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We present the analytic form of the planar two-loop five-gluon scattering amplitudes in QCD for a
complete set of independent helicity configurations of external gluons. These include the first analytic
results for five-point two-loop amplitudes relevant for the computation of next-to-next-to-leading-order
QCD corrections at hadron colliders. The results were obtained by reconstructing analytic expressions from
numerical evaluations. The complexity of the computation is reduced by exploiting physical and analytical
properties of the amplitudes, employing a minimal basis of so-called pentagon functions that have recently

been classified.
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Scattering amplitudes in QCD are beautiful mathemati-
cal objects that condense the physics of particle collisions.
They play a central role in providing theoretical predictions
for experimental observables, such as those measured in
particle collisions at the Large Hadron Collider at CERN,
making higher-order quantum corrections highly desirable.
The higher the corrections one considers, the more intricate
the amplitudes become, needing to accommodate richer
unitarity and factorization properties. Nevertheless, the
analytic properties are so constraining that final results
appear very compact in spite of the large computational
effort required to obtain them. In this Letter, we exploit
these properties to directly access the compact analytic
results from numerical evaluations.

Analytic expressions for two-loop four-gluon amplitudes
have been known for more than a decade [1,2]. At higher
multiplicity, analytic results have been obtained for all-plus
helicity amplitudes up to seven points [3—8] and up to five
points for the single-minus helicity configuration [9],
reaching a complexity where traditional methods start to
break down. Conventional approaches to analytic calcu-
lations have seen considerable progress [10,11] but involve
large intermediate expressions, the size of which is highly
sensitive to details of the approach and obscures the
simplicity of the result. To sidestep this issue and make
the most of recent progress on five-point two-loop integral

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

0031-9007/19/122(8)/082002(6)

082002-1

calculations [12—15], two groups have used numerical
approaches to compute five-parton two-loop QCD scatter-
ing amplitudes [16—-19]. Numerical approaches are more
resilient to the swelling of intermediate expressions, and
can be improved with finite-field calculations to provide
exact results [20]. While numerical results are sufficient for
Monte Carlo integration, analytic results increase the
evaluation efficiency and facilitate the study of the math-
ematical structure of amplitudes. It has been pointed out
that the analytic form of rational functions in scattering
amplitudes can be reconstructed from numerical samples
[20,21] as already demonstrated for the two-loop four-point
amplitudes [22] and recently for the single-minus five-
gluon amplitude [9]. Combined with the better under-
standing of the analytic properties of the functions appear-
ing in loop amplitudes that was developed over the last few
years, the reconstruction of analytic expressions from
numerical samples circumvents the prohibitively large
intermediate analytic steps and directly targets the simpler
final results.

In this Letter, we use these techniques to compute a
complete set of analytic two-loop five-gluon amplitudes in
the limit of a large number of colors N.. We apply the
extension of the numerical variant [23-26] of the unitarity
method [27-29] to multiloop computations [22,30,31] to
obtain numerical samples on finite fields based on
Refs. [17,19]. From these samples we obtain analytic
expressions for the coefficients in a decomposition of
the amplitude in terms of so-called pentagon functions
[13]. The efficiency of the reconstruction is increased by
finding convenient bases in the space of pentagon functions
and by an a priori knowledge of the coefficients of the
denominators.

Published by the American Physical Society
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We present for the first time analytic results for the two-
loop five-gluon amplitudes known as MHV amplitudes,
which are an important ingredient in the next-to-next-to-
leading-order (NNLO) QCD corrections for three-jet pro-
duction at hadron colliders. The results will serve as a
testing ground for exploring the structure of two-loop
scattering amplitudes in quantum field theory.

Scattering amplitudes.—The main results of this Letter
are analytic expressions for two-loop five-gluon scattering
amplitudes, in the leading-color approximation of pure
Yang-Mills theory. We write the perturbative expansion of a
bare five-gluon helicity amplitude as

A({pi’ hi}i:l,....S) |leading color

= E Tr[Tas<1> T %) T%(3) Tl(4) T%<5>]
c€Ss/Zs

« g(3)<A(0) 2 2AM 12242 O(/?)), (1)

where 4 = N.g3/(47)* and g is the bare QCD coupling.
The set S5/Zs denotes all noncyclic permutations of five
indices. The planar amplitudes A% are functions of the
momenta p,; and helicities /). In the leading-color
approximation there is a single color structure and it is
sufficient to specify a helicity assignment for the ordered
set of legs, which we specify by subscripts

()

hyhyhshyhs

when required, assuming an ordered set of momentum
assignments { py, p», p3, P4, Ps - Inthis section we describe
our approach to the calculation of the A% in dimensional
regularization with D = 4 — 2¢. Although we focus on the
leading-color contributions, the approach we use is fully
generic and applicable beyond this approximation.

