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Abstract

In this paper we study the convergence properties of the Nesterov inertial scheme which is a
specific case of inertial Gradient Descent algorithm in the context of a smooth convex minimization
problem, under some additional hypothesis on the local geometry of the minimizing function F , such
as the growth (or Łojasiewicz) condition. In particular we study the different convergence rates for
the objective function and the local variation, depending on these geometric conditions. In this
setting we can give optimal convergence rates for Nesterov scheme. Our analysis shows that there
are some situations when Nesterov inertial scheme is asymptotically less efficient than the gradient
descent (e.g. in the case when the objective function is quadratic).

Keywords: Smooth optimization, convex optimization, inertial gradient descent algorithm, Nes-
terov acceleration, growth condition, Łojasiewicz condition, rate of convergence
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1 Introduction
Let N ∈ N∗. We are interested in the following minimization problem:

min
x∈RN

F (x) (1.1)

where F : RN −→ R, is a convex function in C 1,1(RN ) with L-Lipschitz gradient such that argminF 6=
∅. In this setting various algorithms have been proposed in order to solve numerically the minimization
problem (1.1) such as the classical gradient descent algorithm and its variants.

Starting from a point x0 ∈ RN , the classical Gradient Descent algorithm (1.2) with a fixed step-size
γ > 0 reads:

xn+1 = xn − γ∇F (xn) (1.2)

Algorithm (1.2) is a descent scheme (i.e. F (xn+1) 6 F (xn)) provided that 0 < γ < 2
L ,and without

any further hypothesis made on the function F , it provides a sequence that convergences weakly to
a minimizer, as also convergence rates for the objective function F (xn) − F (x∗) of order o

(
n−1

)
. In

addition this order has been proved to be optimal (see for example [29] and [20]).
In order to "accelerate" this convergence rate, in the seminal work of Nesterov [31], the author

proposed an inertial version of Gradient descent algorithm with a suitable momentum term, i.e.

θn+1 =
1 +

√
4θ2n + 1

2
with θ0 = 1

yn = xn +
θn − 1

θn+1
(xn − xn−1)

xn+1 = yn − γ∇F (yn)

(1.3)

Algorithm (1.3) accelerates the convergence rate of the objective function F (xn) − F (x∗), in the
sense that it is of order O

(
n−2

)
asymptotically. Several extensions have been made also in the non-

differentiable setting (proximal-splitting-methods), see for example [21] and [11], as also with different
choices for the momentum parameter (i.e. the term θn−1

θn+1
in (1.3)).

In this paper, we consider a special choice of the momentum parameter/over-relaxation term of the
Inertial Gradient Descent (1.5). This inertial scheme is described hereafter and depends of a sequence
(αn)n>1: for any 0 < γ < 1

L , we set x0 = x1 ∈ RN and for all n > 1:

yn = xn + αn(xn − xn−1)
xn+1 = yn − γ∇F (yn).

(1.4)

αn ∈ [0, 1] may be a constant parameter or it may depends on the iteration number. In this paper we
focus on the Nesterov scheme, that is the specific choice αn = n

n+b , with b > 0. Note that this term is
the same as the one chosen in [17] in the non-smooth setting (see also [36],[1], [7] and [6]). We therefore
rewrite explicitly here what we call Nesterov (inertial) scheme in the rest of the paper:

yn = xn +
n

n+ b
(xn − xn−1)

xn+1 = yn − γ∇F (yn).
(1.5)

Notice that in (1.3), we have 1 − θn−1
θn+1

∼ 3
n . Without any further hypothesis on the function F , it

was proven that if the parameter b satisfies b > 3, then the convergence rate of the objective function is
of order of O

(
n−2

)
(see for example , [6], [36] and [17]). Another interesting issue of this choice is that

if b > 3 it can be proven that the iterates of (1.5) converge to a minimizer (see for example [17] and [6],
and it can also be shown that the order of convergence rate of the objective function is actually o

(
n−2

)
(see [8]). Other recent studies of algorithm (1.5) include results for the case b ∈ (0, 3) (see for example
[1] and [7]) which provide an order of O

(
n−

2b
3

)
.

In this work we are interested in studying the convergence properties of the Nesterov scheme that is
inertial gradient descent scheme (1.5) for solving the minimization problem (1.1), under some additional
assumptions on the local geometry of the function F in a neighbourhood of its minimizer x∗ that we
recall in Section 2.

As it was shown by Attouch and Cabot in [5], if F is a strongly convex function the sequence
(xn)n∈N satisfies F (xn) − F ∗ = O

(
n−

2b
3

)
for any b > 0. In this work we give bounds depending on

2



more general geometries than strongly convex functions, that is functions behaving like ‖x−x∗‖β around
the minimizer for any β > 1. In particular we prove that if F is strongly convex and ∇F is Lipschitz
continuous, the decay is always better than F (xn) − F ∗ = O

(
n−

2b
3

)
. We also prove that the actual

decay for quadratic functions is F (xn)−F ∗ = O
(
n−b

)
. These results rely on two geometrical conditions,

one ensuring that the function is sufficiently flat around the minimizer, one ensuring it is sufficiently
sharp. We recover exactly rates given in [10] for the associated ODE for any inertial parameter b and
these rates are proved to be optimal in the continuous setting. Notice that in [20], the authors prove that
the convergence rate of the gradient descent for quadratic functions is geometric. As a consequence, the
actual decay O

(
n−b

)
for Nesterov scheme is asymptotically slower than the one of the classical gradient

method.
The current work consists in a discrete counterpart of the works [9] and [10]. Indeed, there has been

a large body of literature in the 5 past years regarding the connections between dynamical systems and
their discrete schemes (algorithms). In our framework it is worth mentioning the pioneering works [36]
and [6] where it was shown that algorithm (1.5) is related to the following differential equation:

ẍ(t) +
b

t
ẋ(t) +∇F (x(t)) = 0 . (1.6)

In particular, algorithm (1.5) can be seen as a time-discretization scheme of the differential equation
(1.6) with a time step √γ (where γ 6 1

L corresponds to the step-size in (1.5)).
Various works have been devoted to the study of (1.6) and in particular to the convergence properties

of the trajectory of solutions of (1.6), which correspond naturally to the same properties of a sequence
generated by the algorithm (1.5). In particular it was shown that the convergence rate for the objective
function F (x(t)) − F (x∗) is of order O

(
t−2
)
if b > 3 (see [36] and [6]), while for b > 3 this order is

actually o
(
t−2
)
(see [28]) and the trajectory {x(t)}t>0 weakly converges to a minimizer of F ([6]). As

for the case b ∈ (0, 3) this order reduces to O
(
t−

2b
3

)
(see [7], [9] and [2]), and this rate is optimal [9].

Recently in [9] and [10] the authors studied the behavior of the trajectory of the solutions {x(t)}t>0

of (1.6), for a function F satisfying geometric assumptions in a neighbourhood of its minimizers (flatness
and/or sharpness). The present work is thus the discrete counterpart of those papers.

The present paper is organized as follows. First we introduce in Section 2 the conditions on the
local geometry of the function F . In section 3 we present the main results of this work concerning the
order of convergence rate for Algorithm (1.5) and we compare them with related works. In section 4
we present the asymptotic analysis made for (1.5) (i.e. the proofs and the schema of the proofs of the
main results). Appendix A and Appendix B contain some Lemmas (and their proofs) necessary for our
analysis.

2 Geometry of convex functions around their minimizers
In this paragraph we present two conditions on a convex function describing its (local) geometry around
the set of its minimizers. Roughly speaking, these two conditions characterize functions behaving like
‖ · ‖β around its set of minimizers: one ensures that the function is sufficiently flat, while the other
ensures that it is sufficiently sharp in the neighborhood of its minimizers.

Definition 2.1. Let F : RN → R be a convex differentiable function with X∗ = argminF 6= ∅.

1. Let β > 1. The function F satisfies the condition H(β) if, for any critical point x∗ ∈ X∗, there
exists η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) 6 1

β
〈∇F (x), x− x∗〉.

2. Let p > 1. The function F satisfies the condition L(p) if, for any minimizer x∗ ∈ X∗, there exists
a constant Kp > 0 and ε > 0 such that:

∀x ∈ B(x∗, ε), Kp‖x− x∗‖p 6 F (x)− F (x∗).

The hypothesis H(β) already used in [15, 36, 9, 10], generalizes the notion of convexity of a differ-
entiable function in a neighborhood of its minimizers. Observe that any convex function automatically

3



satisfies H(1), and that any differentiable function F ensuring that (F − F (x∗))
1
β is convex, satisfies

H(β) with β > 1, which is slightly more demanding than the convexity of F . To have a better insight
on the local geometry of convex functions satisfying the hypothesis H(β), we need the following result:

Lemma 2.1 ([10, Lemma 2.4]). Let F : RN → R be a convex differentiable function with X∗ =
argminF 6= ∅. If F satisfies H(β) for some β > 1, then:

1. The function F satisfies H(β′), for all 1 6 β′ 6 β.

2. For any minimizer x∗ ∈ X∗, there exist M > 0 and η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) ≤M‖x− x∗‖β . (2.1)

In other words, the hypothesis H(β) with β > 1, can be interpreted as a flatness condition: it
ensures that the function F is sufficiently flat (at least as flat as x 7→ ‖x‖β) in the neighborhood of its
minimizers.

