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Abstract. In signal analysis and synthesis, linear approximation theory considers a linear decompo-

sition of any given signal in a set of atoms, collected into a so-called dictionary. Relevant sparse rep-

resentations are obtained by relaxing the orthogonality condition of the atoms, yielding overcomplete

dictionaries with an extended number of atoms. More generally than the linear decomposition, over-

complete kernel dictionaries provide an elegant nonlinear extension by defining the atoms through

a mapping kernel function (e.g., the gaussian kernel). Models based on such kernel dictionaries are

used in neural networks, gaussian processes and online learning with kernels.

The quality of an overcomplete dictionary is evaluated with a diversity measure the distance, the

approximation, the coherence and the Babel measures. In this paper, we develop a framework to

examine overcomplete kernel dictionaries with the entropy from information theory. Indeed, a higher

value of the entropy is associated to a further uniform spread of the atoms over the space. For each of

the aforementioned diversity measures, we derive lower bounds on the entropy. Several definitions of

the entropy are examined, with an extensive analysis in both the input space and the mapped feature

space.

Introduction

Sparsity in representation has gained increasing popularity in signal and image processing, for pattern

recognition, denoising and compression [11]. A sparse representation of a given signal consists in

decomposing it on a set of elementary signals, called atoms and collected in a so-called dictionary.

In the linear formalism, the signal is written as a linear combination of the dictionary atoms. This

decomposition is unique when the latter defines a basis, and in particular with orthogonal dictionaries

such as with the Fourier basis. Since the 1960’s, there has been much interest in this direction with

the use of predefined dictionaries, based on some analytical form, such as with the wavelets in all

its forms (curvelets, contourlets, bandelets, shearlets, directionless, grouplets, platelets, surflets, ...)

[29]. Predefined dictionaries have been widely investigated in the literature for years, owing to the

mathematical simplicity of such structured dictionaries when dealing with orthogonality (as well as

bi-orthogonality). When dealing with sparsity, analytical dictionaries perform poorly in general, due

to their rigide structure imposed by the orthogonality.

Within the last 15 years, a new class of dictionaries has emerged with dictionaries learned from

data, thus with the ability to adapt to the signal under scrutiny. While the Karhunen-Loève trans-

form — also called principal component analysis in advanced statistics [26] — falls in this class,

the relaxation of the orthogonality condition delivers an increased flexibility with overcomplete dic-

tionaries, i.e., when the number of atoms (largely) exceeds the signal dimension. Several methods

have been proposed to construct oversomplete dictionaries by solving a highly non-convex optimiza-

tion problem, such as the method of optimal directions [12], its singular-value-decomposition (SVD)

counterpart [1], and the “convexification” method [28].

Overcomplete dictionaries are more versatile to provide relevant representations, owing to an in-

creased diversity. Several measures have been proposed to “quantify” the diversity of a given dictio-

nary. The simplest measure of diversity is certainly the cardinality of the dictionary, i.e., the number

of atoms. While this measure is too simplistic, several diversity measures have been proposed by ex-

amining relations between atoms, either in a pairwise fashion or in a more thorough way. The most



used measure to characterize a dictionary is the coherence, which is the largest pairwise correlation

between its atoms [46]. By using the largest cumulative correlation between an atom and all the other

atoms of the dictionary, this yields the more exhaustive Babel measure [45]. Over the last twenty years

or so, the coherence and its variants (such as the Babel measure) have been used for the matching pur-

suit algorithm [30] and the basis pursuit with arbitrary dictionaries [9], with theoretical results on

the approximation quality studied in [15, 45]; see also the extensive literature on compressed sensing

[11].

Beyond the literature on linear approximation, several diversity measures for overcomplete dic-

tionary analysis have been investigated separately in the literature, within different frameworks. This

is the case of the distance measure, which corresponds to the smallest pairwise distance between all

atoms, as often considered in neural networks. Indeed, in resource-allocating networks for function

interpolation, the network of gaussian units is assigned a new unit if this unit is distant enough to any

other unit already in the network [36, 49]. It turns out that these units operate as atoms in the approxi-

mation model, with the corresponding dictionary having a small distance measure. While the distance

measure of a given dictionary relies only on its nearest pair of atoms, a more thorough measure is the

approximation measure, which corresponds to the least error of approximating any atom of the dic-

tionary with a linear combination of its other atoms. This measure of diversity has been investigated

in machine learning with gaussian processes [7], online learning with kernels for nonlinear adaptive

filtering [37], and more recently kernel principal component analysis [19].

In order to provide a framework that encloses all the aforementioned methods, we consider the

reproducing kernel Hilbert space formalism. This allows to generalize the well-known linear model

used in sparse approximation to a nonlinear one, where each atom is substituted by a nonlinear one

given with a kernel function. This yields the so-called kernel dictionaries, where each atom lives

in a feature space, the latter being defined with some nonlinear transformation of the input space.

While the linear kernel yields the conventional linear model, as given in the literature of linear sparse

approximation, the use of nonlinear kernels such as the gaussian kernel, allows to include in our

study neural networks with ressource-allocating networks, nonlinear adaptive filtering with kernels

and gaussian processes.

