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Abstract
In this paper we study the convergence properties of the Nesterov’s family of inertial schemes

which is a specific case of inertial Gradient Descent algorithm in the context of a smooth convex
minimization problem, under some additional hypotheses on the local geometry of the objective
function F , such as the growth (or Łojasiewicz) condition. In particular we study the different
convergence rates for the objective function and the local variation, depending on these geometric
conditions. In this setting we can give optimal convergence rates for this Nesterov scheme. Our
analysis shows that there are some situations when Nesterov’s family of inertial schemes is asymp-
totically less efficient than the gradient descent (e.g. in the case when the objective function is
quadratic).

Keywords: Smooth optimization, convex optimization, inertial gradient descent algorithm, Nes-
terov acceleration, growth condition, Łojasiewicz condition, rate of convergence

1 Introduction
Let N ∈ N∗. We are interested in the following minimization problem:

min
x∈RN

F (x) (1.1)
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where F : RN −→ R, is a convex function in C 1,1(RN ) with L-Lipschitz gradient such that argminF 6=
∅. In this setting various algorithms have been proposed in order to solve numerically the minimization
problem (1.1) such as the classical gradient descent algorithm and its variants.

Starting from a point x0 ∈ RN , the classical Gradient Descent algorithm (1.2) with a fixed step-size
γ > 0 reads:

xn+1 = Tγ(xn) := xn − γ∇F (xn). (1.2)

Algorithm (1.2) is a descent scheme (i.e. F (xn+1) 6 F (xn)) provided that 0 < γ < 2
L , and without

any further hypothesis made on the function F , it provides a sequence that convergences (weakly in an
infinite-dimensional Hilbert space) to a minimizer, as also convergence rates for the values F (xn)−F (x∗)
of order o

(
n−1

)
. In addition this order has been proved to be optimal (see for example [33] and [22]).

In order to "accelerate" this convergence rate, in the seminal work of Nesterov [36], the author
proposed an inertial version of Gradient descent algorithm with a suitable momentum term, i.e.

θn+1 =
1 +

√
4θ2n + 1

2
, with θ0 = 1,

yn = xn +
θn − 1

θn+1
(xn − xn−1),

xn+1 = yn − γ∇F (yn).

(1.3)

Algorithm (1.3) accelerates the convergence rate of the values F (xn) − F (x∗), in the sense that it
is of order O

(
n−2

)
asymptotically. Several extensions have been made also in the non-differentiable

setting (proximal-splitting-methods), see for example [23] and [11], as also with different choices for the
momentum parameter (i.e. the term θn−1

θn+1
in (1.3)).

In this paper, we consider a special choice of the momentum parameter/over-relaxation term of the
Inertial Gradient Descent (1.5). This inertial scheme is described hereafter and depends of a sequence
(αn)n>1: for any 0 < γ 6 1

L , we set x0 = x1 ∈ RN and for all n > 1:

yn = xn + αn(xn − xn−1)
xn+1 = Tγ(yn) := yn − γ∇F (yn).

(1.4)

αn ∈ [0, 1] may be a constant parameter or it may depend on the iteration number. In this paper we
focus on the Nesterov’s family of algorithms, that is the specific choice αn = n

n+b , with b > 0. Note
that this term is the same as the one chosen in [17] in the non-smooth setting (see also [45],[1], [7] and
[6]). The term "family of algorithms" refers to the dependence on the parameter b > 0. We therefore
rewrite explicitly here what we call Nesterov’s family of inertial algorithms or simply Nesterov (inertial)
scheme in the rest of the paper:

yn = xn +
n

n+ b
(xn − xn−1)

xn+1 = Tγ(yn) := yn − γ∇F (yn).
(1.5)

Notice that in (1.3), we have 1 − θn−1
θn+1

∼ 3
n . Without any further hypothesis on the function F , it

was proven that if the parameter b satisfies b > 3, then the convergence rate of the objective function is
of order of O

(
n−2

)
(see for example , [6], [45] and [17]). Another interesting issue of this choice is that

if b > 3 it can be proven that the iterates of (1.5) converge to a minimizer (see for example [17] and [6],
and it can also be shown that the order of convergence rate of the objective function is actually o

(
n−2

)
(see [8]). Other recent studies of algorithm (1.5) include results for the case b ∈ (0, 3) (see for example
[1] and [7]) which provide an order of O

(
n−

2b
3

)
.

In this work we are interested in studying the convergence properties of the Nesterov scheme that is
inertial gradient descent scheme (1.5) for solving the minimization problem (1.1), under some additional
assumptions on the local geometry of the function F in a neighbourhood of its minimizer x∗ that we
recall in Section 2.

As it was shown by Attouch and Cabot in [5], if F is a strongly convex function the sequence
(xn)n∈N satisfies F (xn)−F ∗ = O

(
n−

2b
3

)
for any b > 0. In this work we give bounds depending on more

general geometries than strongly convex functions, that is functions behaving like ‖x − x∗‖β around
the minimizer for any β > 1. In particular we prove that if F is strongly convex and ∇F is Lipschitz
continuous, the decay is always better than F (xn) − F ∗ = O

(
n−

2b
3

)
. We also prove that the actual
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decay for quadratic functions is F (xn)−F ∗ = O
(
n−b

)
. These results rely on two geometrical conditions,

one ensuring that the function is sufficiently flat around the minimizer, one ensuring it is sufficiently
sharp. We recover exactly rates given in [10] for the associated ODE for any inertial parameter b and
these rates are proved to be optimal in the continuous setting. Notice that since the early work of Polyak
in [39], it is proven that the convergence rate of the classical gradient descent algorithm for quadratic
functions is geometric. As a consequence, the decay O

(
n−b

)
found in the current work, for Nesterov

scheme (1.5) is asymptotically slower than the one of the classical gradient method.
The current work consists in a discrete counterpart of the works [9] and [10]. Indeed, there has been

a large body of literature in the 5 past years regarding the connections between dynamical systems and
their discrete schemes (algorithms). In our framework it is worth mentioning the pioneering works [45]
and [6] where it was shown that algorithm (1.5) is related to the following differential equation:

ẍ(t) +
b

t
ẋ(t) +∇F (x(t)) = 0 . (1.6)

In particular, algorithm (1.5) can be seen as a time-discretization scheme of the differential equation
(1.6) with a time step √γ (where γ 6 1

L corresponds to the step-size in (1.5)).
Various works have been devoted to the study of (1.6) and in particular to the convergence properties

of the trajectory of solutions of (1.6), which correspond naturally to the same properties of a sequence
generated by the algorithm (1.5). In particular it was shown that the convergence rate for the objective
function F (x(t)) − F (x∗) is of order O

(
t−2
)
if b > 3 (see [45] and [6]), while for b > 3 this order is

actually o
(
t−2
)
(see [32]) and the trajectory {x(t)}t>0 weakly converges to a minimizer of F ([6]). As

for the case b ∈ (0, 3) this order reduces to O
(
t−

2b
3

)
(see [7], [9] and [2]), and this rate is optimal [9].

Recently in [9] and [10] the authors studied the behavior of the trajectory of the solutions {x(t)}t>0

of (1.6), for a function F satisfying geometric assumptions in a neighbourhood of its minimizers (flatness
and/or sharpness). The present work is thus the discrete counterpart of those papers.

The present paper is organized as follows. First we introduce in Section 2 the conditions on the
local geometry of the function F . In section 3 we present the main results of this work concerning the
order of convergence rate for Algorithm (1.5) and we confront them to related works. We also explain
how to extend these results to a specific class of non-differential optimization problems. In section 4
we present the asymptotic analysis made for (1.5) (i.e. the proofs and the schema of the proofs of the
main results). Appendix A and Appendix B contain some Lemmas (and their proofs) necessary for our
analysis.

2 Geometry of convex functions around their minimizers
In this paragraph we present two conditions on a convex function describing its (local) geometry around
the set of its minimizers. Roughly speaking, these two conditions characterize functions behaving like
‖ · ‖β around its set of minimizers: one ensures that the function is sufficiently flat, while the other
ensures that it is sufficiently sharp in the neighborhood of its minimizers.

Definition 2.1. Let F : RN → R be a convex differentiable function with X∗ = argminF 6= ∅.

1. Let β > 1. The function F satisfies the condition H(β) if, for any minimizer x∗ ∈ X∗, there exists
η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) 6 1

β
〈∇F (x), x− x∗〉.

2. Let p > 1. The function F satisfies the condition L(p) if, for any minimizer x∗ ∈ X∗, there exists
a constant Kp > 0 and ε > 0 such that:

∀x ∈ B(x∗, ε), Kp‖x− x∗‖p 6 F (x)− F (x∗).

The hypothesis H(β) already used in [15, 45, 9, 10], generalizes the notion of convexity of a differ-
entiable function in a neighborhood of its minimizers. Observe that any convex function automatically
satisfies H(1), and that any differentiable function F ensuring that (F − F (x∗))

1
β is convex, satisfies

H(β) with β > 1, which is slightly more demanding than the convexity of F . To have a better insight
on the local geometry of convex functions satisfying the hypothesis H(β), we need the following result:
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Lemma 2.1 ([10, Lemma 2.4]). Let F : RN → R be a convex differentiable function with X∗ =
argminF 6= ∅. If F satisfies H(β) for some β > 1, then:

1. The function F satisfies H(β′), for all 1 6 β′ 6 β.

2. For any minimizer x∗ ∈ X∗, there exist M > 0 and η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) ≤M‖x− x∗‖β . (2.1)

In other words, the hypothesis H(β) with β > 1, can be interpreted as a flatness condition: it
ensures that the function F is sufficiently flat (at least as flat as x 7→ ‖x‖β) in the neighborhood of its
minimizers.

The hypothesis L(p), p ≥ 1, is a growth condition on the function F around its set of minimizers X∗.
Note that, when X∗ is a connected compact set, it can be replaced by a more general growth condition
on F in the neighborhood of its minimizers [10], usually referred to as Hölder metric subregularity [26]:

Lemma 2.2. Let F : Rn → R be a convex differentiable function satisfying the growth condition L(p)
for some p > 1. Assume that the set X∗ = argminF is compact. Then there exists Kp > 0 and ε > 0
such that, for all x ∈ Rn:

d(x,X∗) 6 ε⇒ Kpd(x,X
∗)p 6 F (x)− F ∗.

Historically, the growth condition L(p) is also called p-conditioning [22] or Hölderian error bound
[14], and is closely related to the Łojasiewicz inequality [30, 31], a key tool in the mathematical analysis
of continuous and discrete dynamical systems [12, 13]:

Definition 2.2. A differentiable function F : RN → R is said to have the Łojasiewicz property with
exponent θ ∈ [0, 1) if, for any critical point x∗, there exist c > 0 and ε > 0 such that:

∀x ∈ B(x∗, ε), ‖∇F (x)‖ > c|F (x)− F ∗|θ. (2.2)

where: 00 = 0 when θ = 0 by convention.