The hypothesis L(p) with p ≥ 1, is a growth condition on the function F around its set of minimizers
X∗. Note that, when X∗ is a connected compact set, it can be replaced by a more general growth
condition on F in the neighborhood of its minimizers [10]:

Lemma 2.2. Let F : Rn → R be a convex differentiable function satisfying the growth condition L(p)
for some r > 1. Assume that the set X∗ = argminF is compact. Then there exist K > 0 and ε > 0
such that, for all x ∈ Rn:

d(x,X∗) 6 ε⇒ Kd(x,X∗)r 6 F (x)− F ∗.

Historically, the growth condition L(p) is also called r-conditioning [20] or Hölderian error bounds
[14], and is closely related to the Łojasiewicz inequality [26, 27], a key tool in the mathematical analysis
of continuous and discrete dynamical systems [12, 13]:

Definition 2.2. A differentiable function F : RN → R is said to have the Łojasiewicz property with
exponent θ ∈ [0, 1) if, for any critical point x∗, there exist c > 0 and ε > 0 such that:

∀x ∈ B(x∗, ε), ‖∇F (x)‖ > c|F (x)− F ∗|θ. (2.2)

where: 00 = 0 when θ = 0 by convention.

In the convex setting, the growth condition L(p), p > 1, is indeed equivalent to the Łojasiewicz

inequality, with exponent θ = 1− 1
p ∈ (0, 1] and c = K

1
p
p [4, 20]. Typical examples of functions having

the Łojasiewicz property are real-analytic functions and C1 subanalytic functions [26], or semialgebraic
functions [3]. Strongly convex functions satisfy a global Łojasiewicz property with exponent θ = 1

2 [3],
or equivalently a global version of the growth condition, namely:

∀x ∈ Rn, F (x)− F ∗ > µ

2
d(x,X∗)2,

where µ > 0 denotes the parameter of strong convexity. Likewise, convex functions having a strong
minimizer in the sense of [5, Section 3.3], also satisfy a global version of L(2). By extension, uniformly
convex functions of order p > 2 satisfy the global version of the hypothesis L(p) [20].

The geometrical interpretation of the condition L(p) is straightforward: it ensures that the function
F is sufficiently sharp (at least as sharp as x 7→ ‖x−x∗‖p) in the neighborhood of its set of minimizers.
Consistently, observe that any convex function satisfying L(p), satisfies L(p′) for all p′ > p.

Consider now any convex differentiable function F satisfying both hypothesis H(β) and L(p). Com-
bining the related inequalities, namely (2.1) and the growth condition L(p), F has to be at least as flat
as ‖x− x∗‖β and as sharp as ‖x− x∗‖p in the neighborhood of its minimizers.

For the simple example of the function F : x ∈ R −→ |x|γ with γ > 1, a straightforward computation
shows that F satisfies H(β) and L(p) if and only if 1 6 β 6 γ 6 p. More generally:

Lemma 2.3. If a convex differentiable function F satisfies both H(β) and L(p), with β, p > 1, then
necessarily: p > β.
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In our framework, the objective function F is assumed to be convex and differentiable with a Lipschitz
continuous gradient. For such functions, the Lipschitz continuity of the gradient provides some additional
information on the local geometry of F in the neighborhood of its minimizers. Indeed, for convex
functions, the Lipschitz continuity of the gradient is equivalent to a quadratic upper bound on F :

∀(x, y) ∈ RN × RN , F (x)− F (y) 6 〈∇F (y), x− y〉+ L

2
‖x− y‖2. (2.3)

Applying (2.3) at y = x∗, we then deduce:

∀x ∈ RN , F (x)− F ∗ 6 L

2
‖x− x∗‖2, (2.4)

which indicates that F is at least as flat as ‖x− x∗‖2 around X∗. More precisely:

Lemma 2.4. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0.

1. If F satisfies the growth condition L(p), then necessarily p > 2.

2. If F satisfies L(2), then F automatically satisfies H(β) with β = 1 + K2

2L and K2 6 L
2 .

Proof. Assume that F satisfies the condition L(p). Combining the inequality (2.4) and the growth
condition, we get: for any x∗ ∈ X∗,

Kp‖x− x∗‖p 6 F (x)− F (x∗) 6 L

2
‖x− x∗‖2, (2.5)

for all x in some neighborhood of x∗, which necessarily implies: p > 2. In the particular case p = 2, we
also deduce that: 2K2 6 L. The second point of Lemma 2.4 has already been shown in [10].

3 Main results and contributions
The main results of the paper are summarized in the two theorems presented in this section. They
mostly give some convergence rates of F (xn) − F (x∗) where (xn)n∈N is the sequence built by the
Nesterov scheme (1.5) for various choices of friction parameter b and geometrical conditions H(γ) and
L(2).

Numerous decay rates have been proposed for the Nesterov scheme [32], for gradient descent [20],
or more general inertial schemes such as inertial gradient descent [5] or Heavy Ball methods [24]. Some
results are available for any convex functions and others assume strong convexity or condition L(2).
Moreover, this inertial scheme can be seen as a discretization scheme of the specific ODE (1.6) and the
given results are closely related to associated problem. We also will provide a comparison between the
continuous setting and this discrete counterpart. But to be precise in all the comparisons that should
be done with the state of the art we first give our results and discuss in a second time.

3.1 Main results
We now present the two main Theorems of this paper.

Theorem 3.1. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous
gradient for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) with β > 1. Then we have the following:

1. If b < 1 + 2
β , the following convergence rates hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2bβ
β+2

)
(3.1)

If in addition β 6 2 then:
‖xn − xn−1‖ = O

(
n−

bβ
β+2

)
(3.2)
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2. (i) If b > 1 + 2
β then the following convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−2

)
(3.3)

If in addition β 6 2 then {xn}n≥1 is bounded and:

‖xn − xn−1‖ = O
(
n−1

)
(3.4)

(ii) If b > 1 + 2
β then:

+∞∑
n=0

n
(
F (xn)− F (x∗)

)
< +∞ and

+∞∑
n=0

n‖xn − xn−1‖2 < +∞ (3.5)

In addition the sequence {xn}n∈N converges to a minimizer x∗.

(iii) If b > 1 + 2
β and if F satisfies L(2) and admits a unique minimizer, then the following

convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−

2bβ
β+2

)
and ‖xn − xn−1‖ = O

(
n−

bβ
β+2

)
(3.6)

Corollary 3.1. In view of point 2(ii) of Theorem 3.1, in the case b > 1 + 2
β , for n ∈ N, we actually

have:
F (xn)− F (x∗) = o

(
n−2

)
and ‖xn − xn−1‖ = o

(
n−1

)
(3.7)

as also the sequence xn converges to a minimizer x∗.

This corollary is an extension of Theorem 1 in [8]. The proof of this corollary is a direct consequence
of the summability (3.5) and of Lemma B.2 in Appendix B (these two results are key elements of the
convergence proof in [17]).

We define Un = F (xn)− F (x∗) + ‖xn−xn−1‖2
2γ . From (3.5) we deduce that∑
n>1

nUn < +∞ (3.8)

It follows that for any ε > 0, it exists a rank n0 such that for any n > n0,

n∑
k=[n2 ]

kUk < ε. (3.9)

Hence, the sequence Ũn = min
k∈[[n2 ],n]

Uk satisfies

Ũn ×
n∑

k=[n2 ]

k 6
n∑

k=[n2 ]

kUk < ε. (3.10)

and thus Ũn = o
(

1
n2

)
. Moreover (Un)n>1 is non-increasing (see Lemma B.2 in Appendix B) and thus

Un = Ũn which concludes the proof of (3.7).
The proof of the convergence of the sequence xn to a minimizer x∗ is also based on the estimates

(3.5) and it is identical to the one made in [17] (see Theorem 3) and is omitted here.

Remark 1 (The Least Square problem). From Theorem 3.1, the point 2 is applicable under the
hypothesis on the uniqueness of the minimizer of F , x∗. In fact, in a context such as the Least Square
problem, the hypothesis on the uniqueness of x∗ can be omitted since the whole trajectory (xn)n∈N
belongs to an affine space where the solution of the minimization problem is unique.

Let us consider the Least square inverse problem. Given y ∈ RN and a positive-definite bounded
linear operator (matrix) A : RN −→ RN , we consider the function F : RN −→ R such that F (x) =
1
2‖Ax− y‖

2 for all x ∈ RN and the minimization problem (1.1), i.e.:

min
x∈RN

1

2
‖Ax− y‖2 (LS)
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For the problem (LS), the algorithm (1.5) reads:

yn = xn + αn(xn − xn−1)
xn+1 = yn − γA∗

(
Ayn − y

) (3.11)

with x0 = x1 ∈ RN . We then deduce that for all n ∈ N, xn ∈ {x0}+ ImA∗.
Since this problem has a unique solution on the space {x0} + ImA∗, the second point of Theorem

3.1 is applicable.

The second Theorem considers the case of a function F with a "flat" geometry near the minimizer
of F . In our framework this is the case of a function F , verifying Hypotheses H(β) and L(p) with
p > β > 2.

