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Abstract—Convolutional Neural Networks (CNNs) are state-
of-the-art in numerous computer vision tasks such as object
classification and detection. However, the large amount of param-
eters they contain leads to a high computational complexity and
strongly limits their usability in budget-constrained devices such
as embedded devices. In this paper, we propose a combination of a
new pruning technique and a quantization scheme that effectively
reduce the complexity and memory usage of convolutional layers
of CNNs, and replace the complex convolutional operation by a
low-cost multiplexer. We perform experiments on the CIFAR10,
CIFAR100 and SVHN and show that the proposed method
achieves almost state-of-the-art accuracy, while drastically re-
ducing the computational and memory footprints. We also
propose an efficient hardware architecture to accelerate CNN
operations. The proposed hardware architecture is a pipeline
and accommodates multiple layers working at the same time to
speed up the inference process.

Index Terms—convolutional neural networks, pruning, weight
binarization, hardware implementation.

I. INTRODUCTION AND RELATED WORK

For the past few years, Deep Neural Networks (DNNs),
and especially Convolutional Neural Networks (CNNs) [1],
have received considerable attention thanks to their remarkable
accuracy in computer vision tasks [2]–[5] such as classifi-
cation and detection [6]. However, their need for intensive
computations and memory has meant that most of the im-
plementations are based on GPUs, while providing efficient
hardware implementations is still a very active and prospective
field of research. Therefore, the deployment of CNNs in
embedded systems is complex and potentially blocking for
many potential applications.

To address this limitation, multiple approaches have been
proposed in the literature. For example the authors of [7]
and [8] propose to reduce DNNs’ memory footprint by com-
pressing their weights. In these two approaches, the obtained
DNN is not retrained after compression, leading to potentially
sub-optimal solutions. Following this lead, the authors of [9]
have showed that training and compressing weights simulta-
neously can lead to better accuracy. In the same vein, in [10]
and [11], the authors propose to binarize the weights during
the learning phase. As a result, the obtained DNN contains
only weights whose values are 1 or −1, while suffering
from a very limited drop in accuracy compared to state-
of-the-art solutions. These works have been improved later
in [12], where the authors proposed to add a scaling factor
per layer and per kernel, as a mean to offer better diversity

to binary networks, with almost no impact on memory us-
age or complexity. Other approaches have proposed to limit
weights to three or more values (−1, 0, and 1) [13]–[15].
These approaches demonstrate that using slightly more bits to
encode weights enable to improve accuracy by a significant
amount, but they also require much more memory and other
hardware components to compute non-binary operations. In
recent works [16], [17], authors have proposed to binarize both
weights and activations in CNNs, resulting in potentially very
efficient hardware implementations. However, these methods
end up with a significant lower accuracy than state-of-the-
art ones.

Once a binary neural network has been trained, efficient
implementations can advantageously benefit from simplified
operations. For example, multiplications in binary neural
networks can be replaced by simple low-cost multiplexers.
Efficient solutions have been proposed in [18], [19]. However,
even binary neural networks still require significant compu-
tational power and memory. These solutions also typically
lead to a considerable latency, which may be an issue for
some applications. In another line of work, authors have been
aiming at reducing the number of trainable parameters in
DNNs. In [7], [20], the authors successfully apply pruning
techniques to fully connected layers of DNNs. However, state-
of-the-art CNNs are using more and more convolutional layers
nowaday: in a typical modern architectures like ResNet18,
about 99% of the connections are in convolutional layers, and
thus pruning connections only in fully connected layers has
almost no impact on the overall complexity and memory usage
of the architecture.

In this paper we propose to combine an efficient pruning
technique, which can be effectively leveraged at implementa-
tion stage, with binary neural networks. We apply the proposed
pruning technique on convolutional layers, resulting in very
lightweight convolutions that can be implemented with simple
multiplexers. The proposed method approaches state-of-art
accuracy on the CIFAR10, CIFAR100 and SVHN dataset.
We also propose a hardware implementation which uses very
few resources and computational power. This implementation
can compute more than one layer at a time and uses a
simple multiplexer to perform convolutional operations. As
such, it provides significantly smaller latency than existing
counterparts.