In the convex setting, the growth condition L(p), p > 1, is indeed equivalent to the Łojasiewicz

inequality, with exponent θ = 1− 1
p ∈ (0, 1] and c = K

1
p
p (see for example [12, 14]). Typical examples of

functions having the Łojasiewicz property are real-analytic functions and C1 subanalytic functions or
semialgebraic functions [30, 31]. Strongly convex functions satisfy a global Łojasiewicz property with
exponent θ = 1

2 [3], or equivalently a global version of the growth condition, namely:

∀x ∈ Rn, F (x)− F ∗ > µ

2
d(x,X∗)2,

where µ > 0 denotes the parameter of strong convexity. Likewise, convex functions having a strong
minimizer in the sense of [5, Section 3.3], also satisfy a global version of L(2). By extension, uniformly
convex functions of order p > 2 satisfy the global version of the hypothesis L(p) (see for example
[4, 14, 22] and their references).

The geometrical interpretation of the condition L(p) is straightforward: it ensures that the function
F is sufficiently sharp (at least as sharp as x 7→ ‖x−x∗‖p) in the neighborhood of its set of minimizers.
Consistently, observe that any convex function satisfying L(p), satisfies L(p′) for all p′ > p.

Consider now any convex differentiable function F satisfying both hypothesis H(β) and L(p). Com-
bining the related inequalities, namely (2.1) and the growth condition L(p), F has to be at least as flat
as ‖x− x∗‖β and as sharp as ‖x− x∗‖p in the neighborhood of its minimizers.

For the simple example of the function F : x ∈ R −→ |x|γ with γ > 1, a straightforward computation
shows that F satisfies H(β) and L(p) if and only if 1 6 β 6 γ 6 p. More generally:

Lemma 2.3. If a convex differentiable function F satisfies both H(β) and L(p), with β, p > 1, then
necessarily: p > β.
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In our framework, the objective function F is assumed to be convex and differentiable with a Lipschitz
continuous gradient. For such functions, the Lipschitz continuity of the gradient provides some additional
information on the local geometry of F in the neighborhood of its minimizers. Indeed, for convex
functions, the Lipschitz continuity of the gradient is equivalent to a quadratic upper bound on F :

∀(x, y) ∈ RN × RN , F (x)− F (y) 6 〈∇F (y), x− y〉+ L

2
‖x− y‖2. (2.3)

Applying (2.3) at y = x∗, we then deduce:

∀x ∈ RN , F (x)− F ∗ 6 L

2
‖x− x∗‖2, (2.4)

which indicates that F is at least as flat as ‖x− x∗‖2 around X∗. More precisely:

Lemma 2.4. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0.

1. If F satisfies the growth condition L(p), then necessarily p > 2.

2. If F satisfies L(2), then F automatically satisfies H(β) with β = 1 + K2

2L and K2 6 L
2 .

Proof. Assume that F satisfies the condition L(p). Combining the inequality (2.4) and the growth
condition, we get: for any x∗ ∈ X∗,

Kp‖x− x∗‖p 6 F (x)− F (x∗) 6 L

2
‖x− x∗‖2, (2.5)

for all x in some neighborhood of x∗, which necessarily implies: p > 2. In the particular case p = 2,
we also deduce that: 2K2 6 L. The second point of Lemma 2.4 has already been shown in [10, Lemma
2.6].

3 Main results and contributions
The main results of the paper are summarized in the two theorems presented in this section. They
mostly give some convergence rates for the values F (xn)−F (x∗) where (xn)n∈N is the sequence built by
the Nesterov scheme (1.5) for various choices of friction parameter b and geometrical conditions H(γ)
and L(2).

Numerous decay rates have been proposed for the Nesterov scheme [37], for gradient descent [22], or
more general inertial schemes such as inertial gradient descent [5] or Heavy Ball methods [40, 27]. Some
results are available for any convex functions and others assume strong convexity or condition L(2).
Moreover, this inertial scheme can be seen as a discretization scheme of the specific ODE (1.6) and the
given results are closely related to associated problem. We also will provide a comparison between the
continuous setting and this discrete counterpart. But to be precise in all the comparisons that should
be done with the state of the art we first give our results and discuss in a second time.

3.1 Main results
We now present the two main Theorems of this paper. The first theorem enlightens the role of the
flatness assumption H(β) to get better decay rates:

Theorem 3.1. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous
gradient for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) with β > 1. Then we have the following:

1. If b < 1 + 2
β , the following convergence rates hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2bβ
β+2

)
and ‖xn − xn−1‖ = O

(
n−

bβ
β+2

)
. (3.1)
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2. (i) If b > 1 + 2
β then the following convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−2

)
. (3.2)

If in addition b > 2, then {xn}n≥1 is bounded and:

‖xn − xn−1‖ = O
(
n−1

)
. (3.3)

(ii) If b > 1 + 2
β then:

+∞∑
n=0

n
(
F (xn)− F (x∗)

)
< +∞ and

+∞∑
n=0

n‖xn − xn−1‖2 < +∞. (3.4)

In addition the sequence {xn}n∈N converges to a minimizer x∗.

(iii) If b > 1 + 2
β and if F satisfies L(2) and admits a unique minimizer, then the following

convergence rates hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2bβ
β+2

)
and ‖xn − xn−1‖ = O

(
n−

bβ
β+2

)
. (3.5)

Corollary 3.1. In view of point 2(ii) of Theorem 3.1, in the case b > 1 + 2
β , for n ∈ N, we actually

have:
F (xn)− F (x∗) = o

(
n−2

)
and ‖xn − xn−1‖ = o

(
n−1

)
, (3.6)

as also the sequence xn converges to a minimizer x∗.

This corollary is an extension of Theorem 1 in [8]. The proof of this corollary is a direct consequence
of the summability (3.4) and of Lemma A.2 in Appendix A (these two results are key elements of the
convergence proof in [17]) as detailed hereafter.

We define Un = F (xn)− F (x∗) + ‖xn−xn−1‖2
2γ . From (3.4) we deduce that∑
n>1

nUn < +∞. (3.7)

It follows that for any ε > 0, it exists a rank n0 such that for any n > n0,

n∑
k=[n2 ]

kUk < ε. (3.8)

Hence, the sequence Ũn = min
k∈[[n2 ],n]

Uk satisfies

Ũn ×
n∑

k=[n2 ]

k 6
n∑

k=[n2 ]

kUk < ε. (3.9)

and thus Ũn = o
(

1
n2

)
. Moreover (Un)n>1 is non-increasing (see Lemma A.2 in Appendix A) and thus

Un = Ũn which concludes the proof of (3.6).
The proof of the convergence of the sequence xn to a minimizer x∗ is also based on the estimates

(3.4) and it is identical to the one made in [17] (see Theorem 3) and is omitted here.
Let us make some observations: first, the point 2(iii) of Theorem 3.1 only applies for β 6 2, since

there exists no function satisfying both H(β) with β > 2, and L(2) (see Lemma 2.3). Note also that
the uniqueness of the minimizer is needed to apply the point 2(iii) of Theorem 3.1, but it is still an
open problem to know if this uniqueness assumption is necessary. In a context such as the Least Square
problem, the hypothesis on the uniqueness of x∗ can be omitted since the whole trajectory (xn)n∈N
belongs to an affine space where the solution of the minimization problem is unique.

Remark 1 (The Least Square problem). Let us consider the Least square inverse problem. Given
y ∈ RM and a positive-definite bounded linear operator (matrix) A : RN −→ RM , we consider the
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function F : RN −→ R such that F (x) = 1
2‖Ax − y‖

2 for all x ∈ RN and the minimization problem
(1.1), i.e.:

min
x∈RN

1

2
‖Ax− y‖2. (LS)

For the problem (LS), the algorithm (1.5) reads:

yn = xn + αn(xn − xn−1)
xn+1 = yn − γA∗

(
Ayn − y

) (3.10)

with x0 = x1 ∈ RN . We then deduce that for all n ∈ N, xn ∈ {x0}+ ImA∗.
Since this problem has a unique solution on the space {x0} + ImA∗, the second point of Theorem

3.1 is applicable.

The second main Theorem of this work deals with flat geometries, i.e. with functions satisfying H(β)
and L(p) with p > β > 2, in the neighborhood of their minimizer:

Theorem 3.2. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous
gradient for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) and L(p) with p > β > 2, and that F has a unique minimizer. If

b ≥ β+2
β−2 , then the following estimate hold true:

F (xn)− F (x∗) = O
(
n−

2p
p−2

)
.

In Table 1 we give an overall summary of the results in Theorems 3.1 and 3.2, concerning the
convergence properties of Nesterov’s scheme (1.5), depending on the over-relaxation parameter b > 0
and the local geometry of the function F (i.e. parameters β and p).

b (inertia) H(β) and L(p) rates F (xn)− F ∗ convergence
b ≤ 1 + 2

β H(β) O
(
n−

2βb
β+2

)
b > 1 + 2

β H(β) o
(
n−2

)
xn → x∗

b ≥ 1 + 2
β H(β) & L(2) O

(
n−

2βb
β+2

)
xn → x∗

uniqueness of the minimizer
b ≥ β+2

β−2 H(β) & L(p), p ≥ β > 2 O
(
n−

2p
p−2

)
xn → x∗

uniqueness of the minimizer

Table 1: Summary of the convergence properties of Nesterov’s scheme (1.5).

Theorem 3.1 enlightens the role of the flatness hypothesis H(β). As in the continuous setting [10],
we will see that this flatness hypothesis may ensure a better decay rate, avoiding too large oscillations
around the minimizer.

Let us first recall some state of the art results about the Nesterov family of inertial schemes (1.5). It is
known since [36] in 1983 that for b = 3 the Nesterov scheme (1.5) ensures that F (xn)−F (x∗) = O

(
1
n2

)
,

if F is convex. Actually, the proof of Nesterov was also available for b > 3 but the value b = 3 ensures
the lowest constant hidden in the big O. That is why this choice was used for the generalization to non
smooth functions FISTA [11] or for restarting methods [38]. In [17], Chambolle and Dossal reminded
that any b > 3 may provide the same decay, and they showed that if b > 3, we can moreover ensure
the weak convergence of iterates in a Hilbert space and the convergence of

∑
n∈N n(F (xn)−F (x∗)). In

[8], Attouch and Peypouquet deduced from this summability that F (xn)− F (x∗) = o( 1
n2 ) when b > 3.

More recently, following similar results from the continuous setting, Attouch et al. [7] and Apidopoulos
et al. [1] proved that F (xn) − F (x∗) = O

(
n−

2b
3

)
when b 6 3. Points 1, 2(i) and 2(ii) from Theorem

3.1 highlight that if F satisfies H(β) for β > 1, the decay rate is actually better than O
(
n−

2b
3

)
for all

b 6 3 and that the limit value for parameter b ensuring the convergence of iterates and the convergence
of
∑
n∈N n(F (xn)− F (x∗)) is actually 1 + 2

β < 3. As a consequence for such functions, the sequence of
iterates converges for b = 3.
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For classical gradient descent, the condition L(2) is the key to get the optimal decay rate, since
the function F (x) = |x|p satisfies L(p) by definition and achieves the best decay rate for functions
satisfying L(p) [33]. But, considering inertial algorithms, we will see that the sharpness is not always
the key assumption, and that to get better rates for Nesterov scheme (1.5), one need to control both
the sharpness and the flatness of the function.