Theorem 3.2. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous
gradient for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) and L(p) with p > β > 2, and that F has a unique minimizer. If

b ≥ β+2
β−2 , then the following estimate hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2p
p−2

)
(3.12)

3.2 Comments and Relation with prior works
State of the art for Nesterov scheme: It is known since [31] in 1983 that for b = 3 the Nesterov
scheme ensures that F (xn) − F (x∗) = O

(
1
t2

)
, if F is convex. Actually, the proof of Nesterov was

also available for b > 3 but the value b = 3 ensures the lowest constant hidden in the big O. That is
why this choice was used for the generalization to non smooth functions FISTA [11] or for restarting
methods [33]. In [17], Chambolle and the 3rd author of the present paper reminded that any b > 3 may
provide the same decay, and they showed that if b > 3, we can moreover ensure the weak convergence
of iterates in a Hilbert space and the convergence of

∑
n∈N n(F (xn) − F (x∗)). In [8], Attouch and

Peypouquet deduced from this summability that F (xn) − F (x∗) = o( 1
n2 ) when b > 3. More recently,

following similar results from the continuous setting, Attouch et al. [7] and Apidopoulos et al. [1]
proved that F (xn)− F (x∗) = O

(
1

n
2b
3

)
when b 6 3. In Theorem 3.1 point 1 and point 2 (i) and (ii) we

show that if F satisfies H(β) for β > 1, the decay rate is actually better than O
(

1

n
2b
3

)
for all b 6 3

and that the limit value for parameter b ensuring the convergence of iterates and the convergence of∑
n∈N n(F (xn) − F (x∗)) is actually 1 + 2

β < 3. As a consequence for such functions, the sequence of
iterates converges for b = 3.
In [36] Su et al. proved that for b 6 9, if F is strongly convex, F (xn) − F (x∗) = O

(
1

n
2b
3

)
, this result

was extended to any b > 0 by Attouch et al. [8] for functions having a strong minimizer. The point 2
(iii) of Theorem 3.1 gives a more accurate bound when F satisfies condition H(β) since the power 2bβ

β+2

is always higher than 2b
3 when β > 1. We can notice that the strong convexity or the strong minimizer

condition ensure that the local condition L(2) is in force. Moreover we have observed in Lemma 2.4
that if the gradient of F is L Lipschitz and F satisfies L(2) then F satisfies H(β) for a β > 1, which
implies that for such functions the decay is always faster than O

(
1

n
2b
3

)
.

This Theorem enlightens the role of the flatness hypothesis H to get a better decay rate. For classical
gradient descent, the condition L(2) is the key to get the best decay rate, since the function F (x) = |x|p
satisfies L(p) by definition and this function achieves the best decay rate for function satisfying L(p)
[29]. If we consider inertial algorithm, the sharpness is not the only key. In [10], Aujol et al. show
for the associated continuous problem, that this flatness hypothesis H may ensure a better decay rate,
avoiding too large oscillations around the minimizer. They show that the actual decay rate for quadratic
function is O

(
1
tb

)
which is better than O

(
1

t
2b
3

)
that can be obtained using only strong convexity or

L(2) condition. It is a general comment, also valid for the second theorem: for inertial algorithms,
sharpness is not always the critical assumption; to get optimal rates for Nesterov scheme, one needs to
control sharpness and flatness of the function. The last point of Theorem 3.1 illustrates this remark,
showing for example that the decay rate is O

(
1
nb

)
for quadratic functions. Since this rate is proved to

be optimal, see [10], for the continuous setting, we conjecture that this decay is optimal in the discrete
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setting as well. One can notice that, in a continuous setting, under the sole assumption L(2) , we cannot
get a better rate than 2b

3 . To get the power b, a flatness hypothesis is needed.
Theorem 3.2 deals with the case when F satisfies L(p) with p > 2 but not necessarily L(2). As far as

we know, there are no references with such hypotheses for the Nesterov scheme. This theorem ensures
that if b is large enough, the decay of F (xn)−F (x∗) is faster than the rate o

(
1
n2

)
that can be obtained

only with a convexity assumption.

Comparison with gradient descent and other inertial algorithms: Many inertial schemes of
gradient descend have been proposed such as the Inertial Gradient Descent (1.5)

xn+1 = xn + αn(xn − xn−1)− γ∇F (xn + αn(xn − xn−1)) (3.13)

or the Heavy Ball Algorithm

xn+1 = xn + αn(xn − xn−1)− γ∇F (xn) (3.14)

The case αn = 0 of (3.13) corresponds to the classical gradient descent, the case αn = n
n+b is the case

studied in this article. If b = 3 we recover the original choice of Nesterov, but other choices of parameters
have been studied, see for example [5].

Under the hypothesis L(2), the gradient descent ensures a geometrical decay.
This decay is also geometrical for the Heavy Ball method and the inertial gradient descent with

fixed inertial parameter for strongly convex functions [32] (see also [33], [30]). More precisely Nesterov
in 1983 [31] proposed to choose a fixed sequence αn =

√
L−
√
α√

L−
√
α

where L is the Lipschitz constant of
the gradient of F and α is the parameter of strong convexity of F , to optimize this geometrical decay.
Estimating numerically Q = L

α can be a a very challenging task. There exists a vast body of literature
on adapting restarting versions of inertial algorithms in order to estimate the conditional number Q (to
cite but a few of these works, we address the reader to [33], [18], [19], [25], [30] [16] and [34]). We can
notice that for inertial methods the uniqueness of the minimizer is needed, which if not the case for
gradient descent.

In the recent work [23] the authors propose a different application of alternated inertia to (1.5) (i.e.
applying the inertial term every two iterations), in a non smooth setting. Surprisingly this turns Algo-
rithm (1.5) with alternated inertia, into a descent scheme and it permits to have the same convergence
properties as the Forward-Backward algorithm under the hypothesis L(p) with p > 1.

In a recent work, Attouch et al. [5] proved that the decay is faster than polynomial for a large class
of inertial parameters αn such that 1− αn ∼ 1

nr with r ∈ [0, 1).
Hence, even if Theorem 3.1 improves the bound for Nesterov scheme on F (xn)− F (x∗) that can be

obtained with assumption L(2) by adding the condition H(γ), these decays are still polynomials and
they are thus worse than the ones of the classical gradient decent, the inertial gradient descent with
fixed parameter, or the Heavy Ball algorithm.

Nevertheless, the first points of Theorem 3.2 do not assume the hypothesis L(2) or any strong
convexity. Theorem 3.2 ensures that if b > 1+ 2

β the decay of F (x∗)−F (xn) is faster than O( 1n ) which
seems to be the best bound we can achieve with such hypotheses for Gradient descent or any inertial
methods.

Moreover, the last point of Theorem 3.2 ensures that under the assumption L(p) with p > 2, if b is
large enough, the decay of F (xn)− F (x∗) is O(n

2p
p−2 ) which is better than o( 1

n2 ) and better than what
can be obtained with the sole hypothesis L(p) for gradient descent. Indeed under the assumption L(p),
Garrigos et al. [20] proved that the gradient descent ensures a decay which is O(n

p
p−2 ) and this decay

is optimal under this assumption [29].

Comparison with the continuous setting: Both theorems of this paper can be seen as extension
of previous results [9, 10] on the solution of the ODE associated to the Nesterov Scheme. In [36], Su
et al. were the first to propose results for both continuous and discrete setting. After this article most
recent results on Inertial Gradient Descent have been developed first in a continuous setting, that is
studying solutions of ODEs such that

ẍ(t) + γ(t)ẋ(t) +∇F (x(t)) = 0. (3.15)

The main reason is the higher complexity of the discrete setting where some discretization terms must be
bounded. The choice of the discretization may be crucial. One can notice that the Heavy Ball Method
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and the Inertial Gradient Descent with constant parameter αn = α are associated to the same ODE
(3.15) with a constant friction term γ(t) = γ. Nevertheless, both algorithms do not share exactly the
same properties and the same optimal tuning for parameters see [24]. The hypothesis of both theorems
are similar to the ones in the continuous setting, with the Lipschitz hypothesis on the gradient of F .
We also need uniqueness of the minimizer for Theorem 3.2. We think this hypothesis could be removed
but the technical price to pay was too high and we prefer to assume this uniqueness to keep a readable
proof.

4 Asymptotic analysis
In this section we give the proofs of Theorems 3.1 and 3.2. Before passing to the complete proofs, we
provide the necessary tools, as also a basic sketch in order to have a better insight.

4.1 Schema of proofs
The basic tools that we use are a Lyapunov-type analysis and the asymptotic equivalences. The choice
of the Lyapunov energy-sequence, as also the asymptotic analysis are highly-inspired by the work made
in the continuous-time counterpart for a solution of (1.6) in the work [10].

In this context, Lyapunov techniques consist in finding a suitable positive energy-sequence En of the
form:

En = ϕn
(
F (xn)− F (x∗)

)
+Rn (4.1)

with ϕn and Rn some positive sequences. Then by showing that En is non-increasing, it follows directly
that the convergence rate for the objective F (xn)− F (x∗) is of order of O

(
ϕ−1n

)
.

In this work, we set ϕn ∼ n2 and the term Rn is not necessarily non-negative. In fact the exact
construction of En (see (4.12)), depends on the geometric properties of F and on the order of the
convergence rate of the objective function, i.e. the value of δ such that:

F (xn)− F (x∗) = O
(
n−δ

)
(4.2)

as stated in Theorems 3.1 and 3.2.
In order to get the estimation (4.2), a two-step procedure is used:

1. First of all, since ϕn ∼ n2, we show the control over the growth or the decay of En of the following
form (see for example relation (4.18) for Theorem 3.1 and (4.38) for Theorem 3.2):

En 6 Kn−δ+2 (4.3)

2. Since Rn is not necessarily non-negative we cannot deduce (4.2) directly from (4.3). For this issue,
we infer the geometric properties of F (in particular hypothesis L(p)) in order to deduce (4.2)
from (4.3).

To get the appropriate control (4.3) on En, we follow a classical strategy for bounding functions
using a differential inequality, which is motivated by the continuous-time setting (see [10]).