Our calculation of the amplitudes A% is performed
in the framework of two-loop numerical unitarity
[17,22,30,31]. The starting point is the general parametri-
zation of the integrand of the amplitude [30]

A =% T mr.i(¢1)

Cr.i H s (2)
e ieM,uSy jeprPj
with M being a set of master integrands, S being a
set of surface terms, Pr as the set of propagators p; being
associated with propagator structure I', and #; as the
set of loop momenta. The coefficients cp; are determined
by exploiting the factorization properties of A(#;) in
loop-momenta limits ¢; — #!" where propagators go
on-shell [32]:

N IERGE

states €T

Cr',imr',i<fzr)r_ (3)
ey Hje(Pr,\Pr)Pj(fz )

ieMpy USF/

The set Tt labels all tree amplitudes corresponding to the
vertices in the diagram I'. The sum runs over the I with
more propagators. The state sum runs over the (scheme
dependent) gluon-helicity states of each internal line of T'.
Solving the linear system in Eq. (3) directly yields the
coefficients of master integrals and no further integral
reduction is needed. In numerical unitarity, the linear
system [Eq. (3)] is constructed and solved numerically.
Using finite-field arithmetic removes any issues related to
loss of precision in numerical operations, at the price of
minor modifications to the standard numerical unitarity
approach. We describe our algorithm in Ref. [17].

Numerical reconstruction.—We aim to compute ana-
lytic expressions for five-gluon amplitudes by recon-
structing them from numerical samples. For a suitably
chosen parametrization of phase space, such as momen-
tum twistors [33], the coefficients cr; of Eq. (2) are
rational functions. For concreteness, we use the para-
metrization [21]

(1+X1)X2

S12=X4, S23=XoXy, S3u=X4 x—+x1(x3—1) )
0

S4s=X3X4, 51 =X X4(X0— Xy +X3),

trs =4ie(p1.p2.P3.P4)

=x] <x2(1 +2x;) +xox; (x3— 1)_x2(1 +x1)(x2—x3)>’

4)

where s;; = (p; + pj)2 with the indices defined cycli-
cally. The difficulty of analytic reconstruction is deter-
mined by the complexity of the functions under study.
More precisely, this means that one should attempt to
reconstruct rational functions with low total degree of
numerator and denominator polynomials. With this aim in
mind, we first exploit a series of known physical and
analytical properties of the amplitudes, and only apply the
reconstruction algorithms to simpler objects that we
cannot further constrain. In this section we summarize
our approach.

The divergence structure of scattering amplitudes is
governed by known universal functions [34-37]. It is thus
sufficient to compute the so-called finite remainder [34],
defined by subtracting contributions that are related to tree
and one-loop amplitudes from a two-loop amplitude. There
is freedom in how the remainders are defined, so we now
give our definitions. For helicity amplitudes which vanish
at tree-level, .Agfl 44 WE use

5 -
@ _ 30 A0 L3 (=Sii+1)
Ry = AL FSAL —— O(e),
i=1

(5)
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where S, = (47)¢e~<7c. The A®) denote amplitudes nor-
malized to remove any ambiguity related to overall phases.
In the case of amplitudes that vanish at tree level, we
normalize to the leading order in € of the (finite) one-loop
amplitude. For the MHV amplitudes, A—;i +4» Which we
normalize to the corresponding tree amplitude, we define

2 P
Ry = A (20 ©)s A
15 ~
# (4 2o - -1 )2+ 000

(6)

where f3; are the coefficients of the QCD p-function divided
by Nit!. I and 1@ are the standard Catani operators at
leading color, and Eq. (6) is obtained by writing Catani’s
prediction for the poles of a bare amplitude. Precise
expressions for the operators in our conventions can be
found in Appendix B of Ref. [19]. We note that in both
Eqgs. (5) and (6) we require one-loop amplitudes expanded
up to order €.

The amplitudes we are concerned with in this Letter can
be written as linear combinations of special functions, the
so-called multiple polylogarithms (MPLs). The coefficients
in this linear combination are functions of the external data
and of the dimensional regulator e, just as in the decom-
position of Eq. (2). It is by now well understood that there
are relations between different MPLs, and newly developed
mathematical tools allow us to find such relations in an
algorithmic way [38—40]. It is then possible to construct a
basis for the space of special functions required for planar
five-point massless amplitudes up to two-loops, and this
was done in Ref. [13] where a set of pentagon functions
was defined. Amplitudes can then be written as