Consider first the class of strongly convex functions. In that case, Su et al. proved in [45] that for
b 6 9, if F is strongly convex then: F (xn) − F (x∗) = O

(
n−

2b
3

)
. This result was extended to any

b > 0 by Attouch et al. [8] for functions having a strong minimizer. The strong convexity or the strong
minimizer assumption ensure that H(1) and a global version of L(2) are in force. So, applying the
point 2(iii) of Theorem 3.1, we recover the rate O

(
n−

2b
3

)
stated in [45, 8]. Now, if F satisfies a flatness

condition H(β) for some β > 1 and only L(2), then the rate given by the point 2(iii) of Theorem 3.1 is
then strictly better than O

(
n−

2b
3

)
.

If F is a quadratic function in the neighborhood of its minimizer, then F naturally satisfies L(2)
and H(β) for any β ∈ [1, 2]. Consequently applying the point 2(iii) of Theorem 3.1 with β = 2, we
prove that the decay rate is O

(
n−b

)
for quadratic functions, which is better than O

(
n−

2b
3

)
that can be

obtained using only strong convexity. Since this rate is proved to be optimal for the continuous setting
[10], we conjecture that it is optimal in the discrete setting as well. Note that, in a continuous setting,
under the sole assumption L(2), we cannot get a better rate than 2b

3 . A flatness hypothesis is needed
to get the power b.

Finally, if F is a convex differentiable function with a Lipschitz continuous gradient, and if F satisfies
L(2), then F automatically satisfies H(β) for some β ∈]1, 2] (see Lemma 2.4). In that case Point 2(iii)
of Theorem 3.1 applies, showing that for such functions the decay is always faster than O

(
n−

2b
3

)
.

Theorem 3.2 deals with the case when F satisfies L(p) with p > 2 but not necessarily L(2). To the
best of our knowledge, there are no references with convergence results for the Nesterov’s algorithms
family (1.5), under these kinds of assumptions. This theorem ensures that if b is large enough, the
decay of F (xn) − F (x∗) is faster than the rate o

(
n−2

)
that can be obtained only with a convexity

assumption. For some similar results, concerning a restarting version of Algorithm (1.5), for functions
satisfying H(β)-kind conditions (in particular relation (2.1) of Lemma 2.1) and L(p), with β < p, we
address the reader to [35] and [42].

Comparison with gradient descent and other inertial algorithms Many inertial schemes of
gradient descent have been proposed such as the Inertial Gradient Descent (1.5)

xn+1 = xn + αn(xn − xn−1)− γ∇F (xn + αn(xn − xn−1)), (3.11)

or the Heavy Ball Algorithm

xn+1 = xn + αn(xn − xn−1)− γ∇F (xn). (3.12)

The case αn = 0 of (3.11) corresponds to the classical gradient descent, while αn = n
n+b is the case

studied in this article. If b = 3 we recover the original choice of Nesterov, but other choices of over-
relaxation sequence αn have been studied, see for example [5].

Under the hypothesis L(2), the gradient descent or other general descent schemes ensure a geomet-
rical decay of F (xn) to F ∗ (see for example [14] and [22]). This decay is also geometrical for the Heavy
Ball method and the inertial gradient descent with fixed inertial parameter for strongly convex func-
tions [37] (see also [38], [34]). More precisely Nesterov in 1983 [36] proposed to choose a fixed sequence
αn =

√
L−
√
α√

L−
√
α

where L is the Lipschitz constant of the gradient of F and α is the parameter of strong

convexity of F , to optimize this geometrical decay. Estimating numerically Q = L
α can be a a very chal-

lenging task. There exists a vast body of literature on adapting restarting versions of inertial algorithms
in order to estimate the conditional number Q (to cite but a few of these works, we address the reader
to [38], [19], [20], [29], [34] [16] and [42]). We can notice that for inertial methods the uniqueness of
the minimizer is needed, which is not the case for gradient descent. Notice also that in the first points
of Theorem 3.1, we do not assume the hypothesis L(2) or any strong convexity. Theorem 3.1 ensures
that if b > 1 + 2

β the decay of F (xn)− F (x∗) is faster than O( 1n ) which seems to be the best bound we
can achieve with such hypotheses for gradient descent or other inertial methods such as the heavy ball
algorithm.
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In the recent work [25] the authors propose a different application of alternated inertia to (1.5) (i.e.
applying the inertial term every two iterations), in a non smooth setting. Surprisingly this turns Algo-
rithm (1.5) with alternated inertia, into a descent scheme and it permits to have the same convergence
properties as the Forward-Backward algorithm under the hypothesis L(p) with p > 1.

In a recent work, Attouch et al. [5] proved that the decay is faster than polynomial for a large class
of inertial parameters αn such that 1− αn ∼ 1

nr with r ∈ [0, 1).
While Theorem 3.1 improves the bound for Nesterov scheme (1.5) on F (xn) − F (x∗) that can be

obtained with the sole assumption L(2), by adding the conditionH(β), these decays are still polynomials
and they are thus worse than the ones of the classical gradient decent, the inertial gradient descent with
fixed parameter, or the Heavy Ball algorithm. Nevertheless it is possible that for a given precision, the
Nesterov scheme (1.5) can potentially have better performance than the gradient descent, in finite time,
by tuning properly the parameter b. Of course in order to do such a comparison, one must have access to
the explicit dependence on the hidden constants in the "big Ohs" of the over-relaxation parameter b > 0
or/and the geometric parameters β and p. Unfortunately our analysis is highly based on asymptotic
equivalences, which does not permit to have an explicit formulation of these constants and this question
is left for future study.

For this issue we are also addressing the reader to Figure 1, where we test Nesterov’s scheme (1.5)
for three simple minimization problems (Least squares, Quadratic and Least squares with Tikhonov
regularization), that enter in the framework of Theorem 1. More precisely we compare the Gradient
Descent algorithm (black) with the Nesterov scheme (1.5), with three different choices for the over-
relaxation parameter b (b = 4 blue, b = 20 red and b = 80 green).
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Figure 1: Values of the error log
(
F (xn)−F (x∗)

)
(first row) and of the energies log nb

(
F (xn)−F (x∗)

)
(second row), as a function of the iterations n, for the three minimization problems (Least squares,
Quadratic and Tikhonov regularization). Here we compare the Nesterov scheme (1.5) with 3 different
choices of b (b = 4, 10, 80) and the Gradient-Descent. Notice that smaller values of b seem to lead to a
better performance in the beginning, while the larger values accelerate the convergence rate at a later
stage. From the second column we can also notice that the re-scaled errors log nb

(
F (xn)−F (x∗)

)
seem

to be bounded, which suggests that the rate O
(
n−b

)
found in Theorem 1 is tight.

From Figure 1, one can notice that for all the three problems, the over-relaxation parameter b plays
a crucial role for the convergence rate of the objective function. Indeed larger values of b, seem to
lead to faster convergence rates "at a late stage", as Theorem 3.1 asserts. Nevertheless, it is also worth
mentioning that taking b very large, results to "slower" convergence behavior at the beginning. This last
remark suggests that the over-relaxation parameter b, has also a serious impact in the hidden constants
in the "big Ohs" of the different estimates in Theorem 1. This entails that for given a precision (or a
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stopping time), choosing b > 0 arbitrarily large may not be always an optimal strategy.
Finally, Theorem 3.2 ensures that under the assumption L(p) with p > 2, if b is large enough, the

decay of F (xn)−F (x∗) is O(n−
2p
p−2 ) which is better than o(n−2) and better than what can be obtained

with the sole hypothesis L(p) for gradient descent schemes. Indeed under the assumption L(p), Bolte
et al. [14] (see also [21] and [22] and their references) proved that the gradient descent ensures a decay
which is O(n−

p
p−2 ) and this decay is optimal under this assumption as proven in [33]. Unfortunately in

our work the optimality of the order O
(
n−

2p
p−2

)
is not proven. Nevertheless for functions such as ‖x‖p,

p > 2, this order seems to be tight as Figure 2 propounds.
In particular, in Figure 2, we are considering the simple example of minimizing the function F :

R4 −→ R+, such that F (x) = ‖x‖p, with p > 2. In this setting we compare the i-GD Algorithm with
four different choices for the over-relaxation parameter b ( blue, green, red and magenta) for different
values of p (p = 3, p = 4, and p = 8).

In this case we intentionally choose a parameter b = p+1
p−2 < p+2

p−2 (blue line) that violates the
assumptions of Theorem 2. This seems to cause an overshoot on the minimum of the corresponding
trajectory. On the contrary the trajectories that respect the hypotheses of Theorem 3.2 with b ≥ p+2

p−2
(red, green and magenta lines), seem to produce a decreasing behavior, without bump effects. From
Figure 2, we can notice that the re-scaled errors n

2p
p−2
(
F (xn)−F ∗

)
, seem to be bounded. This is not the

case for the blue line which corresponds to a choice of b < p+2
p−2 which does not enter in the framework

of Theorem 2. This fact suggests that the order of convergence rate found in Theorem 3.2 for the
Nesterov scheme (1.5) is optimal for this kind of functions, under the assumption b ≥ p+2

p−2 . In addition
comparing all the three trajectories that are bounded, the best bound is obtained by the limiting case
of the trajectory which corresponds to b = p+2

p−2 . This suggests that the limiting value b = p+2
p−2 may

minimize the hidden constants in the "big Oh" of Theorem 3.2.
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Figure 2: Values of the re-scaled error F (xn) − F (x∗), by (
√
γ(n + b − 1))

2p
p−2 as a function of the

iterations n. Here we test the Nesterov scheme (1.5) for four different values of b depending on p
(b= p+1

p−2 blue, b = p+2
p−2 red, b = p+2

p−2 + 2p green and b = p+2
p−2 + 4p magenta). Each column correspond

to the minimization of ‖x‖p, with p = 3, p = 4 and p = 8 respectively. Here we can remark that all
the three choices of parameter b (red, green and magenta) that enter the framework of Theorem 2, are
bounded. On the contrary the blue one seems to explode periodically along the iterations. Notice also
that among the three bounded lines, the one that has a better upper bound (red), corresponds to the
smallest possible value of b that enters the framework of Theorem 2 (i.e. b= p+2

p−2 )

Comparison with the continuous setting: Both theorems of this paper can be seen as extension
of previous results [9, 10] on the solution of the ODE associated to the Nesterov Scheme (1.5). In [45],
Su et al. were the first to propose results for both continuous and discrete setting. After this article
most recent results on Inertial Gradient Descent have been developed first in a continuous setting, that
is studying solutions of ODEs such that

ẍ(t) + α(t)ẋ(t) +∇F (x(t)) = 0. (3.13)

The main reason is the higher complexity of the discrete setting where some discretization terms must be
bounded. The choice of the discretization may be crucial. One can notice that the Heavy Ball Method
and the Inertial Gradient Descent with constant parameter αn = α are associated to the same ODE
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(3.13) with a constant friction term α(t) = α. Nevertheless, both algorithms do not share exactly the
same properties and the same optimal tuning for parameters see [27] and [44]. The hypothesis of both
theorems are similar to the ones in the continuous setting, with the Lipschitz hypothesis on the gradient
of F . We also need uniqueness of the minimizer for Theorem 3.2. We think that this hypothesis could
be removed but the technical price to pay was too high and we prefer to assume this uniqueness to keep
a readable proof.