In fact for a differentiable function E : [0 +∞) −→ R, a constant c ∈ R and positive function r:
[0 +∞) −→ R+, such that the following relation holds true:

E ′(t) 6 cE(t)
t

+ r(t) (4.4)

with t−cr(t) ∈ L1[0,+∞), one can deduce that the function H(t) = t−cE(t) is bounded from above.
Thus it exists a constant K ∈ R such that E(t) 6 Ktc.

More precisely, in the framework of the current work (discrete setting), we provide an energy-sequence
{En}n>1, such that the following relation holds true asymptotically:

En+1 − En 6
c

n
En + rn (4.5)

with c = −δ + 2 and a suitable sequence {rn}n>1 that involves the geometric properties of F . In
particular, in the context of Theorem 3.1, we have that rn = a

n2En (see relation (4.17) of Lemma
4.2), while rn = a1

n2En + a2
n2 ‖xn−1 − x∗‖2 (see relation (4.29) of Lemma 4.3), for some suitable positive
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constants a, a1 and a2. This allows to deduce the existence of a constant K such that for n ∈ N large
enough, we have:

En 6 Knc (4.6)

Finally, in order to deduce (4.2) from (4.3) we use different strategies depending on the hypotheses
on the geometry of F and on the over-relaxation parameter b.

1. For the first point of Theorem 3.1, the sequence {Rn} in (4.1) is positive and (4.2) holds directly.

2. For the second point of Theorem 3.1 and for the bound of Theorem 3.2, we have Rn = R′n +

ξ‖x∗ − xn‖2, where R′n is non negative and ξ non positive. Thus, from (4.3), for n large enough,
it follows that:

ϕn(F (xn)− F (x∗))− |ξ|‖xn − x∗‖2 6 Kn−δ+2 (4.7)

and we conclude, using the growth condition L(p) to bound ‖x∗ − xn‖2 and get inequalities such
that

ϕn(F (xn)− F (x∗)) +A1(F (xn)− F (x∗))
2
p 6 Kn−δ+2 (4.8)

which, by recalling that ϕn = n2 and using an appropriate strategy when p > 2 (see Lemma B.5),
leads to (4.2).

The value of δ and the use of conditions L(p) are different in the two theorems, which leads to different
results, but the strategies in both cases are similar.

4.2 The Lyapunov energy
We now give the proper definition of the energy-sequence {En}n>1, in order to proceed to the analysis
described before. Let us introduce some notations that will be useful in the coming analysis:

wn = F (xn)− F (x∗), δn = ‖xn − xn−1‖2 and hn = ‖xn − x∗‖2. (4.9)

For some λ > 0 and ξ ∈ R, we also define:

vn = ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2, n > 1, (4.10)

with
tn = n+ b− 1 and αn =

n

tn+1
(4.11)

and:

En =
(
t2n + λβtn

)
wn +

1

2γ
‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2 +

λtn
2γ
‖xn − xn−1‖2 +

ξ

2γ
‖xn−1 − x∗‖2

=
(
t2n + λβtn

)
wn +

1

2γ
vn +

λtn
2γ

δn +
ξ

2γ
hn−1 (4.12)

Observe that the energy can also be expressed as:

En =
(
t2n + λβtn

)
wn +

1

2γ

(
t2nδn + λtn

(
hn − hn−1

)
+ (λ2 + ξ)hn−1

)
(4.13)

Remark 2. By definition of En and using the convex inequality:

‖u‖2 6 2‖u+ v‖2 + 2‖v‖2 ,∀u, v ∈ RN (4.14)

with u = tn(xn − xn−1) and v = λ(xn−1 − x∗), we find:

2γEn > 2γ
(
t2n + λβtn

)
wn +

( t2n
2

+ λtn
)
‖xn − xn−1‖2 + (ξ − λ2)‖xn−1 − x∗‖2

= 2γt2nwn +
t2n
2
δn + (ξ − λ2)hn−1

(4.15)

In what follows we frequently make use of the inequality (4.15).
We also give the following basic Lemma which gives some bound estimates for the energy En and

will be useful for both of the proofs of Theorem 3.1 and Theorem 3.2.

10



Lemma 4.1. Assume that the condition H(β) is in force with β > 1 and let 0 < γ 6 1
L and {xn}n∈N

the sequence generated by Algorithm (1.5). Then for all λ > 0 and ξ = λ(λ+ b− 1) in the definition of
En, the following recursive formula holds for all n > 1:

2γ(En+1−En) 6 2γ
c(λ)

tn
En+2γ

(
A1(λ)tn+1−2λβ(λ+1−b)

)
wn+A2(λ)‖xn−xn−1‖2+

A3(λ)

tn
‖xn−1−x∗‖2

(4.16)
where:

c(λ) = 2(λ+ 1− b), A1(λ) = 2b− (β + 2)λ, A2(λ) = (2λ+ 1− b)(1− b)
A3(λ) = −2λ(λ+ 1− b)(2λ+ 1− b)

4.3 Proofs
Here we present the complete proofs of Theorems 3.1 and 3.2 as also the different Lemmas that form
the guideline described before. For ease of reading, all the proofs of these Lemmas are postponed in the
Appendix A.

4.3.1 Proof of Theorem 3.1

Before proving Theorem 3.1, we present a Lemma which first gives the control estimates over the local
variation of the energy {En}n>1 depending on the parameters β and b, and then a control estimate of
En.

Lemma 4.2. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5). Assume
that F satisfies H(β) with β > 1, and that one of the following hypotheses is in force:

i. b < 1 + 2
β

ii. b > 1 + 2
β and F admits a unique minimizer x∗ and satisfies L(2).

Taking λ = 2b
β+2 and ξ = λ(λ+ 1− b) = 2bβ

(β+2)2

(
1 + 2

β − b
)
in the definition of the energy En, we have:

1. There exists some n0 ∈ N, such that for all n > n0, the following recursive formula holds true:

En+1 − En 6

(
a

(n+ b− 1)2
+

c

(n+ b− 1)

)
En (4.17)

for some constant a > 0 and c = 2− 2bβ
β+2 .

2. The following estimate holds true asymptotically:

En = O
(
n2−

2bβ
β+2

)
(4.18)

We are now ready to give the complete proof of Theorem 3.1

Proof of Theorem 3.1. We start this demonstration by proving the points 1 and 2(iii) of Theorem 3.1.
For that, we choose:

λ =
2b

β + 2
> 0, ξ = λ(λ+ 1− b) = 2bβ

(β + 2)2

(
1 +

2

β
− b
)
,

in the definition (4.12) of the energy En. Using Lemma 4.2, there exist n0 ∈ N and a positive constant
C such that, for all n > n0, we have:

En 6 Ct
2− 2bβ

β+2
n . (4.19)

In order to deduce the expected convergence rates on wn = F (xn)−F (x∗), we use different strategies
depending on the sign of the parameter ξ. Firstly we consider the case b < 1 + 2

β , i.e.: ξ > 0. In that
case, the energy En is a sum of non-negative terms, hence:

En =
(
t2n + λβtn

)
wn +

1

2γ
(vn + λtnδn + ξhn−1) > t2nwn.
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Combining the very last inequality with (4.19) and noting that tn ∼ n asymptotically, we get the
appropriate estimate: wn = O

(
n−

2bβ
β+2

)
for all n > n0, as asserted by the first point of Theorem 3.1.

In addition, if β 6 2, we can get even more: combining the definition of the energy En as expressed
in (4.13) and the estimate (4.19), we have: for all n > n0,

λtn
(
hn − hn−1

)
+ (λ2 + ξ)hn−1 6 2γEn 6 Ct

2− 2bβ
β+2

n . (4.20)

Noticing that: λ2 + ξ = λ(1 + (2−β)b
β+2 ) > λ when β 6 2 and that: tn−1 = tn − 1, we then have:

∀n > n0, λ
(
tnhn − tn−1hn−1

)
= λtn(hn − hn−1) + λhn−1 6 λtn

(
hn − hn−1

)
+ (λ2 + ξ)hn−1

6 Ct
2− 2bβ

β+2
n .

Summing over n > n0 + 1 leads to:

λtnhn 6 λtn0
hn0

+ C

n∑
i=n0+1

t
2− 2bβ

β+2

i

b<1+ 2
β

6 λtn0
hn0

+ Cnt
2− 2bβ

β+2
n

6 Kn3−
2bβ
β+2 (4.21)

asymptotically, for some suitable positive constant K. Finally, using the inequality (4.15), we have:

t2n
2
δn 6 2γEn − 2γt2nwn + (λ2 − ξ)hn−1 6 2γEn + |λ2 − ξ|hn−1. (4.22)

Injecting estimations (4.19) and (4.21) into (4.22) leads to: δn = O

(
t
− 2bβ
β+2

n

)
as expected.

Consider now the case b > 1+ 2
β i.e. ξ ≤ 0. In that case, the energy En is not a sum of non negative

terms anymore:
2γEn = 2γ

(
t2n + λβtn

)
wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2,

and an additional growth condition L(2) will be needed to bound ‖xn−1 − x∗‖2. First, applying the
inequality (4.14), on the one hand to u = tn(xn − xn−1) and v = λ(xn−1 − x∗) and on the other hand
to u = xn−1 − x∗ and v = x∗ − xn, we have for all n ∈ N:

vn >
t2n
2
δn − λ2‖xn−1 − x∗‖2, ‖xn−1 − x∗‖2 ≤ 2δn + 2hn.