All the aforementioned diversity measures allow to quantify the heterogeneity within the dictio-

nary under scrutiny. In this paper, we derive connections between these measures and the entropy in

information theory (which is also related to the definition of entropy in other fields, such as thermody-

namics and statistical mechanics) [5]. Indeed, the entropy measures the disorder or randomness within

a given system. By considering the generalized Rényi entropy, which englobes the definitions given

by Shannon, Hartley, as well as the quadratic formulation, we show that any overcomplete kernel dic-

tionary with a given diversity measure has a lower-bounded entropy. These results on the high values

of the entropy illustrate that the atoms are favorably spread uniformly over the space. We provide

a comprehensive analysis, for any kernel type and any entropy definition, within the Rényi entropy

framework as well as the more recent nonadditive entropy proposed by Tsallis [47, 4]. Finally, we

provide an entropy analysis in the feature space by deriving lower bounds depending on the diver-

sity measures. As a consequence, we connect the diversity measures between both input and feature

spaces.

The remained of this paper is organized as follows. Next section introduces the sparse approxi-

mation problem, in its conventional linear model as well as its nonlinear extension with the kernel

formalism. Section presents the most used diversity measures for quantifying overcomplete dictio-

naries, while Section provides a preliminary exploration with results that will be used throughout this

paper. Section is the core of this work, where we define the entropy and examine it in the input space,

while Section extends this analysis to the feature space. Section concludes this paper.

*Related work

In [17], Girolami considered the estimation of the quadratic entropy with a set of samples, by

using the Parzen estimator based on a normalized kernel function. This formulation was investigated



in regularization networks, and in particular least-squares support vector machines (LS-SVM), in

order to reduce the computational complexity by pruning samples that do not contribute sufficiently

to the entropy [44]. More recently, an online learning scheme was proposed in [27] for LS-SVM by

using the approximation measure as a sparsification criterion. In our paper, we derive the missing

connections between this criterion and the entropy maximization.

Richard, Bermudez and Honeine considered in [39] the analysis of the quadratic entropy of a ker-

nel dictionary in terms of its coherence. We provide in our paper a framework to analyse overcomplete

dictionaries with a more extensive examination, in both input and feature spaces, and generalizing to

other entropy definitions and all types of kernels. The conducted analysis examines several diversity

measures, including, but not limited to, the coherence measure.

A primer on overcomplete (kernel) approximation

In this section, we introduce the sparse approximation problem, in its conventional linear model as

well as the kernel-based formulation. We conclude this section with an outline of the issues addressed

in this paper.

A primer on sparse approximation

Consider a Banach space X of Rd, denoted input space. The approximation theory studies the

representation of a given signal x of X with a dictionary of atoms (i.e., set of elementary signals),

x1,x2, . . . ,xn ∈ X, and estimating their fractions in the signal under scrutiny. In linear approxima-

tion, the decomposition takes the form:

x ≈
n∑

i=1

αi xi. (1)

This representation is unique when the atoms form a basis, by approximating the signal with its projec-

tion onto the span of the atoms, namely αi = x⊤
i x. Examples that involve orthonormal bases include

the Fourier transform and the discrete cosine transform, as well as the data-dependent Karhunen-

Loève transform (i.e., the PCA).

Beyond these orthogonal bases, the relaxation of the orthogonality provides more flexibility with

the use of overcomplete dictionaries, which allows to investigate different constraints more properly,

such as the sparsity of the representation. In this case, the coefficients αi in (1) are obtained by pro-

moting the sparsity of the representation. This optimization problem is often called sparse coding,

assuming that the dictionary is known. In view of the vector [α1 α2 · · · αn]
⊤, sparsity can be pro-

moted by minimizing its ℓ0 pseudo-norm, which counts the number of non-zero entries, or its ℓ1 norm,

which is the closest convex norm to the ℓ0 pseudo-norm [18].

Since the seminal work [35] where Olshausen and Field considered learning the atoms from a set

of available data, data-driven dictionaries have been widely investigated. A large class of approaches

have been proposed to solve iteratively the optimization problem by alternating between the dictio-

nary learning (i.e., estimating the atoms xi) and the sparse coding (i.e., estimating the coefficients

αi). The former problem is essentially tackled with the maximum likelihood principle of the data or

the maximum a posteriori probability of the dictionary. The latter corresponds to the sparse coding

problem. The best known methods for solving the optimization problem1

arg min
αi,xi

i=1···n

∥∥∥x−
n∑

i=1

αi xi

∥∥∥
2

, (2)

subject to some sparsity promoting constraint, are the method of optimal directions [12] and the K-

SVD algorithm [1], where the dictionary is determined respectively with the Moore-Penrose pseudo-

inverse and the SVD scheme. For more details, see [11] and references therein. It is worth noting that

1In practice, one has several signals x in order to construct the dictionary, resulting in a Frobenius norm minimization.



the sparsity constraint yields a difficult optimization problem, even when the model is linear in both

coefficients and atoms.

Kernel-based approximation

Nonlinear models provide a more challenging issue. The formalism of reproducing kernel Hilbert

spaces (RKHS) provides an elegant and efficient framework to tackle nonlinearities. To this end, the

signals x1,x2, . . . ,xn are mapped with a nonlinear function into some feature space H, as follows:

X 7→ H

xi → κ(xi, ·)

Here, κ : X×X → R is a positive definite kernel and the feature space H is the so-called reproduc-

ing kernel Hilbert space. Let 〈·, ·〉H and ‖·‖H denote respectively the inner product and norm in the

induced space H. This space has some interesting properties, such as the reproducing property which

states that any function ψ(·) of H can be evaluated at any xi of X using ψ(xi) = 〈ψ(·), κ(xi, ·)〉H.