The outline of the paper is as follows: in Section II we
describe the proposed method and describe experiments on



the CIFAR10, CIFAR100 and SVHN dataset. In Section III
we present the proposed hardware implementation and show
hardware implementation results. Section IV concludes.

II. PROPOSED METHOD

In this section, we introduce a method to efficiently prune
connections in convolutional layers. Note that pruning may
have two different aims: a) to decrease the number of parame-
ters to be trained in a given architecture, thus resulting in lesser
chance of overfitting and b) to decrease the memory usage and
complexity of a given architecture, so that it becomes lighter to
implement in a budget-restricted configuration. If some author
(e.g. [20]) argue they do both, we believe this is questionable
as the reduction of the number of trainable weights they obtain
on the one hand is balanced by the increasing complexity of
identifying which connections are kept and which are lost in
the process.

The proposed method has the double of interest of decreas-
ing the number of parameters to be trained while keeping a
simple deterministic way of identifying which connections are
kept and which are disregarded.

A. Details of the Proposed Method

Let us denote by x (resp. y or w) the input (resp. output or
kernel) tensor of a given convolutional layer. We index x (resp.
y) using three indices i, j, k (resp. `), where 0 ≤ i < imax

and 0 ≤ j < jmax correspond to 2D coordinates and 0 ≤ k <
kmax (rsp. 0 ≤ ` < `max)ndexes a feature map. Similarly, we
inde w using four indices: 0 ≤ ι ≤ ιmax and 0 ≤ λ ≤ λmax

correspond to 2D coordinates, and k and ` are as introduced
above. So, an element of the input tensor is written xi,j,k, an
element of the kernel tensor is written wι,λ,k,l and an element
of the output tensor is written yi,j,l.

The idea we propose consists of removing most of the
connections in each slice w·,·,k,` of the kernel tensor. The
connections to be kept are chosen according to a deterministic
rule agnostic of the initialization and of the training dataset.
Namely, we choose to only keep the connections wι,λ,k,` for
which

ι+ λιmax = k (mod ιmaxλmax). (1)

When considering 3 × 3 kernels for example, we remove
89% of the connections in the convolutional layer. The reason
for choosing this scheme is quite straightforward: we want
diversity in the connections we keep to be sure our kernels
do not simplify to a simple 1× 1 convolution and still cover
the initial kernel to its full extent (providing at least 9 feature
maps are used).

We then perform the training on the remaining connections,
disregarding the other ones. Using this method, the convolu-
tion of each slice of the kernel tensor is replaced by a simple
multiplication.

To further benefit from the reduced complexity of this
pruning technique, we combine it with a weight binarization
method. Here, we use Binary Connect (BC) [10]. Once re-
maining connections have been binarized, it is possible to
replace the multiplication operation by a multiplexer.

B. Results

To evaluate the performance of our proposed method, we
use the CIFAR10 vision benchmark made of tiny 32x32
images. We compare various modern CNN architectures such
as Resnet [21], Wide-Resnet [22], Densenet [23], and Mo-
bilenet [24]. Note that these architectures contain 1 × 1 and
3× 3 convolutional kernels only. Thus we apply the proposed
method on the 3× 3 kernels.

As a first experiment, we aim at estimating the drop in per-
formance caused by pruning connections. We thus randomly
remove m connections per kernel slice. Figure 1 shows that
the accuracy of the architecture is quite robust to this process,
even when 8 out of the 9 connections in slices of 3×3 kernels
are removed.