Using these two inequalities successively, we deduce:

2γEn > 2γ
(
t2n + λβtn

)
wn +

(
1

2
+
λ

tn

)
t2nδn + (ξ − λ2)‖xn−1 − x∗‖2

> 2γ
(
t2n + λβtn

)
wn +

(
1

2
+
λ

tn
− 2|ξ − λ2|

t2n

)
t2nδn − 2|ξ − λ2|‖xn − x∗‖2

> 2γ
(
t2n + λβtn

)
wn +

t2n
4
δn − 2|ξ − λ2|‖xn − x∗‖2

(4.23)

since the coefficient of t2nδn converges to 1
2 , and thus is greater than e.g. 1

4 for n large enough. Assuming
in addition that F satisfies the growth condition L(2) and admits a unique minimizer, we then obtain
for n large enough:

En >
(
t2n + λβtn − 2|ξ − λ2|K−12

)
wn +

t2n
4
δn =

(
1 +

λβ

tn
− 2
|ξ − λ2|K−12

t2n

)
t2nwn +

t2n
4
δn

Hence there exists n0 ∈ N such that for all n > n0, we have: En > t2n
2 wn +

t2n
4 δn. Using finally the

estimate (4.19) on the energy En allows us to conclude the proof of the point 2(iii) of Theorem 3.1.
Consider again the case when b > 1 + 2

β . In order to prove the points 2(i) and 2(ii) of Theorem
3.1 with the only assumption that F satisfies the condition H(β), we choose different values of the
parameters λ and ξ in the definition of the energy En. Let us set:

λ = b− 1 > 0, ξ = λ(λ+ 1− b) = 0.
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In that case, the energy is again a sum of non negative terms and we then have:

En =
(
t2n + (b− 1)βtn

)
wn +

1

2γ

(
vn + (b− 1)tnδn

)
> t2nwn. (4.24)

To obtain the expected convergence rate on wn as expressed in the point 2(i) of Theorem 3.1, it is
sufficient to prove that the energy En is bounded. For that purpose, we apply Lemma 4.1 with λ = b−1.
Keeping in mind that b > 1 + 2

β , we then have:

∀n > 1, En+1 − En 6
(
β(1 +

2

β
− b)tn + 1

)
wn −

1

2γ
(b− 1)2δn

6 wn −
1

2γ
(b− 1)2δn ≤ wn (4.25)

Injecting (4.24) into (4.25), we then obtain for all n > 1, En+1 6
(
1 + 1

t2n

)
En, which implies by a

recurrence argument that:

∀n > 1, En+1 6 E1

n∏
i=1

(
1 +

1

t2i

)
By inferring Lemma B.4 with c = 0 and a = 1 we deduce that the sequence (En)n>1 is bounded. By
(4.24), the sequence (t2nwn)n>1 is also bounded. Hence: wn = O

(
t−2n
)
= O

(
n−2

)
asymptotically.

Assume in addition that: β 6 2. According to the definition (4.13) of the energy En, we have:

∀n > 1, 2γEn = 2γ(t2n + (b− 1)βtn)wn + t2nδn + (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

> (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

> (b− 1)
(
tnhn − (tn − b+ 1)hn−1

)
Observe now that, since b > 1 + 2

β and β 6 2, we have: tn − b+ 1 6 tn − 1 = tn−1, hence:

∀n > 1, 2γEn > (b− 1) (tnhn − tn−1hn−1) .

Using the fact that (En)n>1 is bounded, there exist a constant C > 0 and n0 ∈ N such that:

∀n > n0, tnhn − tn−1hn−1 ≤ C. (4.26)

By summing (4.26) from n0 to N , we obtain that for all N > n0, tNhN 6 tn0
hn0

+CN 6 tn0
hn0

+CtN .
The sequence (hn)n is so bounded, which implies that (xn)n is also bounded. Moreover using (4.15):

∀n > 1,
t2n
2
δn 6 2γEn + λ2hn−1,

and the boundedness of hn and En, we obtain the boundedness of the sequence (t2nδn)n, i.e. δn = O
(
n−2

)
asymptotically, which concludes the proof of point 2(i) of Theorem 3.1.

Finally, suppose that b > 1 + 2
β . Let: η = b− (1 + 2

β ) > 0. As previously done in (4.25), we have:

En+1 − En 6 −(βηtn − 1)wn −
1

2γ
(b− 1)2δn 6 −(βηtn − 1)wn (4.27)

Moreover using the fact that there exists n0 ∈ N such that for all n > n0, we have: β η2 tn 6 βηtn − 1
and summing (4.27) over n ∈ {n0, · · · , N}, for all N > n0, we find:

β
η

2

N∑
n=n0

tnwn 6 En0 < +∞ (4.28)

Lastly, the proof of the summability of the (nδn)n is exactly the same as in [17, Corollary 2]. In few
words, applying Lemma B.1, with γ 6 1

L , y = xn + αn(xn − xn−1) and x = xn, or equivalently using
the Lipschitz continuity of the gradient of F , we have:

∀n > 1, δn+1 − α2
nδn 6 2γ(wn − wn+1),
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where: αn = n
n+b . Summing the last inequality from n = 1 to N , we obtain:

(b− 1)

N∑
n=2

(2tn − b+ 1) δn 6 2γ

N∑
n=2

(2tn + 1)wn + t22w1.

Observe now that for all n > 1, we have: 2tn − b+ 1 = 2n+ b− 1 > 2n. Thus the summability of nδn
follows from the summability of tnwn, which concludes the proof of point 2(ii) of Theorem 3.1.

4.3.2 Proof of Theorem 3.2

Let us now consider the case of a function F which satisfies H(β) and L(p) with β > 2 and p > 2. In
order to give the compete proof of Theorem 3.2, we make use of the following Lemma.

Lemma 4.3. Let F : RN → R be a convex differentiable function with a L-Lipschitz continuous gradient
for some L > 0. Let 0 < γ 6 1

L and {xn}n∈N be the sequence generated by Algorithm (1.5).
Assume that F satisfies H(β) and L(p) with p > β > 2. Let λ = 2

β−2 and ξ = λ(λ + 1 − b) =

2
β−2

(
β
β−2 − b

)
in the definition of the energy En. If b > β+2

β−2 , then there exist n0 ∈ N and some

constant C > 0 such that the following recursive formula holds true for all n > n0:

2γ
(
En+1 − En

)
6 2γ

(
− 4

β − 2
+
C

tn

)
En
tn

+
C

t2n
hn−1. (4.29)

We are now ready to give the full proof of Theorem 3.2.

Proof of Theorem 3.2. We split the proof into three parts. In the first part we present the analysis in
order to obtain a control over the decay of the energy En. In the second part we deduce some estimates
for the sequence wn, by making use an a-priori estimate for hn. In the last part we infer a bootstrap
argument to improve the estimates for the sequence wn and to get those stated in Theorem 3.2.

Part 1: In this part, we show that choosing λ = 2
β−2 and ξ = λ(λ+ 1− b) = 2

β−2

(
β
β−2 − b

)
in the

definition of the energy En, the control over the decay of the energy En is given by:

En = O
(
n−m

)
, with: m = min(

4

β − 2
, 1 +

4

p
).

Let d = 4
β−2 . By Lemma 4.3, there exist n0 ∈ N and a positive constant C such that

∀n > n0, En+1 − En 6 − d

tn
En +

C

t2n
En +

C

2γt2n
hn−1. (4.30)

Denoting by Hn = C
2γt2n

hn−1 and zn = 1− d
tn

+ C
t2n
, the previous inequality (4.30) can be rewritten as:

En+1 6 znEn +Hn (4.31)

which, by applying Lemma B.3, implies:

∀n > n0, En+1 6
n∏

i=n0

zi

(
En0

+

n∑
i=n0

Hi∏i
m=n0

zm

)
. (4.32)

By relation (B.18) of Lemma B.4, we deduce the existence of two positive constants C1 and C2 such
that for all n > n0 it holds:

C1t
−d
n 6

n∏
i=n0

zi =

n∏
i=n0

(
1− d

ti
+
C

t2i

)
6 C2t

−d
n . (4.33)
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Hence by (4.32) and the definition of Hi =
C

2γt2i
hi−1, we find:

En+1 6 C2t
−d
n

(
En0 + C−11

n∑
i=n0

tdiHi

)

6 C2t
−d
n

(
En0

+ C3

n∑
i=n0

td−2i hi−1

) (4.34)

for some suitable positive constant C3. So to obtain an estimate on the energy, we first need an estimate
on hn. Assuming that F satisfies the growth condition L(p) with p > 2, and admits a unique minimizer
x∗, we have:

hi−1 = ‖xi−1 − x∗‖2 6 K−1p
(
F (xi−1)− F (x∗)

) 2
p = K−1p w

2
p

i−1. (4.35)

By injecting the last inequality (4.35) into (4.34), for n > n0 we find:

En+1 6 C2t
−d
n

(
En0 + C3K

−1
p

n∑
i=n0

td−2i w
2
p

i−1

)

6 C2t
−d
n

(
En0

+ C3K
−1
p

n∑
i=n0

(tiwi−1)t
d−1− 4

p

i

(
t2iwi−1

) 2
p−1
)

(4.36)

Moreover, since F satisfies H(β) with β > 2, we can apply the results stated in Theorem 3.1. Here:
b > β+2

β−2 > 1 + 2
β . Hence from relation (3.5) of Theorem 3.1, the sequence (t2iwi−1)i is bounded and:

+∞∑
i=n0

tiwi−1 < +∞. (4.37)

By inferring relation (4.37), from the previous inequality (4.36), we find that for all n > n0:

En+1 6 C2t
−d
n

(
En0

+ C4t
max{d−1− 4

p ,0}
n

)
,

hence:
En+1 6 Ct−mn (4.38)

for m = min{d, 1 + 4
p} and some suitable positive constants C4 and C.