3.2 Extension to the non-differential setting
Many interesting problems in optimization are structured by minimizing a non-differentiable convex
function F . Typically, a classical type of these problems can be formulated by minimizing a function F ,
which takes the form F = f + g, where f and g are both convex, with f differentiable with L-Lipschitz
gradient and g lower semi-continuous (possibly non-differentiable) and such that argminF 6= ∅.

In this setting (with x0 = x1 ∈ RN and 0 < γ ≤ 1
L ), the algorithm (1.5) takes the following form :

yn = xn +
n

n+ b
(xn − xn−1)

xn+1 = Tγ(yn) := Proxγg
(
yn − γ∇f(yn)

)
:=

(
Id+ γ∂g

)−1(
yn − γ∇f(yn)

)
.

(3.14)

Unfortunately the main core of this paper does not handle with such a framework which is let for
future study. Nevertheless in the case of convex functions f and g, the hypothesis H(1) is automatically
satisfied. In view of the proof of Lemma A.1 (see also Lemma 1, in [17]), our analysis is still applicable.
Therefore, from Theorem 3.1 we can recover some of the results concerning the algorithm (3.14), already
found in previous works ( see for example [1], [5], [6], [7],[8], [17]). In particular we have the following
Corollary.

Corollary 3.2. Let F = f + g , where f and g are convex, lower semi-continuous functions, with f
differentiable with L-Lipschitz gradient, such that argminF 6= ∅. Let also 0 < γ 6 1

L and {xn}n∈N be
the sequence generated by Algorithm (3.14).

1. If b < 3, the following convergence rates hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2b
3

)
and ‖xn − xn−1‖ = O

(
n−

b
3

)
. (3.15)

2. (i) If b > 3 then the following convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−2

)
and ‖xn − xn−1‖ = O

(
n−1

)
. (3.16)

(ii) If b > 3 then:

+∞∑
n=0

n
(
F (xn)− F (x∗)

)
< +∞ and

+∞∑
n=0

n‖xn − xn−1‖2 < +∞. (3.17)

In fact : F (xn)−F (x∗) = o
(
n−2

)
and ‖xn−xn−1‖ = o

(
n−1

)
and the sequence {xn}n∈N

converges to a minimizer x∗.

(iii) If b > 3 and if F satisfies L(2) and admits a unique minimizer, then the following convergence
rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−

2b
3

)
and ‖xn − xn−1‖ = O

(
n−

b
3

)
. (3.18)

As we shall remark, Corollary 3.2 can be applied to a class of problems of a particular interest
such as the (generalized) LASSO problem. In that case, the minimizing function F is convex piecewise
polynomial of degree 2, hence (see Corollary 9 in [14]), for all r > F ∗, the function F satisfies L(2) on
every sub-level set {F 6 r} = {x ∈ RN : F (x) 6 r} . This inducts that the point 2.(iii) of Corollary 3.2
is applicable, under the supplementary condition of the uniqueness of a minimizer of F . More precisely
we have the following Corollary.
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Corollary 3.3 (Generalized LASSO). Let F (x) = 1
2‖Ax− y‖

2
+ λ‖Tx‖1 , where A : RN −→ RM and

T : RN −→ RM are some linear operators, y ∈ RM and λ > 0. Suppose also that argminF = {x∗}. Let
{xn}n∈N, be the sequence generated by algorithm (3.14). Then for all b > 0, the following convergence
rate holds true asymptotically :

F (xn)− F (x∗) = O
(
n−

2b
3

)
.

Remark 2. More generally (see Corollary 4.3 in [18] or [22]), if F (x) = f(Ax)+ g(Tx), with some linear
operators A ∈ RN×M and T ∈ RN×M and f , g are convex piecewise-linear quadratic functions (see
Definition 10.20 in [41]), then F satisfies L(2). Hence by assuming the uniqueness of the minimizer, the
point 2.(iii) of Corollary 3.2 is still applicable in this more general setting.

Last but not least, we shall mention that for the minimization problem of F = f + g, where f, g
are both convex with f differentiable with L-Lipschitz gradient and g lower semi-continuous, by making
additional hypotheses, such as non-degeneracy condition on F and restricted injectivity on f (for more
details see the work [28]), the uniqueness of the minimizer x∗ is reassured. If in addition g is partially
smooth at x∗ relative to a neighborhood of x∗ (see Definition 5 in [28]), then F satisfies L(2) locally in
x∗. Thus, in that case we can recover the order of O

(
n−

2b
3

)
of the point 2.(iii) of Corollary 3.2.

4 Asymptotic analysis
In this section we give the proofs of Theorems 3.1 and 3.2. Before passing to the complete proofs, we
provide the necessary tools, as also a basic sketch in order to have a better insight.

4.1 Schema of proofs
The basic tools that we use are a Lyapunov-type analysis and the asymptotic equivalences. The choice
of the Lyapunov energy-sequence, as also the asymptotic analysis are highly-inspired by the work made
in the continuous-time counterpart for a solution of (1.6) in the work [10].

In this context, Lyapunov techniques consist in finding a suitable positive energy-sequence En of the
form:

En = ϕn
(
F (xn)− F (x∗)

)
+Rn (4.1)

with ϕn and Rn some positive sequences. Then by showing that En is non-increasing, it follows directly
that the convergence rate for the objective F (xn)− F (x∗) is of order of O

(
ϕ−1n

)
.

In this work, we set ϕn ∼ n2 and the term Rn is not necessarily non-negative. In fact the exact
construction of En (see (4.12)), depends on the geometric properties of F and on the order of the
convergence rate of the objective function, i.e. the value of δ such that:

F (xn)− F (x∗) = O
(
n−δ

)
(4.2)

as stated in Theorems 3.1 and 3.2.
In order to get the estimation (4.2), a two-step procedure is used:

1. First of all, since ϕn ∼ n2, we show the control over the growth or the decay of En of the following
form (see for example relation (4.18) for Theorem 3.1 and (4.36) for Theorem 3.2):

En 6 Kn−δ+2 (4.3)

2. Since Rn is not necessarily non-negative we cannot deduce (4.2) directly from (4.3). For this issue,
we infer the geometric properties of F (in particular hypothesis L(p)) in order to deduce (4.2)
from (4.3).

To get the appropriate control (4.3) on En, we follow a classical strategy for bounding functions
using a differential inequality, which is motivated by the continuous-time setting (see [10]).

In fact for a differentiable function E : [0 +∞) −→ R, a constant c ∈ R and positive function r:
[0 +∞) −→ R+, such that the following relation holds true:

E ′(t) 6 cE(t)
t

+ r(t) (4.4)
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with t−cr(t) ∈ L1[0,+∞), one can deduce that the function H(t) = t−cE(t) is bounded from above.
Thus it exists a constant K ∈ R such that E(t) 6 Ktc.

More precisely, in the framework of the current work (discrete setting), we provide an energy-sequence
{En}n>1, such that the following relation holds true asymptotically:

En+1 − En 6
c

n
En + rn (4.5)

with c = −δ + 2 and a suitable sequence {rn}n>1 that involves the geometric properties of F . In
particular, in the context of Theorem 3.1, we have that rn = a

n2En (see relation (4.17) of Lemma
4.2), while rn = a1

n2En + a2
n2 ‖xn−1 − x∗‖2 (see relation (4.28) of Lemma 4.3), for some suitable positive

constants a, a1 and a2. This allows to deduce the existence of a constant K such that for n ∈ N large
enough, we have:

En 6 Knc (4.6)

Finally, in order to deduce (4.2) from (4.3) we use different strategies depending on the hypotheses
on the geometry of F and on the over-relaxation parameter b.

1. For the first point of Theorem 3.1, the sequence {Rn} in (4.1) is positive and (4.2) holds directly.

2. For the second point of Theorem 3.1 and for the bound of Theorem 3.2, we have Rn = R′n +

ξ‖x∗ − xn‖2, where R′n is non negative and ξ non positive. Thus, from (4.3), for n large enough,
it follows that:

ϕn(F (xn)− F (x∗))− |ξ|‖xn − x∗‖2 6 Kn−δ+2 (4.7)

and we conclude, using the growth condition L(p) to bound ‖x∗ − xn‖2 and get inequalities such
that

ϕn(F (xn)− F (x∗)) +A1(F (xn)− F (x∗))
2
p 6 Kn−δ+2 (4.8)

which, by recalling that ϕn = n2 and using an appropriate strategy when p > 2 (see Lemma A.5),
leads to (4.2).

The value of δ and the use of conditions L(p) are different in the two theorems, which leads to different
results, but the strategies in both cases are similar.

4.2 The Lyapunov energy
We now give the proper definition of the energy-sequence {En}n>1, in order to proceed to the analysis
described before. Let us introduce some notations that will be useful in the coming analysis:

wn = F (xn)− F (x∗), δn = ‖xn − xn−1‖2 and hn = ‖xn − x∗‖2. (4.9)

For some λ > 0 and ξ ∈ R, we also define:

vn = ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2, n > 1, (4.10)

with
tn = n+ b− 1 and αn =

n

tn+1
(4.11)

and:

En =
(
t2n + λβtn

)
wn +

1

2γ
‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2 +

λtn
2γ
‖xn − xn−1‖2 +

ξ

2γ
‖xn−1 − x∗‖2

=
(
t2n + λβtn

)
wn +

1

2γ
vn +

λtn
2γ

δn +
ξ

2γ
hn−1 (4.12)

Observe that the energy can also be expressed as:

En =
(
t2n + λβtn

)
wn +

1

2γ

(
t2nδn + λtn

(
hn − hn−1

)
+ (λ2 + ξ)hn−1

)
(4.13)
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Remark 3. By definition of En and using the convex inequality:

‖u‖2 6 2‖u+ v‖2 + 2‖v‖2 ,∀u, v ∈ RN (4.14)

with u = tn(xn − xn−1) and v = λ(xn−1 − x∗), we find:

2γEn > 2γ
(
t2n + λβtn

)
wn +

( t2n
2

+ λtn
)
‖xn − xn−1‖2 + (ξ − λ2)‖xn−1 − x∗‖2

> 2γt2nwn +
t2n
2
δn + (ξ − λ2)hn−1

(4.15)

In what follows we frequently make use of the inequality (4.15).

We also give the following basic Lemma which gives some bound estimates for the energy En and
will be useful for both of the proofs of Theorem 3.1 and Theorem 3.2.

Lemma 4.1. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5). Assume
that F satisfies H(β) with β > 1 and x∗ ∈ argminF . Then for all λ > 0 and ξ = λ(λ + 1 − b) in the
definition of En, the following recursive formula holds for all n > 1:

2γ(En+1−En) 6 2γ
c(λ)

tn
En+2γ

(
A1(λ)tn+1−2λβ(λ+1−b)

)
wn+A2(λ)‖xn−xn−1‖2+

A3(λ)

tn
‖xn−1−x∗‖2

(4.16)
where:

c(λ) = 2(λ+ 1− b), A1(λ) = 2b− (β + 2)λ, A2(λ) = (2λ+ 1− b)(1− b)
A3(λ) = −2λ(λ+ 1− b)(2λ+ 1− b)

4.3 Proofs
Here we present the complete proofs of Theorems 3.1 and 3.2 as also the different Lemmas that form
the guideline described before. For ease of reading, all the proofs of these Lemmas are postponed in the
Appendix B.