We then report in Table I the obtained results using Equa-
tion (1) to remove kernels connections. Note that contrary to
the previous experiment, removed connections are not chosen
randomly anymore but according to a deterministic scheme. As
a consequence, the positions of removed connections does not
have to be stored. We compare the accuracy obtained using
baseline architectures, pruned ones, binarized ones, and our
proposed method mixing pruning and BC. Note that BC offers
a 32 compression factor in terms of memory used, and our
method roughly multiply this factor by 9, achieving an almost
300 factor compression in total. We also perform experiments
on SVHN (resp. CIFAR100) on Resnet18 (resp. WideResnet-
40-10) and obtain 97%/96% (resp. 80%/77%) accuracy for
Full-precision/pruning+BC.
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Fig. 1. Evolution of accuracy as function of number of connections removed
per kernel slice.

III. HARDWARE IMPLEMENTATION

In this section, we first introduce the hardware architecture
of the proposed method, its different components, and the
way they are connected. Then, we present the hardware
implementation of the proposed method, applied on ResNet18,
on a Field Programmable Gate Array (FPGA).



TABLE I
COMPARISON OF ACCURACY BETWEEN BASELINE ARCHITECTURES, PRUNED ONES, BINARIZED ONES, AND THE PROPOSED METHOD ON CIFAR10.

Resnet18 Resnet34 WideResnet-28-10 Densenet121 MobilenetV2

Full-precision 94.5% 95% 96% 95% 94.4%

Pruning 93.5% 93.8% 95% 94.3% 93.3%

BC 93.31% 93.64% 95.2% 94.5% 93%

Pruning + BC 91% 91.3% 94% 93% 91%

TABLE II
FPGA RESULTS FOR THE PROPOSED ARCHITECTURE ON VU13P (XCVU13P-FIGD2104-1-E).

P LUT FF BRAMs Frequency Processing Latency Processing outflow Power

Conv64− 64 16 22424 22424 114 240MHz 52µ s 19230 images/s 3.7W

4×Conv64− 64 16 89746 75235 456 240MHz 208µ s 19230 images/s 6.5W

3×Conv128− 128 32 59780 45024 171 240MHz 154, 8µ s 19379 images/s 4.8W

3×Conv128− 128 64 134090 102552 171 240MHz 103, 2µ s 29069 images/s 7.8W

3×Conv256− 256 64 74067 52051 87 250MHz 147, 3µ s 20366 images/s 5.5W

3×Conv256− 256 128 154599 102723 87 218MHz 112, 8µ s 26595 images/s 7.8W

3×Conv512− 512 128 132155 52151 45 208MHz 177µ 16949 images/s 7.9W

A. Hardware Architecture

In Figure 2, we depict the proposed hardware architecture
for performing convolutions, which we name a “layer block”.
This architecture uses a simple low-cost multiplexer. In more
details, a layer block is made of two sub-blocks: a memory
one and a processing unit one.
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Fig. 2. Hardware architecture of a layer block.

The memory block contains two block RAMs (BRAMs)
where content is encoded using n bits fixed point. The first
is used to store the computed feature maps. Once they are
all computed, the content of the first BRAM is copied to the
second one, so that it becomes the input of the next layers. At
the same time, the computed feature maps of another image
can be stored in the first BRAM. We thus obtain a pipeline
architecture, in which all implemented layers work at the same
time to speed up the classification process.

To avoid data overflow, we process each row of a slice
of the input tensor x independently, and each slice of the
kernel tensor independently. In more details, we copy from
BRAM one to BRAM two a feature subvector X2

i,k =
{x2i,1,k, x2i,2,k, . . . , x2i,R′,k} made of R′ values, instead of the
whole feature vector X1

i,k = {x1i,1,k, x1i,2,k, . . . , x1i,R,k} made
of R > R′ values (cf. Figure 2). This is to account for the
border effects (padding). To simplify notations, we replace
X1
i,k (resp. X2

i,k) by X1 (resp. X2) in the following.