Part 2: Once obtained the control (4.38) over the decay of En, we now want to deduce the
convergence rates on wn = F (xn)− F (x∗) expected in Theorem 3.2.

Firstly, observe that when β > 2 and b ≥ β+2
β−2 , we have

λ =
2

β − 2
> 0 and ξ = λ(λ+ 1− b) = 2

β − 2
(

β

β − 2
− b) < 0.

The energy En is not a sum of non negative terms, so that, as in Theorem 3.1, we will so need some
growth condition to bound ‖xn−1 − x∗‖2, or more precisely ‖xn − x∗‖2 in what follows. First remark
that using (4.15), we get:

2γEn = 2γ(tn + λβtn)wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2

> 2γt2nwn +
t2n
2
δn − λ(b− 1)‖xn−1 − x∗‖2. (4.39)

By using the inequality
‖xn−1 − x∗‖2 6 2‖xn − x∗‖2 + 2‖xn − xn−1‖2

in (4.39) we find:

2γt2nwn +

(
t2n
2
− 2λ(b− 1)

)
δn 6 2γEn + 2λ(b− 1)hn. (4.40)

Hence, there exists n0 ∈ N such that for n > n0:

t2nwn 6 2γEn + 2λ(b− 1)‖xn − x∗‖2

6 Ct−mn + 2λ(b− 1)‖xn − x∗‖2

15



using the control estimate (4.38) on the energy En for some suitable positive constant C. Using the
growth condition L(p) with p > 2 combined with the uniqueness of the minimizer, gives:

t2nwn 6 Ct−mn +
2λ(b− 1)

Kp
w

2
p
n (4.41)

Deducing now the convergence rates on wn is quite technical: multiplying (4.41) by tmn and setting
gn = tm+2

n wn, we find:

gn 6 C +
2λ(b− 1)

K
t
mp−2(m+2)

p
n g

2
p
n (4.42)

By applying Lemma B.5 with zn = 2λ(b−1)
K t

mp−2(m+2)
p

n and α = 2
p ∈ (0, 1), we obtain:

gn 6 2max

{
C,

(
2

2
p
2λ(b− 1)

Kp
t
mp−2(m+2)

p
n

) p
p−2
}

= 2max

{
C,C ′t

m− 4
p−2

n

}
= O

(
tMn
) (4.43)

where

M = max
{
0,m− 4

p− 2

}
=

{
m− 4

p−2 if p > max(β, 4)

0 otherwise.

Substituting then gn = tm+2
n wn, we finally have:

wn = O
(
tM−m−2n

)
. (4.44)

At this point we consider the different disjoint cases for the parameters (β, p) in order to precise the
estimate (4.44). Recalling that β 6 p, m = min{ 4

β−2 , 1 +
4
p} and M = max{0,m − 4

p−2} we have the
following results:

• If m = 4
β−2 then (since β 6 p), we have necessarily that M = m− 4

p−2 . In that case by (4.44), we

find: wn = O

(
t
− 2p
p−2

n

)
• If m = 1 + 4

p then:

– If M = m− 4
p−2 , then from (4.44) we find: wn = O

(
t
− 2p
p−2

n

)
– If M = 0, from (4.44) we find: wn = O

(
t
−(3+ 4

p )
n

)
The previous cases can be regrouped into two regimes B1 and B2, for the parameters (β, p) ∈

{
(x, y) ∈

R2 : 2 < x 6 y
}
with B1:

{
p > 4

}
and B2:

{
p ≤ 4

}
, such that:

• B1: If p ≥ 4 then from (4.44) we obtain:

wn = O

(
t
− 2p
p−2

n

)
(4.45)

• B2: If p ≤ 4 then from (4.44) we obtain:

wn = O

(
t
−(3+ 4

p )
n

)
(4.46)

In the case p ≥ 4 (i.e. condition B1) we can conclude directly the proof of Theorem 3.2.
Let us now treat the case of p ≤ 4 (i.e. condition B2). In this case we have m = 1 + 4

p and M = 0

and the estimate found in (4.46) is sub-optimal. This point is strongly accented by the corresponding
results for the continuous-time version (see Theorem 4.3 in [10]). This is due to the use of the a-priori
estimate (4.37) in our analysis.

Nevertheless, we show that this estimate can be "improved" by inferring a bootstrap argument for a
suitable amount of times. More precisely the idea is to use (4.46) as an a-priori estimate, by re-injecting
it in (4.35), as exactly did for (4.37). This idea is presented in the third part.
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Part 3: First we define the sequences {µl}l∈N, {ml}l∈N and {Ml}l∈N, with µ0 = 2, such that for
all l > 1 it holds:

µl = 3 +
2

p
µl−1 (4.47)

and for all l ∈ N: ml = min
{

4
β−2 , 1 + 2

pµl
}

and Ml = max
{
0,ml − 4

p−2
}

(note that m0 = m and
M0 =M). Here we point out that by definition of {µl}l>0, since 2 < p < 4, the sequence µl diverges to
infinity.

For all l ∈ N, we also define the following condition B2(l):

B2(l) : ml = 1 +
2

p
µl and Ml = 0. (4.48)

Since B2(0) is in force, by relation (4.46) we have that:

wn = O

(
t
−(3+ 4

p )
n

)
= O

(
t−µ1
n

)
(4.49)

Hence, by using the hypothesis L(p) and the uniqueness of the minimizer, we find that:

hn = O

(
t
− 2
pµ1

n

)
(4.50)

By following the same procedure as before and injecting the inequality (4.50) into (4.34), we find:

En+1 = O
(
t−m1
n

)
(4.51)

By proceeding exactly in the same way as before, one can deduce that:

wn = O
(
tM1−m1−2
n

)
(4.52)

If we suppose that B2(1) does not hold true (i.e. m1 = 4
p−2 or that m1 = 1+ 2

pµ1 and M1 = m1− 4
p−2 ),

then the result of Theorem 3.2 follows directly from relation (4.52). If in the contrary m1 = 1 + 2
pµ1

and M1 = 0, then from (4.52), it follows that:

wn = O

(
t
−(3+ 2

pµ0)
n

)
= O

(
t−µ1
n

)
(4.53)

In fact, in the same way as before, by a recurrence argument, we find that for all l > 0 it holds:

wn = O
(
tMl−ml−2
n

)
(4.54)

In addition, if we suppose that the condition B2(l), holds true for all l ∈ N, then we find that for all
l > 0 it holds:

wn = O

(
t
−(3+ 2

pµl−1)
n

)
= O

(
t−µln

)
(4.55)

Nevertheless, since the sequence µl diverges to infinity, we deduce the existence of an l∗ ∈ N, such
that B2(l∗) does not hold true (if not, from (4.48), for all l > 0, we would have ml = 1 + 2

pµl which is

equivalent to µl 6
p(6−β)
2(β−2) that contradicts the fact that µl diverges to infinity).

Therefore (since the condition B2(l∗) does not hold true), by (4.54) we deduce that:

wn = O

(
t
− 2p
p−2

n

)
(4.56)

which concludes the proof of Theorem 3.2.

A Proofs of Lemmas in Sections 4.2 and 4.3
In this section we present the detailed proofs of Lemmas 4.1, 4.2 and 4.3 used in sections 4.2 and 4.3.
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Proof of Lemma 4.1. For this proof we will frequently make use of the following basic identity:

‖u− z‖2 − ‖v − z‖2 = ‖u− v‖2 + 2〈u− v, v − z〉 ∀u, v, z ∈ RN (A.1)

Firstly, by applying (B.10) of Lemma (B.1) with γ 6 1
L and y = yn, x = x∗ we obtain:

2γ
(
F (xn+1)− F (x∗)

)
6

1

β

(
‖xn + αn(xn − xn−1)− x∗‖2 − ‖xn+1 − x∗‖2

)
(A.2)

which by multiplying by λβtn+1 > 0, developing the term ‖xn+αn(xn−xn−1)−x∗‖2, is equivalent to:

2γλβtn+1wn+1 6 λtn+1

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
+ 2λn〈xn − xn−1, xn − x∗〉

+ λtn+1αn‖xn − xn−1‖2
(A.3)

Since αn = n
n+b =

n
tn+1

, by using the definitions of wn, δn and hn, we find:

2γλβtn+1wn+1 6 λtn+1

(
hn − hn+1

)
+ 2λn〈xn − xn−1, xn − x∗〉+

λn2

tn+1
δn

(A.1) = −λtn+1δn+1 +
λn2

tn+1
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉

(A.4)

On the other hand, by applying (B.1) of Lemma B.1, with γ 6 1
L and y = yn, x = xn we obtain:

2γ
(
F (xn+1)− F (xn)

)
6 α2

n‖xn − xn−1‖
2 − ‖xn+1 − xn‖2 (A.5)

By adding and subtracting F (x∗) on the left side and multiplying by t2n+1 on both sides, we find:

2γt2n+1

(
wn+1 − wn

)
6 n2δn − t2n+1δn+1 (A.6)

By adding relation (A.4) to relation (A.6), we obtain:

2γ
(
(t2n+1 + λβtn+1)wn+1 − t2n+1wn

)
6 −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 +

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(A.7)

which -by adding and subtracting 2γ
(
t2n + λβtn

)
wn on both sides- is equivalent to:

2γ
(
(t2n+1 + λβtn+1)wn+1 − (t2n + λβtn)wn

)
6 2γkn+1wn −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 +

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉

= 2γkn+1wn −
(
t2n+1 + λtn+1

)
δn+1 +

(
n2 + 2λn+

λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn−1 − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(A.8)

where
kn+1 = t2n+1 − λβtn − t2n = (n+ b)2 − λβ(n+ b− 1)− (n+ b− 1)2

= (2− λβ)(n+ b− 1) + 1 = (2− λβ)tn + 1
(A.9)

In addition, by developing the squares in the definition of vn+1 and vn, we have:

vn+1 − vn = ‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2 − ‖tn(xn − xn−1) + λ(xn−1 − x∗)‖2

= t2n+1‖xn+1 − xn‖2 + 2λtn+1〈xn+1 − xn, xn − x∗〉+ λ2‖xn − x∗‖2

− t2n‖xn − xn−1‖
2 − 2λtn〈xn − xn−1, xn−1 − x∗〉 − λ2‖xn−1 − x∗‖2

= t2n+1δn+1 − t2nδn + λ2
(
hn − hn−1

)
+ 2λtn+1〈xn+1 − xn, xn − x∗〉

− 2λtn〈xn − xn−1, xn−1 − x∗〉

(A.10)

By definition of En (4.12), inequality (A.8) and equality (A.10), we find:
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2γ(En+1 − En) = 2γ
(
(t2n+1 + λβtn+1)wn+1 − (t2n + λβtn)wn

)
+ vn+1 − vn

+ ξ
(
hn − hn−1

)
+ λ
(
tn+1δn+1 − tnδn

)
(A.8), (A.10) 6 2γkn+1wn + (λ2 + ξ)

(
hn − hn−1

)
+
(
n2 − t2n + 2λn− λtn +

λn2

tn+1

)
δn

+ 2λ
(
n− tn

)
〈xn − xn−1, xn−1 − x∗〉

(A.11)

By using (A.1) we have hn − hn−1 = δn + 〈xn − xn−1, xn−1 − x∗〉, hence by (A.11), we find:

2γ(En+1 − En) 6 2γkn+1wn +

(
n2 − t2n + 2λn− λtn +

λn2

tn+1
+ λ2 + ξ

)
δn

+ 2

(
λ2 + ξ + λn− λtn

)
〈xn − xn−1, xn−1 − x∗〉

(A.12)

Since tn = n+ b− 1, by replacing n by tn + 1− b in (A.12) and performing some standard calculus, we
find:

2γ(En+1 − En) 6 2γkn+1wn +

(
2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− 2b) +

λb2

tn+1
+ ξ

)
δn

+ 2

(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉(

tn+1 > b
)

6 2γkn+1wn +

(
2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− b) + ξ

)
δn

+ 2

(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(A.13)

By definition of En (4.12), we also have

2γEn = 2γ
(
t2n + λβtn

)
wn + (λ2 + ξ)hn−1 +

(
t2n + λtn

)
δn + 2λtn〈xn − xn−1, xn−1 − x∗〉 (A.14)

so that

tnδn =
2γ

tn
En − 2γ

(
tn + λβ

)
wn −

(λ2 + ξ)

tn
hn−1 − 2λ〈xn − xn−1, xn−1 − x∗〉

− λδn
(A.15)

By injecting the last equality into (A.13), we find:

2γ(En+1 − En) 6 2γ
2(λ+ 1− b)

tn
En + 2γ

(
kn+1 − 2(λ+ 1− b)(tn + λβ)

)
wn

+

(
(λ+ 1− b)2 + λ(1− b)− 2λ(λ+ 1− b)

)
+ ξ

)
δn

− 2(λ+ 1− b)(λ2 + ξ)

tn
hn−1 + 2

(
ξ − λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(A.16)

By choosing ξ = λ(λ+ 1− b), in (A.16), we obtain:

2γ(En+1 − En) 6 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn + 2γ

2(λ+ 1− b)
tn

En

+

(
(2λ+ 1− b)(1− b)

)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

(A.9) = 2γ
2(λ+ 1− b)

tn
En + 2γ

((
2b− (β + 2)λ

)
tn + 1− 2λβ(λ+ 1− b)

)
wn

+

(
((2λ+ 1− b)(1− b)

)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

= 2γ
c(λ)

tn
En + 2γ

(
A1(λ)tn + 1− 2λβ(λ+ 1− b)

)
wn +A2(λ)δn +

A3(λ)

tn
hn−1

(A.17)
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where: c(λ) = 2(λ + 1 − b), A1(λ) = 2b − (β + 2)λ, A2(λ) = (2λ + 1 − b)(1 − b), and A3(λ) =
−2λ(λ+ 1− b)(2λ+ 1− b), which concludes the proof of the Lemma 4.1.

Proof of Lemma 4.2. Firstly we suppose that b 6 1 + 2
β .

Setting λ = 2b
β+2 > 0, in the inequality (4.16) of Lemma 4.1, we find:

2γ(En+1 − En) 6 2γ
c

tn
En + 2γA′1wn +A2δn +

A3

tn
hn−1 (A.18)

where c = 2(λ+ 1− b) = 2− 2bβ
β+2 and

A′1 = 1− 2βλ(λ+ 1− b) = 1− 4bβ

β + 2

(
1− bβ

β + 2

)
A2 = (2λ+ 1− b)(1− b) = β − 2

β + 2
b2 − 2β

β + 2
b+ 1 = (b− 1)

(
β − 2

β + 2
b− 1

)
and A3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 2b

β + 2

(
1− bβ

β + 2

)(
1− (β − 2)b

β + 2

)
Here we point out that in the case where b 6 1+ 2

β the constants A1 and A2 are eventually positive
or negative, while A3 6 0.

Without loss of generality we can suppose that the constants A′1 and A2 are positive. Denoting by
A = max{A′1, A2} > 0, from (A.18), we obtain:

2γ(En+1 − En) 6 2γ
c

tn
En + 2γAwn +Aδn +

A3

tn
hn−1 (A.19)

In this point, firstly we express the term δn with the aid of En and wn and then we regroup the
different terms.

By relation (4.15), for ξ = λ(λ+ 1− b) we find:

2γEn > 2γt2nwn +
t2n
2
δn − λ(b− 1)hn−1 (A.20)

Hence we have that:
δn 6 4γ

En
t2n
− 4γwn +

2λ(b− 1)

t2n
hn−1 (A.21)

By injecting inequality (A.21) into (A.19), for all n > 1 we find:

2γ(En+1 − En) 6 2γ
(
A− 2A

)
wn + 2γ

c

tn
En + 2γ

2A

t2n
En

+

(
2b(b− 1)A

(β + 2)tn
+A3

)
hn−1
tn

6 2γ
c

tn
En + 2γ

2A

t2n
En +

(
4b(b− 1)A

(β + 2)tn
+A3

)
hn−1
tn

(A.22)

In this point we consider the two cases depending on the value of the parameter b.
Firstly we suppose that b < 1 + 2

β . In this case A3 < 0, therefore, for n ∈ N large enough we have
that :

2b(b− 1)A

(β + 2)tn
+A3 6 0 (A.23)

Hence by (A.22) we obtain:

2γ(En+1 − En) 6 2γ

(
c

tn
+

a

t2n

)
En

which concludes the proof of the first case (b < 1 + 2
β ) of Lemma 4.2 with a = 2A and c = 2− 2bβ

β+2 .
For the second case we suppose that b > 1 + 2

β and F satisfies L(p) with p = 2.
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Remark that in this case (b > 1+ 2
β ), by letting λ = 2b

β+2 , the constant A3 is eventually non-negative.
In fact, if β > 2 and 1 + 2

β 6 b 6 β+2
β−2 , then A3 > 0. Here without loss of generality we suppose that

A3 > 0 (the case A3 6 0 can be treated exactly in the same way as before in the case b 6 1 + 2
β ).

In particular, by using the inequality ‖u − v‖2 6 2‖u − z‖2 + 2‖v − z‖2, for u = xn−1, v = x∗ and
z = xn, in (A.19) we find:

2γ(En+1 − En) 6 2γAwn + 2γ
c

tn
En +

(
A+

2A3

tn

)
‖xn − xn−1‖2 +

2A3

tn
‖xn − x∗‖2

6 2γAwn + 2γ
c

tn
En + 2Aδn +

2A3

tn
‖xn − x∗‖2

(A.24)

By using again the inequality ‖u− v‖2 6 2‖u− z‖2 +2‖v− z‖2, with u = xn−1, v = x∗ and z = xn,
in (4.15) we find:

2γEn > 2γ
(
t2n + λβtn

)
wn + t2n

(
1

2
+
λ

tn
− 2λ(b− 1)

t2n

)
δn − 2λ(b− 1)‖xn − x∗‖2

> 2γt2nwn +
t2n
2
δn − 2λ(b− 1)‖xn − x∗‖2

(A.25)

Hence for n ∈ N large enough we have

δn 6 4γ
En
t2n
− 4γwn +

4λ(b− 1)

t2n
‖xn − x∗‖2 (A.26)

By injecting the last inequality (A.26) into (A.24) we find:

2γ(En+1 − En) 6 2γ
(
A− 4A

)
wn + 2γ

c

tn
En + 2γ

4A

t2n
En

+ 2

(
8b(b− 1)A

(β + 2)tn
+A3

)
‖xn − x∗‖2

tn

(A.27)

By using Hypothesis L(p) with p = 2 and the uniqueness of the minimizer in inequality (A.27), we
find:

2γ(En+1 − En) 6
(
2K−12

(8b(b− 1)A

(β + 2)t2n
+
A3

tn

)
− 6γA

)
wn + 2γ

c

tn
En + 2γ

2(β + 2)A

t2n
En (A.28)

Therefore, for n ∈ N large enough we have:

2K−12

(8b(b− 1)A

(β + 2)t2n
+
A3

tn

)
− 6γA 6 0

which permits to conclude the proof of Lemma 4.2 with a = 4A and c = 2− 2bβ
β+2 .