4.3.1 Proof of Theorem 3.1

Before proving Theorem 3.1, we present a Lemma which first gives the control estimates over the local
variation of the energy {En}n>1 depending on the parameters β and b, and then a control estimate of
En.

Lemma 4.2. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5). Assume
that F satisfies H(β) with β > 1, and that one of the following hypotheses is in force:

i. b < 1 + 2
β

ii. b > 1 + 2
β and F admits a unique minimizer x∗ and satisfies L(2).

Taking λ = 2b
β+2 and ξ = λ(λ+ 1− b) = 2bβ

(β+2)2

(
1 + 2

β − b
)
in the definition of the energy En, we have:

1. There exists some n0 ∈ N, such that for all n > n0, the following recursive formula holds true:

En+1 − En 6

(
a

(n+ b− 1)2
+

c

(n+ b− 1)

)
En (4.17)

for some constant a > 0 and c = 2− 2bβ
β+2 .

2. The following estimate holds true asymptotically:

En = O
(
n2−

2bβ
β+2

)
(4.18)

We are now ready to give the complete proof of Theorem 3.1
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Proof of Theorem 3.1. We start this demonstration by proving the points 1 and 2(iii) of Theorem 3.1.
For that, we choose:

λ =
2b

β + 2
> 0, ξ = λ(λ+ 1− b) = 2bβ

(β + 2)2

(
1 +

2

β
− b
)
,

in the definition (4.12) of the energy En. Using Lemma 4.2, there exist n0 ∈ N and a positive constant
C such that, for all n > n0, we have:

En 6 Ct
2− 2bβ

β+2
n . (4.19)

In order to deduce the expected convergence rates on wn = F (xn)−F (x∗), we use different strategies
depending on the sign of the parameter ξ. Firstly we consider the case b < 1 + 2

β , i.e.: ξ > 0. In that
case, the energy En is a sum of non-negative terms, hence:

En =
(
t2n + λβtn

)
wn +

1

2γ
(vn + λtnδn + ξhn−1) > t2nwn.

Combining the very last inequality with (4.19) and noting that tn ∼ n asymptotically, we get the
appropriate estimate: wn = O

(
n−

2bβ
β+2

)
for all n > n0, as asserted by the first point of Theorem 3.1.

In addition, since ξ > 0, from the definition of the energy En (4.12) and (4.18) we find :

hn−1 6
2γ

ξ
En 6 Kt

2− 2bβ
β+2

n (4.20)

asymptotically, for some suitable positive constant K.
Finally, using the inequality (4.15), we have:

t2n
2
δn 6 2γEn − 2γt2nwn + (λ2 − ξ)hn−1 6 2γEn + |λ2 − ξ|hn−1. (4.21)

Injecting estimations (4.19) and (4.20) into (4.21) leads to: δn = O

(
t
− 2bβ
β+2

n

)
as expected.

Consider now the case b > 1+ 2
β i.e. ξ ≤ 0. In that case, the energy En is not a sum of non negative

terms anymore:
2γEn = 2γ

(
t2n + λβtn

)
wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2,

and an additional growth condition L(2) will be needed to bound ‖xn−1 − x∗‖2. First, applying the
inequality (4.14), on the one hand to u = tn(xn − xn−1) and v = λ(xn−1 − x∗) and on the other hand
to u = xn−1 − x∗ and v = x∗ − xn, we have for all n ∈ N:

vn >
t2n
2
δn − λ2‖xn−1 − x∗‖2, ‖xn−1 − x∗‖2 ≤ 2δn + 2hn.

Using these two inequalities successively, we deduce:

2γEn > 2γ
(
t2n + λβtn

)
wn +

(
1

2
+
λ

tn

)
t2nδn + (ξ − λ2)‖xn−1 − x∗‖2

> 2γ
(
t2n + λβtn

)
wn +

(
1

2
+
λ

tn
− 2|ξ − λ2|

t2n

)
t2nδn − 2|ξ − λ2|‖xn − x∗‖2

> 2γ
(
t2n + λβtn

)
wn +

t2n
4
δn − 2|ξ − λ2|‖xn − x∗‖2

(4.22)

since the coefficient of t2nδn converges to 1
2 , and thus is greater than e.g. 1

4 for n large enough. Assuming
in addition that F satisfies the growth condition L(2) and admits a unique minimizer, we then obtain
for n large enough:

En >
(
t2n + λβtn − 2|ξ − λ2|K−12

)
wn +

t2n
4
δn =

(
1 +

λβ

tn
− 2
|ξ − λ2|K−12

t2n

)
t2nwn +

t2n
4
δn

Hence there exists n0 ∈ N such that for all n > n0, we have: En > t2n
2 wn +

t2n
4 δn. Using finally the

estimate (4.19) on the energy En allows us to conclude the proof of the point 2(iii) of Theorem 3.1.
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Consider again the case when b > 1 + 2
β . In order to prove the points 2(i) and 2(ii) of Theorem

3.1 with the only assumption that F satisfies the condition H(β), we choose a different value for the
parameter λ in the definition of the energy En. Let us set:

λ = b− 1 > 0, ξ = λ(λ+ 1− b) = 0.

In that case, the energy is again a sum of non negative terms and we then have:

En =
(
t2n + (b− 1)βtn

)
wn +

1

2γ

(
vn + (b− 1)tnδn

)
> t2nwn. (4.23)

To obtain the expected convergence rate on wn as expressed in the point 2(i) of Theorem 3.1, it is
sufficient to prove that the energy En is bounded. For that purpose, we apply Lemma 4.1 with λ = b−1.
Keeping in mind that b > 1 + 2

β , we then have:

∀n > 1, En+1 − En 6
(
β(1 +

2

β
− b)tn + 1

)
wn −

1

2γ
(b− 1)2δn

6 wn −
1

2γ
(b− 1)2δn ≤ wn (4.24)

Injecting (4.23) into (4.24), we then obtain for all n > 1, En+1 6
(
1 + 1

t2n

)
En, which implies by a

recurrence argument that:

∀n > 1, En+1 6 E1

n∏
i=1

(
1 +

1

t2i

)
By inferring Lemma A.4 with c = 0 and a = 1 we deduce that the sequence (En)n>1 is bounded. By
(4.23), the sequence (t2nwn)n>1 is also bounded. Hence: wn = O

(
t−2n
)
= O

(
n−2

)
asymptotically.

Assume in addition that: b > 2. According to the definition (4.13) of the energy En, we have:

∀n > 1, 2γEn = 2γ(t2n + (b− 1)βtn)wn + t2nδn + (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

> (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

> (b− 1)
(
tnhn − (tn − b+ 1)hn−1

)
Observe now that, since b > 2, we have: tn − b+ 1 6 tn − 1 = tn−1, hence:

∀n > 1, 2γEn > (b− 1) (tnhn − tn−1hn−1) .

Using the fact that (En)n>1 is bounded, there exist a constant C > 0 and n0 ∈ N such that:

∀n > n0, tnhn − tn−1hn−1 ≤ C. (4.25)

By summing (4.25) from n0 to N , we obtain that for all N > n0, tNhN 6 tn0
hn0

+CN 6 tn0
hn0

+CtN .
The sequence (hn)n is so bounded, which implies that (xn)n is also bounded. Moreover using (4.15):

∀n > 1,
t2n
2
δn 6 2γEn + λ2hn−1,

and the boundedness of hn and En, we obtain the boundedness of the sequence (t2nδn)n, i.e. δn = O
(
n−2

)
asymptotically, which concludes the proof of point 2(i) of Theorem 3.1.

Finally, suppose that b > 1 + 2
β . Let: η = b− (1 + 2

β ) > 0. As previously done in (4.24), we have:

En+1 − En 6 −(βηtn − 1)wn −
1

2γ
(b− 1)2δn 6 −(βηtn − 1)wn (4.26)

Moreover using the fact that there exists n0 ∈ N such that for all n > n0, we have: β η2 tn 6 βηtn − 1
and summing (4.26) over n ∈ {n0, · · · , N}, for all N > n0, we find:

β
η

2

N∑
n=n0

tnwn 6 En0
< +∞ (4.27)
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Lastly, the proof of the summability of the (nδn)n is exactly the same as in [17, Corollary 2]. In few
words, applying Lemma A.1, with γ 6 1

L , y = xn + αn(xn − xn−1) and x = xn, or equivalently using
the Lipschitz continuity of the gradient of F , we have:

∀n > 1, δn+1 − α2
nδn 6 2γ(wn − wn+1),

where: αn = n
n+b . Summing the last inequality from n = 1 to N , we obtain:

(b− 1)

N∑
n=2

(2tn − b+ 1) δn 6 2γ

N∑
n=2

(2tn + 1)wn + t22w1.

Observe now that for all n > 1, we have: 2tn − b+ 1 = 2n+ b− 1 > 2n. Thus the summability of nδn
follows from the summability of tnwn, which concludes the proof of point 2(ii) of Theorem 3.1.

4.3.2 Proof of Theorem 3.2

Let us now consider the case of a function F which satisfies H(β) and L(p) with β > 2 and p > 2. In
order to give the compete proof of Theorem 3.2, we make use of the following Lemma.

Lemma 4.3. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) and L(p) with p > β > 2. Let λ = 2

β−2 and ξ = λ(λ + 1 − b) =

2
β−2

(
β
β−2 − b

)
in the definition of the energy En. If b > β+2

β−2 , then there exist n0 ∈ N and some

constant C > 0 such that the following recursive formula holds true for all n > n0:

2γ
(
En+1 − En

)
6 2γ

(
− 4

β − 2
+
C

tn

)
En
tn

+
C

t2n
hn−1. (4.28)

We are now ready to give the full proof of Theorem 3.2.

Proof of Theorem 3.2. We split the proof into three parts. In the first part we present the analysis in
order to obtain a control over the decay of the energy En. In the second part we deduce some estimates
for the sequence wn, by making use of an a-priori estimate for hn. In the last part we infer a bootstrap
argument to improve the estimates for the sequence wn and to get those stated in Theorem 3.2.

Part 1: In this part, we show that choosing λ = 2
β−2 and ξ = λ(λ+ 1− b) = 2

β−2

(
β
β−2 − b

)
in the

definition of the energy En, the control over the decay of the energy En is given by:

En = O
(
n−m

)
, with: m =

{
4
p if β = 6p+8

p+2

min( 4
β−2 , 1 +

4
p ) otherwise

.