Moreover, we have the kernel trick, that is 〈κ(xi, ·), κ(xj , ·)〉H = κ(xi,xj) for any xi,xj ∈ X. In

particular, ‖κ(·,xi)‖2H = κ(xi,xi).
Kernels can be roughly divided in two categories, projective kernels as functions of the data inner

product (i.e., 〈xi,xj〉), and radial kernels as functions of their distance (i.e., ‖xi − xj‖). The most

used kernels and there expressions are given in Table 1. From these kernels, only the gaussian and the

radial-based exponential kernels are unit-norm, that is ‖κ(x, ·)‖H = 1 for any x ∈ X. In this paper,

we do not restrict ourselves to a particular kernel. We denote

r2 = inf
x∈X

κ(x,x) and R2 = sup
x∈X

κ(x,x),

where κ(x,x) = ‖κ(x, ·)‖2
H

. For unit-norm kernels, we get R = r = 1.

While the linear kernel yields the conventional model given in (1), nonlinear kernels such as the

gaussian kernel provide the models investigated in RBF neural networks, gaussian processes [38] and

kernel-based machine learning [42], including the celebrated support vector machines [48]. For a set

of data x1,x2, . . . ,xn ∈ X and a given kernel κ(·, ·), the induced RKHS H is defined such as any

element ψ(·) of H takes the form

ψ(·) =
n∑

i=1

αi κ(xi, ·). (3)

When dealing with an approximation problem in the same spirit of (1)-(2), the element ψ(·) is ap-

proximated by κ(x, ·). Compared to the linear case given in (1), it is easy to see that the above model

is still linear in the coefficients αi, as well as the “atoms” κ(xi, ·), while it is nonlinear with respect to

xi. Indeed, the resulting optimization problem consists in minimizing the residual in the RKHS, with

arg min
αi,xi

i=1···n

∥∥∥κ(x, ·)−
n∑

i=1

αi κ(xi, ·)
∥∥∥
2

H

.

On the one hand, the estimation of the coefficients is similar to the one given in the linear case with

(2); the classical (linear) sparse coders can be investigated for this purpose. On the other hand, the

dictionary determination is more difficult, since the model is nonlinear in the xi; thus, conventional

techniques such as the K-SVD algorithm can no longer be used. It turns out that the estimation

of the elements in the input space is a tough optimization problem, known in the literature as the

pre-image problem [22]. More recently, the authors of [40, 41] adjusted the elements xi in the input

space for nonlinear adaptive filtering with kernels. In another context, the authors of [54, 56, 53]

estimated these elements for the kernel non-negative matrix factorization. See also [52, 24, 50, 51, 55].



Table 1: The most used kernels with their expressions, including tunable parameters p, σ > 0 and

c ≥ 0. These kernels are grouped in two categories: projective kernels as functions of 〈xi,xj〉, and

radial kernels as functions of ‖xi − xj‖.

Kernel κ(xi,xj)

p
ro

je
ct

iv
e Linear 〈xi,xj〉

Polynomial (〈xi,xj〉+ c)p

Exponential exp (〈xi,xj〉)

ra
d

ia
l Inverse multiquadratic (‖xi − xj‖2 + σ)

−p

Exponential exp
(
−1
σ
‖xi − xj‖

)

Gaussian exp
(

−1
2σ2‖xi − xj‖2

)

Addressed issues

In either analysis or synthesis of overcomplete (kernel) dictionaries, with the grow in the num-

ber of atoms, an increase in the heterogeneity of the atoms is needed. Such diversification requires

that the atoms are not too “close” to each other. Depending on the definition of closeness, sev-

eral diversity measures have been proposed in the literature. This is the case when the closeness

is given in terms of the metric, as given with the distance measure for a pairwise measure between

atoms, or the approximation measure for a more thorough measure. This is also the case when the

collinearity of the atoms is considered, such as with the coherence and the Babel measures. These

diversity measures are described in detail in Section , within the formalism for a kernel dictionary

{κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·)}.

In this paper, we connect these diversity measures to the entropy from information theory [5].

Indeed, from the viewpoint of information theory, the set {x1,x2, . . . ,xn} can be viewed as a finite

source alphabet. A fundamental measure of information is the entropy, which quantifies the disor-

der or randomness of a given system or set. It is also associated to the number of bits needed, in

average, to store or communicate the set under investigation. A detailed definition of the entropy is

given in Section , with connections between the entropy of the set {x1,x2, . . . ,xn} and the afore-

mentioned diversity measures of the associated kernel dictionary {κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·)}.

Several entropy definitions are also investigated, including the generalized Rényi entropy and the

Tsallis entropy. Finally, Section extends this analysis to the RKHS, by studying the entropy of set of

atoms {κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·)}.

Diversity measures

In this section, we present measures that quantify the diversity of a given dictionary

{κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·)}. Each diversity measure is associated to a sparsification crite-

rion for online learning, in order to construct dictionaries with large diversity measures.