33 o

i€B k=—4

x) + O(e), (7)

where X = {xg, X1, X2, X3, X4} and the ¢, ;(X) are rational
functions of the twistor variables. B denotes the basis of
pentagon functions £;. There is a notion of (transcendental)
weight associated with MPLs, and thus with pentagon
functions, that allows us to organize the basis B. For
instance, there is a single element of weight 0, the trivial
function 1. At weight one, there are five elements,
In(—s;,;,1). At weight two, there are products of weight-
one functions, irreducible weight-two functions, and a new
constant, 72. The same pattern holds at weight three and
four, the highest weight required for two-loop amplitudes at
order €. To make the simplifications that one expects to
find in the remainders explicit, we write both one- and two-
loop amplitudes in terms of pentagon functions so that the
remainders themselves are written as combinations of
pentagon functions:

RO =S "r(@)hy(3). (8)

ieB

The coefficients r;(X) have lower total degrees compared
with the ¢;;(X) of Eq. (7), but to further increase the
efficiency of the reconstruction we find it useful to imple-
ment a series of improvements by investigating the struc-
ture of the coefficients on generic “univariate slices.” Such
slices are defined by parametrizing the twistor variables X
by a single variable ¢, x; = a; + b;t, with the a; and b;
chosen randomly in the finite field (for high enough
cardinality, this ensures the x; do not satisfy simple
relations leading to artificial simplifications). The coeffi-
cients r;(X) are themselves univariate rational functions of
t, r;{X(¢)] = r;(¢). Importantly, on such univariate slices the
degrees of the numerator and denominator of the rational
functions r;(#) correspond to the total degrees of r;(X) in
the x;. We use these slices to probe the complexity of the
functions and find simplifications. First, we classify the
pole structures of the coefficient functions r;(X). A similar
classification has been exploited for the computation of
one-loop QCD amplitudes in the past [26]. On physical
grounds we expect the pole structure to be determined by
the so-called alphabet of the pentagon functions. The
alphabet determines the points in phase space where the
pentagon functions (or their discontinuities) have logarith-
mic singularities, and they provide a natural ansatz for the
poles of the coefficients. The five-point planar alphabet can
be written in terms of 26 letters W, see Ref. [13], which we
rewrite in terms of twistor variables. This gives a set A of 26
independent letters A = {w;(X)}. Indeed, we find that the
denominators do factorize into products of letters,

n;(X)
[Tjeaw; ()%

The integer exponents g;; are determined by matching this
ansatz on univariate slices. The computation of the r;(X) is
then reduced to the much simpler multivariate polynomial
reconstruction of the numerators n;(X). Second, it is
expected that cancellations between different basis func-
tions in B take place in exceptional kinematic configura-
tions, which implies relations between their coefficients.
This motivates a search for a different basis of pentagon
functions with coefficients of a lower total degree. To find
this new (helicity-dependent) basis, we construct linear
combinations of coefficients

ri(X) = 9)

Nk()_é a;, k)

a;, r —, 10
Z ‘ TTjeaw; (%)% 1)

and solve for phase space independent a;; such that the
numerators Ny (X, a;;) factorize a subset of the w; € A.
This can be performed on univariate slices by only accept-
ing solutions which are invariant over multiple slices. The
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TABLE L. Each '/t¢ denotes the total degree of numerator (1)
and denominator (d) of the most complex coefficient for each
helicity amplitude in the decomposition of Eq. (7) (second
column) or Eq. (8) (third column). The fourth column lists the
highest polynomial we reconstruct. The final column lists the
number of letters w;(X) that contribute in the denominator of
Eq. (9).

Helicity ¢ri(1) ri(1) ni(t)  w;s in denominator
R S S0 s 10 3
—++++ A B 14
et 710/£65 450 /445 £40 17
—F =+ t84/t82 t68/t66 3 20

matrix a;; allows us to change to a new basis B’ in the
space of special functions, in which remainders can be
decomposed as in Eq. (8), with coefficients ;(X) whose
numerators 7;(X) are polynomials of lower total degree than
those of Eq. (9).

We believe that a deeper understanding of these two
improvements might be fruitfully exploited in the future to
tackle more complex computations. In particular, it would
be interesting to better understand how the branch structure
of pentagon functions is related to the poles of the
coefficients, and if this suggests a superior basis of
pentagon functions with simpler coefficients.

Implementation.—Let us now discuss how we applied the
techniques of the previous section to perform the analytic
reconstruction. We first compute numerical values for the
coefficients in a decomposition of one- and two-loop
amplitudes in terms of master integrals, using our C++
implementation of numerical unitarity on a finite field
[17,19]. We then introduce expressions for the master
integrals in terms of pentagon functions and compute the
remainders in Eq. (5) or Eq. (6). After changing the basis of
pentagon functions and multiplying by the predetermined
denominator structures, we arrive at an evaluation of
the numerator polynomials 7}(X). Table I summarizes the
impact of the improvements, the difficulty in the
reconstruction of each amplitude, and the number of
different letters appearing in the denominators of each
helicity. Given the simplicity of R.,,.,, we did not
implement any basis change for these helicities. We observe
a drastic increase in complexity from top to bottom, as
expected from one-loop amplitudes [41]. Comparing the
second and third columns we find that the coefficients in
Eq. (8) are indeed simpler than those in Eq. (7). We also
show that not all letters contribute to the denominator in
Eq. (9), even for the most complicated helicity.