In this proof we will frequently use the notation d = 4
β−2 . By Lemma 4.3, there exist n0 ∈ N and a

positive constant C such that

∀n > n0, En+1 − En 6 − d

tn
En +

C

t2n
En +

C

2γt2n
hn−1. (4.29)

Denoting by Hn = C
2γt2n

hn−1 and zn = 1− d
tn

+ C
t2n
, the previous inequality (4.29) can be rewritten as:

En+1 6 znEn +Hn (4.30)

which, by applying Lemma A.3, implies:

∀n > n0, En+1 6
n∏

i=n0

zi

(
En0

+

n∑
i=n0

Hi∏i
m=n0

zm

)
. (4.31)
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By relation (A.18) of Lemma A.4, we deduce the existence of two positive constants C1 and C2 such
that for all n > n0 it holds:

C1t
−d
n 6

n∏
i=n0

zi =

n∏
i=n0

(
1− d

ti
+
C

t2i

)
6 C2t

−d
n . (4.32)

Hence by (4.31) and the definition of Hi =
C

2γt2i
hi−1, we find:

En+1 6 C2t
−d
n

(
En0 + C−11

n∑
i=n0

tdiHi

)

6 C2t
−d
n

(
En0

+ C3

n∑
i=n0

td−2i hi−1

) (4.33)

for some suitable positive constant C3. So to obtain an estimate on the energy, we first need an estimate
on hn. Assuming that F satisfies the growth condition L(p) with p > 2, and admits a unique minimizer
x∗, we have:

hi−1 = ‖xi−1 − x∗‖2 6 K−1p
(
F (xi−1)− F (x∗)

) 2
p = K−1p w

2
p

i−1. (4.34)

By injecting the last inequality (4.34) into (4.33), for n > n0 we find:

En+1 6 C2t
−d
n

(
En0 + C3K

−1
p

n∑
i=n0

td−2i w
2
p

i−1

)

6 C2t
−d
n

(
En0

+ C3K
−1
p

n∑
i=n0

t
d−2− 4

p

i

(
t2iwi−1

) 2
p

)
(4.35)

Moreover, since F satisfies H(β) with β > 2, we can apply the results stated in Theorem 3.1. Here:
b > β+2

β−2 > 1 + 2
β , Hence from relation (3.4) of Theorem 3.1, the sequence (t2iwi−1)i is bounded.

Therefore, from the previous inequality (4.35), by using the series-integral comparison test, we find that
for all n > n0, it holds:

En+1 6 C2t
−d
n

(
En0

+ C4t
max{d−1− 4

p ,0}
n

)
, if d 6= 1 +

4

p

or :
En+1 6 C2t

−d
n

(
En0

+ C4 log tn

)
6 C2t

−d
n

(
En0

+ C4tn

)
, if d = 1 +

4

p

for some suitable positive constant C4 (at each case). Therefore there exists a suitable positive constant
C > 0, such that :

En+1 6 Ct−mn (4.36)

for m =

{
4
p if d = 1 + 4

p

min{d, 1 + 4
p} otherwise

.

Part 2: Once obtained the control (4.36) over the decay of En, we now want to deduce the
convergence rates on wn = F (xn)− F (x∗) expected in Theorem 3.2.

Firstly, observe that when β > 2 and b ≥ β+2
β−2 , we have

λ =
2

β − 2
> 0 and ξ = λ(λ+ 1− b) = 2

β − 2
(

β

β − 2
− b) < 0.

The energy En is not a sum of non negative terms, so that, as in Theorem 3.1, we will so need some
growth condition to bound ‖xn−1 − x∗‖2, or more precisely ‖xn − x∗‖2 in what follows. First remark
that using (4.15), we get:

2γEn = 2γ(t2n + λβtn)wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2

> 2γt2nwn +
t2n
2
δn − λ(b− 1)‖xn−1 − x∗‖2. (4.37)
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By using the inequality
‖xn−1 − x∗‖2 6 2‖xn − x∗‖2 + 2‖xn − xn−1‖2

in (4.37) we find:

2γt2nwn +

(
t2n
2
− 2λ(b− 1)

)
δn 6 2γEn + 2λ(b− 1)hn. (4.38)

Hence, there exists n0 ∈ N such that for n > n0:

t2nwn 6 2γEn + 2λ(b− 1)‖xn − x∗‖2

6 Ct−mn + 2λ(b− 1)‖xn − x∗‖2

using the control estimate (4.36) on the energy En for some suitable positive constant C. Using the
growth condition L(p) with p > 2 combined with the uniqueness of the minimizer, gives:

t2nwn 6 Ct−mn +
2λ(b− 1)

Kp
w

2
p
n (4.39)

Deducing now the convergence rates on wn is quite technical: multiplying (4.39) by tmn and setting
gn = tm+2

n wn, we find:

gn 6 C +
2λ(b− 1)

K
t
mp−2(m+2)

p
n g

2
p
n (4.40)

By applying Lemma A.5 with zn = 2λ(b−1)
K t

mp−2(m+2)
p

n and α = 2
p ∈ (0, 1), we obtain:

gn 6 2max

{
C,

(
2

2
p
2λ(b− 1)

Kp
t
mp−2(m+2)

p
n

) p
p−2
}

= 2max

{
C,C ′t

m− 4
p−2

n

}
= O

(
tMn
) (4.41)

where

M = max
{
0,m− 4

p− 2

}
=

{
m− 4

p−2 if p > max(β, 4) and d 6= 1 + 4
p

0 otherwise.

Substituting then gn = tm+2
n wn, we finally have:

wn = O
(
tM−m−2n

)
. (4.42)

At this point we consider the different disjoint cases for the parameters (β, p) in order to precise the

estimate (4.42). Recalling that β 6 p, m =

{
4
p if d = 1 + 4

p

min{d, 1 + 4
p} otherwise

and M = max{0,m − 4
p−2}

we have the following cases: Let us first suppose that d = 4
β−2 6= 1 + 4

p

• If m = d = 4
β−2 then (since β 6 p), we have necessarily thatM = m− 4

p−2 . In that case by (4.42),

we find: wn = O

(
t
− 2p
p−2

n

)
• If m = 1 + 4

p then:

– If M = m− 4
p−2 , then from (4.42) we find: wn = O

(
t
− 2p
p−2

n

)
– If M = 0, from (4.42) we find: wn = O

(
t
−(3+ 4

p )
n

)
Lastly, if d = 1 + 4

p , then m = 4
p <

4
p−2 , thus M = 0 and from (4.42), we find : wn = O

(
t
−(2+ 4

p )
n

)
The previous cases can be regrouped into two regimes B1 and B2, for the parameters (β, p) ∈

{
(x, y) ∈

R2 : 2 < x 6 y
}
with:

B1 :
{
p > 4

}
∩ {d 6= 1 +

4

p
}

B2 :
({

p ≤ 4
}
∩ {d > 1 +

4

p
}
)
∪ {d = 1 +

4

p
}

such that:
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• If (β, p) ∈ B1 then from (4.42) we obtain:

wn = O

(
t
− 2p
p−2

n

)
(4.43)

• If (β, p) ∈ B2 then from (4.42) we obtain:

wn = O
(
t−µ1
n

)
with µ1 =

{
2 + 4

p if d = 1 + 4
p

3 + 4
p otherwise

(4.44)

In the case when (β, p) ∈ B1, we can conclude directly the proof of Theorem 3.2.
Let us now treat the case of (β, p) ∈ B2. In this case the estimate found in (4.44) is sub-optimal, in

comparison with the one stated in Theorem 3.2. This point is also strongly accented by the corresponding
results for the continuous-time version (see Theorem 4.3 in [10]). This is due to the use of the a-priori
estimate for (t2nwn−1)n used in (4.35), in our analysis.

Nevertheless, we show that this estimate can be "improved" by inferring a bootstrap argument for a
suitable amount of times. More precisely the idea is to use (4.44) as an a-priori estimate, by re-injecting
it in (4.34). This idea is presented in the third part.

Part 3: First we define the sequences {µl}l∈N, {ml}l∈N and {Ml}l∈N, with µ0 = 2, such that for all
l > 1 it holds:

µl =

{
2 + 2

pµl−1 if µl−1 = p(d−1)
2

3 + 2
pµl−1 otherwise

(4.45)

and for all l ∈ N:

ml =

{
2
pµl if d = 1 + 2

pµl−1

min
{
d, 1 + 2

pµl
}

otherwise
and Ml = max

{
0,ml −

4

p− 2

}
(4.46)

(note that m0 = m and M0 =M).
For all l ∈ N, we also define the following family of conditions B2(l):

B2(l) : Ml = 0 and ml =

{
2
pµl if d = 1 + 2

pµl

1 + 2
pµl otherwise

. (4.47)

Since B2(0) is in force, by relation (4.44) we have that:

wn = O
(
t−µ1
n

)
(4.48)

Hence, by using the hypothesis L(p) and the uniqueness of the minimizer, we find that:

hn ≤ K−12 w
2
p
n = O

(
t
− 2
pµ1

n

)
(4.49)

By following the same procedure as before in Part 1 and injecting the inequality (4.49) into (4.33), and
using the series-integral test, we find:

En+1 = O
(
t−m1
n

)
(4.50)

By proceeding exactly in the same way as before in Part 2, one can deduce that:

wn = O
(
tM1−m1−2
n

)
(4.51)

If we suppose that B2(1) does not hold true (i.e. M1 = m1− 4
p−2 ), then the result of Theorem 3.2 follows

directly from relation (4.51). If in the contrary B2(1) is in force, then from (4.51), it follows that:

wn = O
(
t−µ2
n

)
(4.52)

In fact, in the same way as before, by a recurrence argument, we find that for all l > 0 it holds:

wn = O
(
tMl−ml−2
n

)
(4.53)
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and if B2(l) holds true, then : wn = O
(
t
−µl+1
n

)
, otherwise wn = O

(
t
− 2p
p−2

n

)
.

Let us prove by contradiction that B2(l) cannot hold true for all l ∈ N. For that we suppose that
the condition B2(l), holds true for all l ∈ N. In that case for all l ∈ N, since Ml = 0, we have ml <

4
p−2

which is equivalent to:{
µl ≤

(6− p)p
2(p− 2)

and µl 6=
(d− 1)p

2

}
or

{
µl ≤

2p

p− 2
and µl =

(d− 1)p

2

}
(4.54)

Notice in that case that µl is always an increasing sequence, converging to its supremum: 3p
p−2 . In

fact one can assure that there is at most one l1 ∈ N, such that µl1 = (d−1)p
2 ≤ 2p

p−2 , thus µl+1 = 3+ 2
pµl

for all l > l1. This entails that after a certain rank l∗ ∈ N, for all l ≥ l∗, we have µl > 2p
p−2 , which

together with (4.54), leads to a contradiction.
Thus, we deduce the existence of an l∗ ∈ N, such that B2(l∗) does not hold true. Therefore (since

the condition B2(l∗) does not hold true), by (4.53) we deduce that:

wn = O

(
t
− 2p
p−2

n

)
(4.55)

which concludes the proof of Theorem 3.2.

A General Lemmas
In this section we give some auxiliary lemmas that we use in our analysis.

First we give a basic descent-type lemma for the function F , concerning the operator Tγ(x) :=
x− γF (x) (see also Lemma 2.2 in [11] or Lemma 1, in [17]).

Lemma A.1. Let γ > 0 and F satisfying H(β) with β > 1. For every (x, y) ∈ RN we have that:

2γ(F (Tγ(y))− F (x)) 6 ‖y − x‖2 − ‖Tγ(y)− x‖2 +
(
γL− 1

)
‖Tγ(y)− y‖2 (A.1)

In addition for all y ∈ RN and x∗ ∈ X∗ it holds:

2γ
(
F (Tγ(y))− F (x∗)

)
6

1

β

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
+
(
γL+

1

β
− 2
)
‖Tγ(y)− y‖2 (A.2)

Proof. The first point is already settled in previous works (see for example Lemma 2.3 in [11] or Lemma
1, in [17] for the proximal setting). Nevertheless we recall the complete proof of it.