Cardinality

The cardinality of the dictionary, namely the number n of atoms, is the simplest measure. How-

ever, such measure does not take into account that some atoms can be close to each others, e.g.,

duplicata.



Distance measure

A simple measure to characterize a dictionary is the smallest distance between all pairs of its

atoms, namely

min
i,j=1···n

i 6=j

‖κ(xi, ·)− κ(xj , ·)‖H,

where

‖κ(xi, ·)− κ(xj, ·)‖2H = κ(xi,xi)− 2 κ(xi,xj) + κ(xj ,xj). (4)

In the following, we consider a tighter measure by using the distance between any two atoms, up to a

scaling factor, which is a tighter measure since we have

‖κ(xi, ·)− κ(xj, ·)‖H ≥ min
ξ

‖κ(xi, ·)− ξκ(xj , ·)‖H. (5)

A dictionary is said to be δ-distant when

δ = min
i,j=1···n

i 6=j

min
ξ

‖κ(xi, ·)− ξ κ(xj, ·)‖H.

Since the above distance is equivalent to the residual error of approximating any atom by its projection

onto another atom, the optimal scaling factor ξ takes the value κ(xi,xj)/κ(xj,xj), yielding

δ2 = min
i,j=1···n

i 6=j

(
κ(xi,xi)−

κ(xi,xj)
2

κ(xj ,xj)

)
.

When dealing with unit-norm atoms, this expression boils down to δ2 = 1− κ(xi,xj)
2.

A sparsification criterion for online learning is studied in ressource-allocating networks [36, 3]

with the “novelty criterion”, by imposing a lower bound on the distance measure of the dictionary.

Thus, any candidate atom is included in the dictionary if the distance measure of the latter does not

fall below a given threshold that controls the level of sparseness.

Approximation measure

While the distance measure relies only on the nearest two atoms, the approximation measure

provides a more exhaustive analysis by quantifying the capacity of approximating any atom with a

linear combination of the other atoms of the dictionary. A dictionary is said to be δ-approximate if the

following is satisfied:

δ = min
i=1···n

min
ξ1···ξn

∥∥∥κ(xi, ·)−
n∑

j=1

j 6=i

ξj κ(xj , ·)
∥∥∥
H

. (6)

This expression corresponds to the residual error of projecting any atom onto the subspace spanned

by the others atoms. By nullifying the derivative of the above cost function with respect to each

coefficient ξj , we get the optimal vector of coefficients

ξ = K−1
\{i}

κ
\{i}
(xi), (7)

Here, K
\{i}

and κ
\{i}
(xi) are obtained by removing the entries associated to xi from K and κ(xi),

respectively, where K is the Gram matrix of entries κ(xi,xj) and κ(·) is the column vector of entries

κ(xj , ·), for i, j = 1, . . . , n. By plugging the above expression in (6), we obtain:

δ2 = min
i=1···n

κ(xi,xi)− κ
\{i}
(xi)

⊤K−1
\{i}

κ
\{i}
(xi). (8)

The sparsification criterion associated to the approximation measure is studied in [2, 6] and more

recently in [13] for system identification and [19] for kernel principal component analysis. This cri-

terion constructs dictionaries with a high approximation measure, thus including any candidate atom



in the dictionary if it cannot be well approximated by a linear combination of atoms already in the

dictionary, for a given approximation threshold.

Coherence measure

In the literature of sparse linear approximation, the coherence is a fundamental quantity to char-

acterize dictionaries. It corresponds to the largest correlation between atoms of a given dictionary, or

mutually between atoms of two dictionaries. While initially introduced for linear matching pursuit in

[30], it has been studied for the union of two bases [10], for basis pursuit with arbitrary dictionaries

[9], for the analysis of the approximation quality [15, 45]. While most work consider the use of a

linear measure, we explore in the following the coherence of a kernel dictionary, as initially studied

in [23].

For a given dictionary, the coherence is defined by the largest correlation between all pairs of

atoms, namely

max
i,j=1···n

i 6=j

|〈κ(xi, ·), κ(xj, ·)〉H|
‖κ(xi, ·)‖H‖κ(xj , ·)‖H

.

It is easy to see that this definition can be written, for a so-called γ-coherent dictionary, as follows:

γ = max
i,j=1···n

i 6=j

|κ(xi,xj)|√
κ(xi,xi) κ(xj ,xj)

, (9)

For unit-norm atoms, we get max
i,j=1···n

i 6=j

|κ(xi,xj)|.

The coherence criterion for sparsification constructs a “low-coherent” dictionary, thus enforcing

an upper bound on the cosine angle between each pair of atoms [39]. In this case, any candidate atom

is included in the dictionary if the coherence of the latter does not exceed a given threshold.This

threshold controls the level of sparseness of the dictionary, where a null value yields an orthogonal

basis.