To compute a convolutional operation, kernels move along
feature maps with a step which is called stride in CNNs. In a
typical case in which stride value is 1, X2 represents either the
first R′ values, the middle R′ ones or the last R′ ones, where
R′ = R− 2, depending on the position of the nonzero kernel
value. When stride value is 2 (c.f. Figure 4), only half of the
values are copied from X1 to X2 by selecting either the odd
or even values of j in x1i,j,k using multiplexers. This process
can be generalised to any stride value other than 1 or 2.

x1i,1,k x1i,2,k x1i,3,k x1i,4,k x1i,R−1,k x1i,R,k

MUX MUX MUX

x2i,1,` x2i,2,` x2i,R′,`

Fig. 4. Hardware architecture to copy the first BRAM contents to the second
BRAM, when stride value is 2.

The processing unit uses X2 and a vector W made of P
values coded on 1 bit each corresponding to weights in the
convolution kernel. It thus computes in parallel P feature
vectors (cf. Figure 3). The First-Input signal (FI) is set to
1 when the first feature vector is read from the second BRAM
to initialise registers by 0. To compute each feature vector p
where 1 ≤ p ≤ P , we use the corresponding Wp to add either
X2 or -X2 to the content of register p. Once all input feature
vectors have been read from the second BRAM of memory
block, the signal Enable_s is set to 1, and the content of
registers is written one by one into the first BRAM of the
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Fig. 3. Hardware architecture of a processing unit block.

memory block of the next layer. At the end of this process,
the Itter_done signal is set to 1 in the processing unit
block, so new data can be read from the memory block to
process other feature vectors.

To achieve the computation associated with the layer block
described in Figure 2, kmaxjmax clock cycles (CCs) are
required to copy all contents from the first BRAM to the
second one, jmaxkmax`max/P CCs to compute all output
feature vectors of one layer, and jmax`max CCs to write all
computed feature vectors into the memory block of the next
layer. Thus the total number of CCs required is:

CCs = jmaxkmax +
jmaxkmax`max

P
+ jmax`max (2)

This should be compared to [19], where the number of clock
cycles becomes:

CCs =
3j2maxkmax`max

P
(3)

We observe that the proposed architecture is 3jmax faster
than [19], which can be significant when jmax is big. For
instance with the CIFAR10 dataset, at the input layer of a
CNN jmax = 32, and thus the proposed method is 96 times
faster. In addition it is a pipeline architecture, so it can be
3Ljmax faster where L is the total number of layer blocks
that fit in an FPGA.

Note that in the proposed architecture, P should be lower
or equal to `max, otherwise reaching full parallelism would
require to read more than one vector X2, and as such would
also require more BRAMs, resulting in a more complex
architecture.

B. Hardware Results

We implemented one/few layers of Resnet18 on Xilinx Ultra
Scale Vu13p (xcvu13p-figd2104-1-e) FPGA. The implemented
layers are arranged in a pipeline, and their functionality has
been verified comparing the output of each layer block with
the ones obtained by software simulation over a batch of
examples. Table II shows the required resources to implement
one/few layers of Resnet18 trained on CIFAR10 dataset for
different values of P . It also shows that the obtained architec-
ture obtain a low processing latency to compute a valid output
of one layer. Moreover, this processing latency increases when
processing more than one layer, but processing outflow is
maintained thanks to the pipeline design.

IV. CONCLUSION

In this paper, we proposed to extend pruning techniques to
convolutional layers of DNNs. We introduced a deterministic
pruning scheme that can be taken advantage of in implementa-
tions. We combined pruning with weight binarization to reduce
both complexity and memory usage and showed the resulting
neural network is still able to reach very high accuracy.

We implemented the proposed scheme using a low cost
hardware architecture in which complex convolution opera-
tions are replaced by simple multiplexers. As a result, we
were able to implement a considerable part of some complex
CNNs such as Resnet18. Moreover, the architecture only
consumes a few watts, making it a good solution for embedded
applications. Future work will extend this method to all kernel
shapes, and propose a low cost hardware architecture to handle
other challenging vision datasets such as ImageNet.
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