Using the fact that ∇F is L-Lipschitz, for all (z, y) ∈ (RN )2, one can obtain:

F (z) 6 F (y) + 〈∇F (y), z − y〉+ L

2
‖z − y‖2 (A.3)

Letting z = Tγ(y), for all (x, y) ∈ (RN )2 we have:

F (Tγ(y))− F (x) 6 F (y)− F (x) + 〈∇F (y), Tγ(y)− y〉+
L

2
‖Tγ(y)− y‖2

6 〈∇F (y), Tγ(y)− x〉+
L

2
‖Tγ(y)− y‖2

=
1

γ
〈y − Tγ(y), Tγ(y)− x〉+

L

2
‖Tγ(y)− y‖2

=
1

2γ

(
‖y − x‖2 − ‖Tγ(y)− x‖2

)
+
(L
2
− 1

2γ

)
‖Tγ(y)− y‖2

(A.4)

where in the second inequality we used the fact that F is a convex function, in the first equality the
definition of the operator Tγ ( γ∇F (y) = y − Tγ(y)) and in the second equality Pythagoras identity:

〈y − Tγ(y), Tγ(y)− x〉 =
1

2

(
‖y − x‖2 − ‖Tγ(y)− x‖2 − ‖Tγ(y)− y‖2

)
(A.5)

By multiplying relation (A.4) by 2γ we obtain (A.1).

21



The proof of the second point is similar to the first one. In particular as before, for all y ∈ RN and
x∗ ∈ X∗ we have:

F (Tγ(y))− F (x∗) 6 F (y)− F (x∗) + 〈∇F (y), Tγ(y)− y〉+
L

2
‖Tγ(y)− y‖2 (A.6)

By using hypothesis H(β) we obtain:

F (Tγ(y))− F (x∗) 6
1

β
〈∇F (y), y − x∗〉+ 〈∇F (y), Tγ(y)− y〉+

L

2
‖Tγ(y)− y‖2 (A.7)

By using that γ∇F (y) = y − Tγ(y) and Pythagoras identity, we have:

F (Tγ(y))− F (x∗) 6
1

βγ
〈y − Tγ(y), Tγ(y)− x∗〉+

(L
2
− 1

γ

)
‖Tγ(y)− y‖2

=
1

2βγ

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
+
(L
2
− 1

γ
+

1

2βγ

)
‖Tγ(y)− y‖2

(A.8)

By multiplying the last inequality by 2γ, we conclude the second point (A.2) of Lemma A.1.

Remark 4. By choosing γ 6 1
L in Lemma A.1, it is direct that from relations (A.1) and (A.2) we obtain

(respectively):

2γ(F (Tγ(y))− F (x)) 6 ‖y − x‖2 − ‖Tγ(y)− x‖2 ,∀(x, y) ∈ (RN )2 (A.9)

2γ
(
F (Tγ(y))− F (x∗)

)
6

1

β

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
,∀y ∈ RN and x∗ ∈ X∗ (A.10)

In particular, we have the following useful Lemma concerning the sequence generated by Algo-
rithm 1.5.

Lemma A.2. Let γ > 0 and F satisfying H(β) with β > 1 and x∗ ∈ argminF . Let also {xn}n≥1 be the
sequence generated by the (i-GD) algorithm. Then the energy-sequence Un = F (xn)−F (x∗)+ ‖xn−xn−1‖2

2γ
is non-increasing.

Proof. It suffices to apply relation (A.1) of Lemma A.1, with γ 6 1
L , y = yn and x = xn, in order to

find:
F (xn+1)− F (xn) 6 α2

n‖xn − xn−1‖
2 − ‖xn+1 − xn‖2 (A.11)

By adding and subtracting F (x∗) in the left side (A.11) and rearranging the terms we find:

F (xn+1)− F (x∗) +
‖xn+1 − xn‖2

2γ
6 F (xn)− F (x∗) +

‖xn − xn−1‖2

2γ
− (1− α2

n)
‖xn − xn−1‖2

2γ
(A.12)

Since αn = n
n+b ≤ 1, for all n ≥ 1 , from (A.12), we deduce that Un+1 6 Un, which concludes the

proof.

The next Lemma is a discretized version of Gronwall’s Lemma ( see for example Theorem 4 in [24]
or Lemma 1 in [43] ).

Lemma A.3. Let C0 a positive real number and {un}n∈N, {un}n∈N and {an}n∈N three non-negative
sequences such that an 6= 0 for all n > 1 and:

un+1 6 anun + vn (A.13)

Then for all n > 1 it holds:

un+1 6
n∏
i=1

ai

(
u1 +

n∑
i=1

vi∏i
m=1 am

)
(A.14)
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Lemma A.4. Let a, c and C0 be some real numbers such that C0 > 0 and a > 0 and {un}n∈N be a
sequence of real numbers, and n0 ∈ N∗ such that 1 + c

n + a
n2 > 0 for all n > n0. Suppose also that for

all n > n0, it holds:

un+1 6 C0

n∏
i=n0

(1 +
c

i
+
a

i2
)

Then there exists a positive constant C and an integer n′0 > n0, such that for all n > n′0, it holds:

un+1 6 Cnc

Proof. In fact for all n > n0 we have:

n∏
i=n0

(
1 +

c

i
+
a

i2

)
= e

(∑n
i=n0

log
(
1+ c

i+
a
i2

))
(A.15)

By using the basic inequality x
1+x 6 log (1 + x) 6 x for all x > −1 and the summation-integral

comparison test, we have from the one side:
n∑

i=n0

log
(
1 +

c

i
+
a

i2
)
6

n∑
i=n0

(
c

i
+
a

i2

)
6 A+

n∑
i=n0

c

i
6 A+ c log n (A.16)

where A > 0 is a (renamed at each step) suitable positive constant.
From the other side:
n∑

i=n0

log
(
1 +

c

i
+
a

i2
)
>

n∑
i=n0

( c
i +

a
i2

1 + c
i +

a
i2

)
>

n∑
i=n0

(
c

i+ c

)
> A′ + c log(n+ c) > A′ + c log n (A.17)

where A′ > 0 is a (renamed at each step) suitable positive constant.
By (A.16) and (A.17) we infer that there exist n′0 ∈ N (such that n′0 > n0) and some suitable positive

constants C1 and C2 such that for all n > n0 it holds:

C1n
c 6

n∏
i=n0

(
1 +

c

i
+
a

i2

)
6 C2n

c (A.18)

From the hypothesis we have:

un+1 6 C0

n∏
i=n0

(
1 +

c

i
+
a

i2

)
(A.18)
6 Cnc (A.19)

which concludes the proof of Lemma A.4 for a suitable positive constant C > 0.

Lemma A.5. Let C > 0 a positive real number, α ∈ (0, 1) and {un}n∈N, {zn}n∈N two non-negative
sequences, such that for all n ∈ N∗ it holds

un 6 C + znu
α
n (A.20)

Then for all n ∈ N∗ it holds:
un 6 2max{C, (2αzn)

1
1−α } (A.21)

Proof. Let n ∈ N∗. We split the proof in two cases:

• Firstly we suppose that un > (2zn)
1

1−α .

Since un > (2zn)
1

1−α , we have that 1− znuα−1n > 1
2 , hence by using relation (A.20), we find:

1

2
un 6 un

(
1− znuα−1n

)
6 C

so that un 6 2C.

• If un 6 (2zn)
1

1−α the result holds trivially.
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B Proofs of Lemmas in Sections 4.2 and 4.3
In this section we present the detailed proofs of Lemmas 4.1, 4.2 and 4.3 used in sections 4.2 and 4.3.

Proof of Lemma 4.1. For this proof we will frequently make use of the following basic identity:

‖u− z‖2 − ‖v − z‖2 = ‖u− v‖2 + 2〈u− v, v − z〉 ∀u, v, z ∈ RN (B.1)

Firstly, by applying (A.10) of Lemma A.1 with γ 6 1
L and y = yn, x = x∗ we obtain:

2γ
(
F (xn+1)− F (x∗)

)
6

1

β

(
‖xn + αn(xn − xn−1)− x∗‖2 − ‖xn+1 − x∗‖2

)
(B.2)

which by multiplying by λβtn+1 > 0, developing the term ‖xn+αn(xn−xn−1)−x∗‖2, is equivalent to:

2γλβtn+1wn+1 6 λtn+1

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
+ 2λn〈xn − xn−1, xn − x∗〉

+ λtn+1αn‖xn − xn−1‖2
(B.3)

Since αn = n
n+b =

n
tn+1

, by using the definitions of wn, δn and hn, we find:

2γλβtn+1wn+1 6 λtn+1

(
hn − hn+1

)
+ 2λn〈xn − xn−1, xn − x∗〉+

λn2

tn+1
δn

(B.1) = −λtn+1δn+1 +
λn2

tn+1
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉

(B.4)

On the other hand, by applying (A.1) of Lemma A.1, with γ 6 1
L and y = yn, x = xn we obtain:

2γ
(
F (xn+1)− F (xn)

)
6 α2

n‖xn − xn−1‖
2 − ‖xn+1 − xn‖2 (B.5)

By adding and subtracting F (x∗) on the left side and multiplying by t2n+1 on both sides, we find:

2γt2n+1

(
wn+1 − wn

)
6 n2δn − t2n+1δn+1 (B.6)

By adding relation (B.4) to relation (B.6), we obtain:

2γ
(
(t2n+1 + λβtn+1)wn+1 − t2n+1wn

)
6 −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 +

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(B.7)

which -by adding and subtracting 2γ
(
t2n + λβtn

)
wn on both sides- is equivalent to:

2γ
(
(t2n+1 + λβtn+1)wn+1 − (t2n + λβtn)wn

)
6 2γkn+1wn −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 +

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉

= 2γkn+1wn −
(
t2n+1 + λtn+1

)
δn+1 +

(
n2 + 2λn+

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn−1 − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(B.8)

where
kn+1 = t2n+1 − λβtn − t2n = (n+ b)2 − λβ(n+ b− 1)− (n+ b− 1)2

= (2− λβ)(n+ b− 1) + 1 = (2− λβ)tn + 1
(B.9)

In addition, by developing the squares in the definition of vn+1 and vn, we have:

vn+1 − vn = ‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2 − ‖tn(xn − xn−1) + λ(xn−1 − x∗)‖2

= t2n+1‖xn+1 − xn‖2 + 2λtn+1〈xn+1 − xn, xn − x∗〉+ λ2‖xn − x∗‖2

− t2n‖xn − xn−1‖
2 − 2λtn〈xn − xn−1, xn−1 − x∗〉 − λ2‖xn−1 − x∗‖2

= t2n+1δn+1 − t2nδn + λ2
(
hn − hn−1

)
+ 2λtn+1〈xn+1 − xn, xn − x∗〉

− 2λtn〈xn − xn−1, xn−1 − x∗〉

(B.10)
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By definition of En (4.12), inequality (B.8) and equality (B.10), we find:

2γ(En+1 − En) = 2γ
(
(t2n+1 + λβtn+1)wn+1 − (t2n + λβtn)wn

)
+ vn+1 − vn

+ ξ
(
hn − hn−1

)
+ λ
(
tn+1δn+1 − tnδn

)
(B.8), (B.10) 6 2γkn+1wn + (λ2 + ξ)

(
hn − hn−1

)
+
(
n2 − t2n + 2λn− λtn +

λn2

tn+1

)
δn

+ 2λ
(
n− tn

)
〈xn − xn−1, xn−1 − x∗〉

(B.11)