Babel measure

While the coherence relies only on the most correlated atoms in the dictionary, a more thorough

measure is the Babel measure which considers the largest cumulative correlation between an atom

and all the other atoms of the dictionary. The Babel measure can be defined in two ways. The first one

is by connecting it to the coherence measure, with a definition related to the cumulative coherence,

namely

max
i=1···n

n∑

j=1

j 6=i

|κ(xi,xj)|√
κ(xi,xi) κ(xj ,xj)

. (10)

The second (and most conventional) way to define the Babel measure is by investigating an analogy

with the norm operator [16, 45]. Indeed, while the coherence is the ∞-norm of the Gram matrix

when dealing with unit-norm atoms, the Babel measure explores the ℓ1 matrix-norm, where ‖K‖1 =
maxi

∑
j |κ(xi,xj)|. As a consequence, a dictionary is said to be γ-Babel when

γ = max
i=1···n

n∑

j=1

j 6=i

|κ(xi,xj)|. (11)

Connecting this definition with (10) — for not necessary unit-norm atoms — is straightforward, since

the latter can be box-bounded for any γ-Babel dictionary defined by (11), with

γ

R2
≤ max

i=1···n

n∑

j=1

j 6=i

|κ(xi,xj)|√
κ(xi,xi) κ(xj ,xj)

≤ γ

r2
.



For this reason and for the sake of simplicity, we consider the definition (11) in this paper.

The sparsification criterion associated to the Babel measure constructs dictionaries with a low

cumulative coherence [14]. To this end, any candidate atom κ(xt, ·) is included in the dictionary if

(and only if)
n∑

j=1

|κ(xt,xj)| (12)

does not exceed a given positive threshold.

Some fundamental results

Before proceeding throughout this paper with a rigorous analysis of any overcomplete dictionary in

terms of its diversity measure, we provide in the following some results that are essential to our study.

These results provide an attempt to bridge the gap between the different diversity measures.

Coherence versus Babel measure

The following theorems connect the coherence of a dictionary to its Babel measure by quantifying

the Babel measure of a γ-coherent dictionary, and vice-versa. The following theorem has been known

for a while in the case of unit-norm atoms.

Theorem 1. A γ-coherent dictionary has a Babel measure that does not exceed (n− 1)γR2.

Proof. Following the definition (11), the Babel of a γ-coherent dictionary is upper-bounded as fol-

lows:

max
i=1···n

n∑

j=1

j 6=i

|κ(xi,xj)| ≤ (n− 1) max
i,j=1···n

i 6=j

|κ(xi,xj)| ≤ (n− 1)γ max
i,j=1···n

i 6=j

√
κ(xi,xi) κ(xj,xj) ≤ (n− 1)γR2.

Furthermore, it is also easy to provide an upper bound on the coherence of a dictionary with a

given Babel measure, as given in the following theorem.

Theorem 2. A γ-Babel dictionary has a coherence that does not exceed γ/r2.

Proof. The proof follows from the relation

max
i,j=1···n

i 6=j

|κ(xi,xj)|√
κ(xi,xi) κ(xj ,xj)

≤ max
i,j=1···n

i 6=j

|κ(xi,xj)|
r2

,

and the inequality between matrix norms: ‖ · ‖max ≤ ‖ · ‖∞.

Analysis of a δ-approximate dictionary

The following theorem is fundamental in the analysis of a dictionary resulting from the approxi-

mation criterion.

Theorem 3. A δ-approximate dictionary has a Babel measure that does not exceed R2 − δ2, and a

coherence measure that does not exceed
R2 − δ2

r2
.

Proof. For a δ-approximate dictionary, we have from (7): K
\{i}
ξ = κ

\{i}
(xi), for any i = 1, 2, . . . , n.

By plugging this relation in (8), we obtain

min
ξ
κ(xi,xi)− κ

\{i}
(xi)

⊤ξ ≥ δ2.



By considering the special case of the vector ξ with ξj = sign(κ(xi,xj)), for any j = 1, 2, . . . , n and

j 6= i, we get
n∑

j=1

j 6=i

|κ(xi,xj)| ≤ κ(xi,xi)− δ2,

for all i = 1, 2, . . . , n. As a consequence,

max
i=1···n

n∑

j=1

j 6=i

|κ(xi,xj)| ≤ max
i=1···n

κ(xi,xi)− δ2 ≤ R2 − δ2.

This concludes the proof for the Babel measure, since it is the left-hand-side in the above expression,

while the upper bound on the coherence measure is obtained from the aforementioned connection

between the coherence and the Babel measures as given in Theorem 2.

Entropy analysis in the input space

The entropy measures the disorder or randomness within a given system. The Rényi entropy provides

a generalization of well-known entropy definitions, such as Shannon and Harley entropies as well as

the quadratic entropy (see Table 2). It is defined for a given order α by

Hα =
1

1− α
log

∫

X

(
P (x)

)α
dx, (13)

for the probability distributionP that governs all elementsx of X. When dealing with discrete random

variables as in source coding, this definition is restricted to the set {x1,x2, . . . ,xn} drawn from the

probability distribution P , yielding the expression

Hα =
1

1− α
log

n∑

j=1

(
P (xj)

)α
. (14)

Large values of the entropy correspond to a more uniform spread of the data2. Since this probability

distribution is unknown in practice, it is often approximated with a Parzen window estimator (also

called kernel density estimator). The estimator takes the form

P̂ (x) =
1

n

n∑

j=1

w(‖x− xj‖), (15)

for a given window function w centered at each xj . For more details, see for instance [25].

In the following, we provide lower bounds on the entropy of an overcomplete dictionary, in terms

of its diversity measure. To this end, we initially restrict ourselves to the case of the quadratic entropy

(i.e., α = 2), first with the gaussian kernel then with any type of kernel, before generalizing these

results to any order α of the Rényi entropy as well as the Tsallis entropy.