The reconstruction of the multivariate polynomials is
done with an in-house implementation of the algorithm
presented in Ref. [21]. For a detailed description we refer to
the original article. The algorithm [21] correlates the
sampled phase space to the function it reconstructs,

learning about simplifications as it progresses. For this
reason, it is not trivial to parallelize. In our implementation
this is addressed by anticipating a suitable superset of the
points for a set of functions. This implementation is well
adapted to evaluations on modern computer clusters.

In order to demonstrate the efficiency of our approach,
we now summarize the computational requirements for the
numerical reconstruction of the presented amplitudes. The
dense nature of the algorithm implies that the complexity
grows as the number of terms in a polynomial of total
degree R in n variables, (* ). The functions we reconstruct
are dimensionless and thus only depend on the four
variables x(, x;, x,, and x3, see Eq. (4). For example,
for a generic polynomial with R =53, we would need
around 400 000 evaluations. In practice, we observe that
the polynomials we reconstruct are not completely generic
and we require fewer evaluations. For the most complicated
remainder, R_,_, ., we require 237098 phase-space
points for the reconstruction of all the functions n}(x).
For R__, ., we require 85979 phase-space points. The
average time for the numerical computation of the remain-
der of an MHV amplitude in a finite-field is 4 minutes per
phase-space point. The reconstruction of the remainders
R4y, is simpler. We perform the computation on a finite
field of cardinality O(23!). For the MHV amplitudes we
also evaluate on a second finite field and apply the Chinese
remainder theorem. With this, we are able to rationally
reconstruct the result.

Results.—We have validated the approach described
above by computing the one-loop amplitudes to all orders
in € (extending the results of Ref. [41]). We then used it to
obtain the analytic form of all planar five-gluon two-loop
amplitudes in the leading-color approximation, in the ’t
Hooft—Veltman regularization scheme. Our results are
included in a set of ancillary files [42]. The files contain
analytic expressions for the remainders of four helicity
configurations—A,, , ., see Eq. (5), and A__, ., see
Eq. (6)—from which any other helicity configuration can
be obtained by symmetry or permutation of the momenta.
These remainders are written as a linear combination of
pentagon functions, similar to Eq. (8) but with the adjusted
bases. This allows us to use the library provided in Ref. [13]
to evaluate the remainders. We also include analytic
expressions for the one-loop amplitudes, which are
required to obtain the two-loop amplitudes from their
remainder. These are written as a linear combination of
master integrals in the one-loop basis of Ref. [25] and valid
to all orders in €. We provide expressions for the expansion
of the one-loop master integrals through order €2, written in
terms of pentagon functions, so that they can easily be
combined with the expressions for the remainders. Finally,
we include a script that assembles all components to
evaluate a two-loop amplitude.

The results we present are valid in the Euclidean region.
Since they are written in terms of pentagon functions [13]
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there is minimal work to extend the results to all kinematic
regions. We checked our expressions against recently
computed two-loop amplitudes [3,5,7,9,16,17,19]. In the
ancillary files we include numerical values for the pentagon
functions at the phase-space point of Ref. [19] and a script
that numerically evaluates the amplitudes at that point.

Conclusions.—We have presented the analytic form of a
complete set of planar two-loop five-gluon amplitudes in
the leading-color approximation. The amplitudes were
obtained by reconstructing the analytic expressions from
numerical samples on finite fields, computed in the
framework of two-loop numerical unitarity. This allows
us to make the most of the resilience of numerical
calculations to handle intermediate steps and to only target
the analytic form of final expressions, which is constrained
by various physical properties. By focusing on finite
remainders, we reduced the complexity of the objects to
reconstruct. Efficiency of the reconstruction was further
enhanced by an a priori determination of the denominators
and changes of basis that considerably reduce the total
degrees of the numerators of the coefficients. Through this
process, we reduced the calculation of the coefficients to
the reconstruction of a multivariate polynomial of relatively
low total degree, rendering the most complex MHV
amplitudes easily reconstructible on a modern computer
cluster.

Our results include the first computation of the analytic
form of the five-gluon MHV amplitudes at two loops. They
are an important contribution to the NNLO QCD correc-
tions to three-jet production at hadron colliders. While in
principle the numerical evaluation of amplitudes is suffi-
cient, the efficiency requirements for phase-space integra-
tion over the final states are high due to helicity and color
sums. The analytic expressions that we provide will help to
control both the evaluation times and the numerical stability
of future phenomenological studies.

We expect our computational approach to greatly con-
tribute to formal developments in the study of scattering
amplitudes in quantum field theory, and to the new era of
precision QCD in high-energy physics.
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