By using (B.1) we have hn − hn−1 = δn + 〈xn − xn−1, xn−1 − x∗〉, hence by (B.11), we find:

2γ(En+1 − En) 6 2γkn+1wn +

(
n2 − t2n + 2λn− λtn +

λn2

tn+1
+ λ2 + ξ

)
δn

+ 2

(
λ2 + ξ + λn− λtn

)
〈xn − xn−1, xn−1 − x∗〉

(B.12)

Since tn = n+ b− 1, by replacing n by tn + 1− b in (B.12) and performing some standard calculus, we
find:

2γ(En+1 − En) 6 2γkn+1wn +

(
2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− 2b) +

λb2

tn+1
+ ξ

)
δn

+ 2

(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉(

tn+1 > b
)

6 2γkn+1wn +

(
2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− b) + ξ

)
δn

+ 2

(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(B.13)

By definition of En (4.12), we also have

2γEn = 2γ
(
t2n + λβtn

)
wn + (λ2 + ξ)hn−1 +

(
t2n + λtn

)
δn + 2λtn〈xn − xn−1, xn−1 − x∗〉 (B.14)

so that

tnδn =
2γ

tn
En − 2γ

(
tn + λβ

)
wn −

(λ2 + ξ)

tn
hn−1 − 2λ〈xn − xn−1, xn−1 − x∗〉

− λδn
(B.15)

By injecting the last equality into (B.13), we find:

2γ(En+1 − En) 6 2γ
2(λ+ 1− b)

tn
En + 2γ

(
kn+1 − 2(λ+ 1− b)(tn + λβ)

)
wn

+

(
(λ+ 1− b)2 + λ(1− b)− 2λ(λ+ 1− b)

)
+ ξ

)
δn

− 2(λ+ 1− b)(λ2 + ξ)

tn
hn−1 + 2

(
ξ − λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(B.16)

By choosing ξ = λ(λ+ 1− b), in (B.16), we obtain:

2γ(En+1 − En) 6 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn + 2γ

2(λ+ 1− b)
tn

En

+

(
(2λ+ 1− b)(1− b)

)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

(B.9) = 2γ
2(λ+ 1− b)

tn
En + 2γ

((
2b− (β + 2)λ

)
tn + 1− 2λβ(λ+ 1− b)

)
wn

+

(
((2λ+ 1− b)(1− b)

)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

= 2γ
c(λ)

tn
En + 2γ

(
A1(λ)tn + 1− 2λβ(λ+ 1− b)

)
wn +A2(λ)δn +

A3(λ)

tn
hn−1

(B.17)
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where: c(λ) = 2(λ + 1 − b), A1(λ) = 2b − (β + 2)λ, A2(λ) = (2λ + 1 − b)(1 − b), and A3(λ) =
−2λ(λ+ 1− b)(2λ+ 1− b), which concludes the proof of the Lemma 4.1.

Proof of Lemma 4.2. Firstly we suppose that b 6 1 + 2
β .

Setting λ = 2b
β+2 > 0, in the inequality (4.16) of Lemma 4.1, we find:

2γ(En+1 − En) 6 2γ
c

tn
En + 2γA′1wn +A2δn +

A3

tn
hn−1 (B.18)

where c = 2(λ+ 1− b) = 2− 2bβ
β+2 and

A′1 = 1− 2βλ(λ+ 1− b) = 1− 4bβ

β + 2

(
1− bβ

β + 2

)
A2 = (2λ+ 1− b)(1− b) = β − 2

β + 2
b2 − 2β

β + 2
b+ 1 = (b− 1)

(
β − 2

β + 2
b− 1

)
and A3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 2b

β + 2

(
1− bβ

β + 2

)(
1− (β − 2)b

β + 2

)
Here we point out that in the case where b 6 1 + 2

β the constant A′1 is non-negative while A2 may
be positive or negative, and A3 6 0.

Without loss of generality we can suppose that the constant A2 is positive. Denoting by A =
max{A′1, A2} > 0, from (B.18), we obtain:

2γ(En+1 − En) 6 2γ
c

tn
En + 2γAwn +Aδn +

A3

tn
hn−1 (B.19)

In this point, firstly we express the term δn with the aid of En and wn and then we regroup the
different terms.

By relation (4.15), for ξ = λ(λ+ 1− b) we find:

2γEn > 2γt2nwn +
t2n
2
δn − λ(b− 1)hn−1 (B.20)

Hence we have that:
δn 6 4γ

En
t2n
− 4γwn +

2λ(b− 1)

t2n
hn−1 (B.21)

By injecting inequality (B.21) into (B.19), for all n > 1 we find:

2γ(En+1 − En) 6 2γ
(
A− 2A

)
wn + 2γ

c

tn
En + 2γ

2A

t2n
En

+

(
4b(b− 1)A

(β + 2)tn
+A3

)
hn−1
tn

6 2γ
c

tn
En + 2γ

2A

t2n
En +

(
4b(b− 1)A

(β + 2)tn
+A3

)
hn−1
tn

(B.22)

In this point we consider the two cases depending on the value of the parameter b.
Firstly we suppose that b < 1 + 2

β . In this case A3 < 0, therefore, for n ∈ N large enough we have
that :

2b(b− 1)A

(β + 2)tn
+A3 6 0 (B.23)

Hence by (B.22) we obtain:

2γ(En+1 − En) 6 2γ

(
c

tn
+

a

t2n

)
En

which concludes the proof of the first case (b < 1 + 2
β ) of Lemma 4.2 with a = 2A and c = 2− 2bβ

β+2 .
For the second case we suppose that b > 1 + 2

β and F satisfies L(p) with p = 2.
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Remark that in this case (b > 1 + 2
β ), by letting λ = 2b

β+2 , the constant A3 may be non-negative.
In fact, if β > 2 and 1 + 2

β 6 b 6 β+2
β−2 , then A3 > 0. Here without loss of generality we suppose that

A3 > 0 (the case A3 6 0 can be treated exactly in the same way as before in the case b 6 1 + 2
β ).

In particular, by using the inequality ‖u − v‖2 6 2‖u − z‖2 + 2‖v − z‖2, for u = xn−1, v = x∗ and
z = xn, in (B.19) we find:

2γ(En+1 − En) 6 2γAwn + 2γ
c

tn
En +

(
A+

2A3

tn

)
‖xn − xn−1‖2 +

2A3

tn
‖xn − x∗‖2

6 2γAwn + 2γ
c

tn
En + 2Aδn +

2A3

tn
‖xn − x∗‖2

(B.24)

By using again the inequality ‖u− v‖2 6 2‖u− z‖2 +2‖v− z‖2, with u = xn−1, v = x∗ and z = xn,
in (4.15) we find:

2γEn > 2γ
(
t2n + λβtn

)
wn + t2n

(
1

2
+
λ

tn
− 2λ(b− 1)

t2n

)
δn − 2λ(b− 1)‖xn − x∗‖2

> 2γt2nwn +
t2n
2
δn − 2λ(b− 1)‖xn − x∗‖2

(B.25)

Hence for n ∈ N large enough we have

δn 6 4γ
En
t2n
− 4γwn +

4λ(b− 1)

t2n
‖xn − x∗‖2 (B.26)

By injecting the last inequality (B.26) into (B.24) we find:

2γ(En+1 − En) 6 2γ
(
A− 4A

)
wn + 2γ

c

tn
En + 2γ

4A

t2n
En

+ 2

(
8b(b− 1)A

(β + 2)tn
+A3

)
‖xn − x∗‖2

tn

(B.27)

By using Hypothesis L(p) with p = 2 and the uniqueness of the minimizer in inequality (B.27), we
find:

2γ(En+1 − En) 6
(
2K−12

(8b(b− 1)A

(β + 2)t2n
+
A3

tn

)
− 6γA

)
wn + 2γ

c

tn
En + 2γ

2(β + 2)A

t2n
En (B.28)

Therefore, for n ∈ N large enough we have:

2K−12

(8b(b− 1)A

(β + 2)t2n
+
A3

tn

)
− 6γA 6 0

which permits to conclude the proof of Lemma 4.2 with a = 4A and c = 2− 2bβ
β+2 .

Proof of the point 2 in Lemma 4.2. From Lemma 4.2, without loss of generality we can suppose
that for a suitable n0 ∈ N, for all n > n0, we have:

En+1 − En 6
a

(n+ b− 1)2
En +

c

(n+ b− 1)
En (B.29)

with a = 4A and c = 2− 2bβ
β+2 . Equivalently:

En+1 6

(
1 +

c

tn
+

a

t2n

)
En (B.30)

Hence by a recurrence argument, for all n > n0 we find:

En 6 En0

n−1∏
i=n0

(
1 +

c

ti
+
a

t2i

)
(B.31)

Thus, by applying Lemma A.4, we can conclude that there exists some n0 ∈ N and a positive constant
C > 0, such that for all n > n0 we have: En 6 Cnc, as expected.
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Proof of Lemma 4.3. By letting λ = 2
β−2 in (4.16) of Lemma 4.1, we find:

2γ
(
En+1 − En

)
6 2γ

(
2
( β

β − 2
− b
))En

tn
+ 2γ

(
B1tn + 1− 4β

β − 2

( β

β − 2
− b
))
wn

+B2‖xn − xn−1‖2 +
B3

tn
‖xn−1 − x∗‖2

(B.32)

where:
B1 =

(
2b− (β + 2)λ

)
= 2

(
b− β + 2

β − 2

)
B2 = (2λ+ 1− b)(1− b) = (b− 1)(b− β + 2

β − 2
)

and B3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 4

β − 2

(
b− β + 2

β − 2

)(
b− β

β − 2

)
By definition of En (4.12) we have:

2γEn = 2γ
(
t2n + λβtn

)
wn + vn + λtnδn + λ(λ+ 1− b)hn−1 (B.33)

where λ = 2
β−2 .

Hence by definition of B1 and B3 and relation (B.33), we find:

2γB1tnwn +
B3

tn
hn−1 = 2γ

B1En
tn

− 2γλβB1wn − λB1δn −B1
vn
tn

(B.34)

By injecting the last inequality (B.34) into (B.32) and omitting the non-positive term −B1
vn
tn
, we

find:
2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γB′1wn +B′2δn (B.35)

where

d =
4

β − 2
, B′1 = 1− 4β

β − 2

( β

β − 2
− b
)
− λβB1 =

(
β + 2

β − 2

)2

and

B′2 = B2 − λB1 =

(
b− β + 2

β − 2

)2

By choosing B′ = max
{
B′1, B

′
2

}
, from (B.35) we infer that:

2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γB′wn +B′δn (B.36)

By relation (4.15) (recall that λ = 2
β−2 and ξ = λ(λ+1− b)), for n ∈ N large enough, we have that:

δn 6 4γ
En
t2n
− 4γwn +

2λ(b− 1)

t2n
hn−1 (B.37)

Hence by injecting (B.37) into (B.36) we obtain:

2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γ

2B′

t2n
En − 2γB′wn +

4(b− 1)B′hn−1
(β − 2)t2n

6 −2γ d
tn
En + 2γ

C

t2n
En +

Chn−1
t2n

(B.38)

which concludes the proof of Lemma 4.3 with C = max{2B′, 4(b−1)B
′

β−2 } > 0.
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