The quadratic entropy with the gaussian kernel

Before generalizing to any window function in Section and any order in Section , we restrict

ourselves first to the case of the gaussian window function with the quadratic entropy. The quadratic

entropy is defined by H2 = − log
∑n

j=1

(
P (xj)

)2
. Considering the normalized gaussian window

w(‖x− xj‖) =
1

(
√
πσ)d

exp
(
−‖x− xj‖2/σ2

)
,

2It is well-known for the Shannon entropy (i.e., where α → 1) that the uniform distribution yields the largest entropy.

This property seems to extend to the case of any non-zero order, including α → ∞ where we get the min-entropy. See

Table 2 for the expressions of well-known entropies.



for some bandwidth parameter σ, the Parzen estimator becomes

P̂ (x) =
1

n

n∑

j=1

1

(
√
πσ)d

exp
(
−‖x− xj‖2/σ2

)
.

Since the convolution of two gaussian distributions leads to another gaussian distribution, then H2 ≈
− log

∑n
j=1

(
P̂ (xj)

)2
becomes

H2 ≈ − log

(
1

n2

n∑

i,j=1

κ(xi,xj)

(2πσ2)d/2

)
=
d

2
log
(
2πσ2

)
− log

(
1

n2

n∑

i,j=1

κ(xi,xj)

)
,

where κ(xi,xj) = exp
(

−1
2σ2 ‖xi − xj‖2

)
is the gaussian kernel. This expression shows that the sum of

the entries in the Gram matrix describes the diversity of the dictionary elements, a result corroborated

in [17] and more recently in [25]. This property was investigated in [44] for pruning the LS-SVM, by

removing samples with the smallest entries in the Gram matrix.

Each diversity measure studied in Section yields a lower bound on the entropy of the dictio-

nary under scrutiny. To shown this, we consider first the Babel measure with a γ-Babel dictionary.

Following the Babel definition in (11), the entropy given in (??) is lower-bounded as follows:

H2 ≥
d

2
log
(
2πσ2

)
+ log n− log(1 + γ),

where we have used the following upper bound on the summation:

n∑

i,j=1

κ(xi,xj) =
n∑

i=1

κ(xi,xi) +
n∑

i=1

n∑

j=1

j 6=i

κ(xi,xj) ≤ n(1 + γ).

This result provides the core of the proof. Indeed, Theorem 2 shows that this result holds also for

a γ-coherent dictionary. Furthermore, we can improve this bound for the coherence measure, since∑n
i=1

∑n
j=1,j 6=i κ(xi,xj) ≤ n(n− 1)γ, thus yielding the following lower bound on the entropy

H2 ≥
d

2
log
(
2πσ2

)
+ logn− log

(
1 + (n− 1)γ

)
.

This result is also shared with a δ-distant dictionary, by substituting γ with
√
1− δ2, since the distance

is equivalent to the coherence when dealing with normalized kernels. Finally, Theorem 3 establishes

the connection with a δ-approximate dictionary, where the above upper bound becomes

H2 ≥
d

2
log
(
2πσ2

)
+ logn− log

(
2− δ2

)
.

All these results provide lower bounds on the entropy, with the following observations. These

bounds increase with the number of elements in the dictionary, i.e., n, which is obvious as the diversity

grows. They decrease when the coherence and the Babel measures increase, while they increase when

the distance and the approximation measures increase. These results provide quantitative details that

confront the fact that, when using a sparsification criterion for online learning, low values of the

coherence and Babel thresholds provide less “correlated” atoms and thus more diversity within the

dictionary, as opposed to high values of the distance and approximation thresholds. For online learning

with kernel for one-class classification, see [31, 34, 33]

The quadratic entropy with any kernel



Table 2: The most known entropies as special cases of the generalized Rényi entropy.

Entropy order α Hα

Harley entropy α = 0 log n

Shannon entropy α → 1 −
n∑

j=1

P (xj) logP (xj)

Quadratic entropy α = 2 − log
n∑

j=1

(
P (xj)

)2

Min-entropy α→ ∞ min
j=1···n

− logP (xj)

The results presented so far can be extended to any kernel, even non-unit-norm kernels. To see

this, we define the Parzen estimator in a RKHS, by writing the integral
∫
X
P̂ (x)2 dx as the quadratic

norm ‖P̂‖2H of

P̂ (·) = 1

n

n∑

i=1

κ(xi, ·),

where the norm is given in the subspace spanned by the kernel functions

κ(x1, ·), κ(x2, ·), . . . , κ(xn, ·). Therefore, we have

H2 ≈ − log ‖P̂‖2H = − log

(
1

n2

n∑

i,j=1

κ(xi,xj)

)
.

By following the same steps as in Section , we can derive the following lower bounds on the quadratic

entropy:

• log n− log
(
R2 + (n− 1)R

√
R2 − δ2

)
for a δ-distant dictionary.

• log n− log
(
2R2 − δ2

)
for a δ-approximate dictionary.

• log n− log
(
R2 + (n− 1)γR2

)
for a γ-coherent dictionary.

• log n− log(R2 + γ) for a γ-Babel dictionary.

