases with time. Sparsification methods

must be used to select some past input vectors (called the dictionary) which appear in the expression

of the model. As shown in the literature, several criteria can be used to perform sparsification.

However, even in a non stationary environment, previous work never considered the dictionary as a

set of parameters that could be adapted in order to further reduce the instantaneous quadratic output

error.

In this paper, we have introduced a method for optimizing the dictionary elements on which

the model is decomposed, simultaneously with the standard model parameters adaptation. The

coherence was the sparsification criterion used. Our gradient-based method allowed iterative

fulfillment of the coherence criterion used both for introducing a new element in the dictionary and

for adapting the existing dictionary elements. We have presented the complete updating equations

in the case of unit-norm gaussian and exponential kernels and the non unit-norm polynomial kernel.

We have also shown that there is no universal dictionary updating algorithm, which means that

every kernel type requires a specific study. We have compared the results obtained with and without

dictionary adaptation, both on simulated and real world data, and we have shown that, using

dictionary adaptation, the estimation error can be dramatically reduced (for a similar final size of

the dictionary), or the final size of the dictionary can be reduced (for a similar residual estimation

error). Obviously, any other compromise can be selected between these two extreme possibilities.

Finally, among the possible extensions of this work, we are working on reducing the

computational complexity which is strongly related to the (time varying) number of dictionary

elements and we are considering different sparsification criteria such as linear dependence measures.
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