Before providing the proof of these results, it is worth noting that the conclusion and discussion

conducted in the case of the gaussian kernel are still satisfied in the general case of any kernel type.

Proof. The bounds for the δ-approximate and γ-Babel dictionaries are straightforward from Theo-

rem 3 and the definition in (11). The lower bounds for γ-coherent and δ-distant dictionaries are a bit

trickier to prove. To show this, we use for the former the following relation

H2 ≥ − log

(
1

n2

n∑

i=1

κ(xi,xi) +
γ

n2

n∑

i=1

n∑

j=1

j 6=i

√
κ(xi,xi) κ(xj ,xj)

)

≥ log n− log
(
R2 + (n− 1)γR2

)
,



and for the latter the following relation

H2 ≥ − log

(
1

n2

n∑

i=1

κ(xi,xi) +
1

n2

n∑

i=1

n∑

j=1

j 6=i

√(
κ(xi,xi)− δ2

)
κ(xj,xj)

)

≥ logn− log
(
R2 + (n− 1)R

√
R2 − δ2

)
.

Generalization to Rényi and Tsallis entropies

So far, we have investigated the quadratic entropy and derived lower bounds for each diversity

measure. It turns out that these results can be extended to the general Rényi entropy and Tsallis

entropy, as shown next. Special cases of the former are listed in Table 2, including the Harley or

maximum entropy which is associated to the cardinality of the set, the Shannon entropy which is

essentially the Gibbs entropy in statistical thermodynamics, the quadratic entropy also called collision

entropy, as well as the min-entropy which is the smallest measure in the family of Rényi entropies.

Corollary 4. Any lower bound ζ on the quadratic entropy provides lower bounds on the Hartley

entropy H0, the Shannon H1, and the min-entropy H∞, with

ζ ≤ H1 ≤ H0 and 1
2
ζ ≤ H∞.

Proof. The proof is due to the Jensen’s inequality and the concavity of the Rényi entropy for nonneg-

ative orders. First, the relation of the Shannon entropy is given by exploring the following inequality:

n∑

j=1

P (xj) logP (xj) ≤ log

n∑

j=1

(
P (xj)

)2
.

The connection to the Hartley entropy is straightforward, with H0 = logn. Finally, it is more trickier

to study the min-entropy, since it is the smallest entropy measure in the family of Rényi entropies, as

a consequence it is the strongest way to measure the information content. To provide a lower bound

on the min-entropy, we use the relations

log
n∑

j=1

(
P (xj)

)2 ≥ log max
j=1···n

(
P (xj)

)2
= 2 log max

j=1···n
P (xj),

which yields the following inequality: H2 ≤ 2H∞.

Furthermore, one can easily extend these results to the class of the Tsallis entropy, also called

nonadditive entropy, defined by the following expression for a given parameter q (called entropic-

index) [47, 4]:

1

q − 1

(
1−

n∑

j=1

(
P (xj)

)q)
.

To this end, the aforementioned lower bounds on the Rényi entropy can be extended to the Tsallis

entropy by using for instance the well-known relation log u ≤ u− 1 for any u ≥ 0.

As a consequence, the lower bounds on the quadratic entropy given in Sections and can be

explored to other orders of Rényi entropy and Tsallis entropy.

Entropy in the feature space

By analogy with the entropy analysis in the input space conducted in Section , we propose to revisit

it in the feature space, as given in this section. By examining the pairwise distance between any two



atoms of the investigated dictionary, we first establish in Section a topological analysis of overcom-

plete dictionaries. This analysis is explored in Section with the study of the entropy of the atoms in

the feature space. By providing lower bounds in terms of the diversity measures, these results provide

connections to the entropy analysis conducted in the previous section.

Fundamental analysis

The following theorem is used in the following section for the analysis of the atoms of a kernel

dictionary.

Theorem 5. For any dictionary with a non-zero approximation measure, or a non-unit coherence

measure, or a Babel measure below r2, we have a low-bounded distance measure.

Proof. The proof is straightforward for a δ-approximate dictionary, since

‖κ(xi, ·)− κ(xj, ·)‖H ≥ min
ξ1···ξn

∥∥∥κ(xi, ·)−
n∑

j=1

j 6=i

ξj κ(xj, ·)
∥∥∥
H

≥ δ.

For the coherence measure, we consider the pairwise distance in terms of kernels as given in (4).

Since a γ-coherent dictionary satisfies

max
i,j=1···n

i 6=j

|κ(xi,xj)|√
κ(xi,xi) κ(xj ,xj)

≤ γ,

then we have

max
i,j=1···n

i 6=j

|κ(xi,xj)| ≤ γ max
i,j=1···n

i 6=j

√
κ(xi,xi) κ(xj ,xj).

Thus, ‖κ(xi, ·)− κ(xj , ·)‖2H from the right-hand-side of equation (4) is lower-bounded by

κ(xi,xi)− 2 γ
√
κ(xi,xi) κ(xj ,xj) + κ(xj,xj).

Therefore, to complete the proof, it is sufficient to show that this expression is always strictly positive.

Indeed, it is a quadratic polynomial of the form u2 − 2γuv + v2 where u =
√
κ(xi,xi) and v =√

κ(xj,xj) (this form is valid since κ(x,x) = ‖κ(x, ·)‖2
H
> 0 for any x ∈ X). Considering the

roots of this quadratic polynomial with respect to u, its discriminant is 4 κ(xj ,xj)(γ
2 − 1), which is

strictly negative since γ ∈ [ 0 ; 1 [ and κ(xj ,xj) cannot be zero. Therefore, the polynomial has no real

roots, and it is strictly positive.

Finally, for any γ-Babel dictionary, we have

min
i,j=1···n

i 6=j

‖κ(xi, ·)− κ(xj, ·)‖2H = min
i,j=1···n

i 6=j

κ(xi,xi)− 2κ(xi,xj) + κ(xj,xj)

≥ 2r2 − 2 max
i,j=1···n

i 6=j

|κ(xi,xj)|,

≥ 2r2 − 2 γ,

which is strictly positive when γ < r2.

Entropy in the RKHS

The entropy in the feature space provides a measure of diversity of the atoms distribution. In the

following, we show that the entropy estimated in the feature space is lower-bounded, with a bound

expressed in terms of a diversity measure.



We denote by P
H
(x) the distribution associated to the kernel functions in the feature space, namely

by definition P
H
(x) = P (κ(x, ·)). The entropy in the RKHS is given by expression (13) where P (x)

is substituted with P
H
(x), yielding3

1

1− α
log

∫

X

(
P

H
(x)
)α
dx. (16)

By approximating the integral in this expression with the set {x1,x2, . . . ,xn}, we get

1

1− α
log

n∑

j=1

(
P

H
(xj)

)α
.

The distribution P
H
(·) is estimated with the Parzen window estimator. The use of a radial function

w(·) defined in the feature space H yields

P̂
H
(x) =

1

n

n∑

j=1

w(‖κ(x, ·)− κ(xj, ·)‖H).

Examples of radial functions are — up to a scaling factor to ensure the integration to one — the

gaussian, the radial-based exponential and the inverse mutliquadratic kernels, given in Table 1 and

applied here in the feature space. Radial kernels are monotonically decreasing in the distance, namely

κ(xi,xj) grows when ‖xi−xj‖ is decreasing. This statement results from the following lemma; See

also [8, Proposition 5].

Lemma 6. Any kernel κ, of the form κ(xi,xj) = g(‖xi − xj‖2) with g : (0,∞) → R, is positive

definite if g(·) is completely monotonic, namely its k-th derivative g(k) satisfies (−1)kg(k)(r) ≥ 0 for

any r, k ≥ 0.

Theorem 7. Consider an overcomplete kernel dictionary with a lower bound ǫ on its distance mea-

sure, or any bounded diversity measure as given in Theorem 5. A Parzen window estimator, estimated

over the dictionary atoms in the feature space, is upper-bounded by w(ǫ), where w(·) is the used

window function.

Proof. The proof is follows from

P̂
H
(x) =

1

n

n∑

j=1

w(‖κ(x, ·)− κ(xj , ·)‖H) <
1

n

n∑

j=1

w(ǫ) = w(ǫ),

where the inequality is due to the monotonically decreasing property of the window function w and

Theorem 5.

This theorem is the main building block of the following corollary that provides lower bounds on the

entropy, with the Shannon entropy and generalizing to the Rényi entropy for any order α > 1.

Corollary 8. Consider an overcomplete kernel dictionary with a lower bound ǫ on its distance

measure, or any bounded diversity measure as given in Theorem 5. The Shannon entropy and

the generalized Rényi entropy for any order α > 1 are lower bounded by −nw(ǫ) logw(ǫ) and
1

1−α
log
(
n
(
w(ǫ)

)α)
, respectively, where w(·) is the used window function.

3The expectation in a RKHS, as in (16), was previously investigated in the literature. The notion of embedding a

Borel probability measure P , defined on the topological space X, into a RKHS H was studied in detail in [43], with∫
X
κ(x, ·) dP (x). For an algorithmic use, see [32] for a one-class classifier.



Proof. From Theorem 7, we have P̂
H
(x) < w(ǫ) for any window function w(·). This yields for the

Shannon entropy:

−
n∑

j=1

P̂
H
(xj) log P̂H

(xj) > −nw(ǫ) logw(ǫ).

More generally, the Rényi entropy for any order α is estimated by

1

1− α
log

n∑

j=1

(
P̂

H
(xj)

)α
>

1

1− α
log
(
n
(
w(ǫ)

)α)
,

where we have used Theorem 7 and α > 1.

These results illustrate how the atoms of an overcomplete dictionary are uniformly spread in the

feature space.

Final remarks

This paper provided a framework to examine linear and kernel dictionaries with the notion of entropy

from information theory. By examining different diversity measures, we showed that overcomplete

dictionaries have lower bounds on the entropy. While various definitions were explored here, these

results open the door to bridging the gap between information theory and diversity measures for the

analysis and synthesis of overcomplete dictionaries, in both input and feature spaces. As of futur

works, we are studying connections to the entropy component analysis [25], in order to provide a

thorough examination and develop an online learning approach.

The conducted analysis, illustrated here within the framework of kernel-based learning algorithms,

can be easily extended to other machines such as gaussian processes and neural networks. It is worth

noting that this work does not devise any particular diversity measure for quantifying overcomplete

dictionaries, in the same spirit as our recent work [21, 20].
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