Proof of the point 2 in Lemma 4.2. From Lemma 4.2, without loss of generality we can suppose
that for a suitable n0 ∈ N, for all n > n0, we have:

En+1 − En 6
a

(n+ b− 1)2
En +

c

(n+ b− 1)
En (A.29)

with a = 4A and c = 2− 2bβ
β+2 . Equivalently:

En+1 6

(
1 +

c

tn
+

a

t2n

)
En (A.30)

Hence by a recurrence argument, for all n > n0 we find:

En 6 En0

n−1∏
i=n0

(
1 +

c

ti
+
a

t2i

)
(A.31)

Thus, by applying Lemma B.4, we can conclude that there exists some n0 ∈ N and a positive constant
C > 0, such that for all n > n0 we have: En 6 Cnc, as expected.
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Proof of Lemma 4.3. By letting λ = 2
β−2 in (4.16) of Lemma 4.1, we find:

2γ
(
En+1 − En

)
6 2γ

(
2
( β

β − 2
− b
))En

tn
+ 2γ

(
B1tn + 1− 4β

β − 2

( β

β − 2
− b
))
wn

+B2‖xn − xn−1‖2 +
B3

tn
‖xn−1 − x∗‖2

(A.32)

where:
B1 =

(
2b− (β + 2)λ

)
= 2

(
b− β + 2

β − 2

)
B2 = (2λ+ 1− b)(1− b) = (b− 1)(b− β + 2

β − 2
)

and B3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 4

β − 2

(
b− β + 2

β − 2

)(
b− β

β − 2

)
By definition of En (4.12) we have:

2γEn = 2γ
(
t2n + λβtn

)
wn + vn + λtnδn + λ(λ+ 1− b)hn−1 (A.33)

where λ = 2
β−2 .

Hence by definition of B1 and B3 and relation (A.33), we find:

2γB1tnwn +
B3

tn
hn−1 = 2γ

B1En
tn

− 2γλβB1wn − λB1δn −B1
vn
tn

(A.34)

By injecting the last inequality (A.34) into (A.32) and omitting the non-positive term −B1
vn
tn
, we

find:
2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γB′1wn +B′2δn (A.35)

where

d =
4

β − 2
, B′1 = 1− 4β

β − 2

( β

β − 2
− b
)
− λβB1 =

(
β + 2

β − 2

)2

and

B′2 = B2 − λB1 =

(
b− β + 2

β − 2

)2

By choosing B′ = max
{
B′1, B

′
2

}
, from (A.35) we infer that:

2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γB′wn +B′δn (A.36)

By relation (4.15) (recall that λ = 2
β−2 and ξ = λ(λ+1− b)), for n ∈ N large enough, we have that:

δn 6 4γ
En
t2n
− 4γwn +

2λ(b− 1)

t2n
hn−1 (A.37)

Hence by injecting (A.37) into (A.36) we obtain:

2γ
(
En+1 − En

)
6 −2γ d

tn
En + 2γ

2B′

t2n
En − 2γB′wn +

4(b− 1)B′hn−1
(β − 2)t2n

6 −2γ d
tn
En + 2γ

C

t2n
En +

Chn−1
t2n

(A.38)

which concludes the proof of Lemma 4.3 with C = max{2B′, 4(b−1)B
′

β−2 } > 0.

B General Lemmas
In this section we give some additional auxiliary lemmas that we use in our analysis.

First we give a basic
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Lemma B.1. Let γ > 0 and F satisfying H(β) with β > 1. For every (x, y) ∈ RN we have that:

2γ(F (Tγ(y))− F (x)) 6 ‖y − x‖2 − ‖Tγ(y)− x‖2 +
(
γL− 1

)
‖Tγ(y)− y‖2 (B.1)

In addition for all y ∈ RN and x∗ ∈ X∗ it holds:

2γ
(
F (Tγ(y))− F (x∗)

)
6

1

β

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
+
(
γL+

1

β
− 2
)
‖Tγ(y)− y‖2 (B.2)

Proof. The first point is already settled in previous works (see for example Lemma 2.3 in [11] or Lemma
1, in [17] for the proximal setting). Nevertheless we recall the complete proof of it.

Using the fact that ∇F is L-Lipschitz, for all (z, y) ∈ (RN )2, one can obtain:

F (z) 6 F (y) + 〈∇F (y), z − y〉+ L

2
‖z − y‖2 (B.3)

Letting z = Tγ(y), for all (x, y) ∈ (RN )2 we have:

F (Tγ(y))− F (x) 6 F (y)− F (x) + 〈∇F (y), Tγ(y)− y〉+
L

2
‖Tγ(y)− y‖2

6 〈∇F (y), Tγ(y)− x〉+
L

2
‖Tγ(y)− y‖2

=
1

γ
〈y − Tγ(y), Tγ(y)− x〉+

L

2
‖Tγ(y)− y‖2

=
1

2γ

(
‖y − x‖2 − ‖Tγ(y)− x‖2

)
+
(L
2
− 1

2γ

)
‖Tγ(y)− y‖2

(B.4)

where in the second inequality we used the fact that F is a convex function, in the first equality the
definition of the operator Tγ ( γ∇F (y) = y − Tγ(y)) and in the second equality Pythagoras identity:

〈y − Tγ(y), Tγ(y)− x〉 =
1

2

(
‖y − x‖2 − ‖Tγ(y)− x‖2 − ‖Tγ(y)− y‖2

)
(B.5)

By multiplying relation (B.4) by 2γ we obtain (B.1).
The proof of the second point is similar to the first one. In particular as before, for all y ∈ RN and

x∗ ∈ X∗ we have:

F (Tγ(y))− F (x∗) 6 F (y)− F (x∗) + 〈∇F (y), Tγ(y)− y〉+
L

2
‖Tγ(y)− y‖2 (B.6)

By using hypothesis H(β) we obtain:

F (Tγ(y))− F (x∗) 6
1

β
〈∇F (y), x∗ − y〉+ 〈∇F (y), Tγ(y)− y〉+

L

2
‖Tγ(y)− y‖2 (B.7)

By using that γ∇F (y) = y − Tγ(y) and Pythagoras identity, we have:

F (Tγ(y))− F (x∗) 6
1

βγ
〈y − Tγ(y), x∗ − y〉+

(L
2
− 1

γ

)
‖Tγ(y)− y‖2

=
1

2βγ

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
+
(L
2
− 1

γ
+

1

2βγ

)
‖Tγ(y)− y‖2

(B.8)

By multiplying the last inequality by 2γ, we conclude the second point (B.2) of Lemma B.1.

Remark 3. By choosing γ 6 1
L in Lemma B.1, it is direct that from relations (B.1) and (B.2) we obtain

(respectively):

2γ(F (Tγ(y))− F (x)) 6 ‖y − x‖2 − ‖Tγ(y)− x‖2 ,∀(x, y) ∈ (RN )2 (B.9)

2γ
(
F (Tγ(y))− F (x∗)

)
6

1

β

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
,∀y ∈ RN and x∗ ∈ X∗ (B.10)
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In particular, we have the following useful Lemma concerning the sequence generated by Algo-
rithm 1.5.

Lemma B.2. Let γ > 0 and F satisfying H(β) with β > 1 and x∗ ∈ argminF . Let also {xn}n≥1 be the
sequence generated by the (i-GD) algorithm. Then the energy-sequence Un = F (xn)−F (x∗)+ ‖xn−xn−1‖2

2γ
is non-increasing.

Proof. It suffices to apply relation (B.1) of Lemma B.1, with γ 6 1
L , y = yn and x = xn, in order to

find:
F (xn+1)− F (xn) 6 α2

n‖xn − xn−1‖
2 − ‖xn+1 − xn‖2 (B.11)

By adding and subtracting F (x∗) in the left side (B.11) and rearranging the terms we find:

F (xn+1)− F (x∗) +
‖xn+1 − xn‖2

2γ
6 F (xn)− F (x∗) +

‖xn − xn−1‖2

2γ
− (1− α2

n)
‖xn − xn−1‖2

2γ
(B.12)

Since αn = n
n+b ≤ 1, for all n ≥ 1 , from (B.12), we deduce that Un+1 6 Un, which concludes the

proof.

The next Lemma is a discretized version of Gronwall’s Lemma ( see for example Theorem 4 in [22]
or Lemma 1 in [35] ).

Lemma B.3. Let C0 a positive real number and {un}n∈N, {un}n∈N and {an}n∈N three non-negative
sequences such that an 6= 0 for all n > 1 and:

un+1 6 anun + vn (B.13)

Then for all n > 1 it holds:

un+1 6
n∏
i=1

ai

(
u1 +

n∑
i=1

vi∏i
m=1 am

)
(B.14)

Lemma B.4. Let a, c and C0 be some real numbers such that C0 > 0 and a > 0 and {un}n∈N be a
sequence of real numbers, and n0 ∈ N∗ such that 1 + c

n + a
n2 > 0 for all n > n0. Suppose also that for

all n > n0, it holds:

un+1 6 C0

n∏
i=n0

(1 +
c

i
+
a

i2
)

Then there exists a positive constant C, such that for all n > n0, it holds:

un+1 6 Cnc

Proof. In fact for all n > n0 we have:

n∏
i=n0

(
1 +

c

i
+
a

i2

)
= e

(∑n
i=n0

log
(
1+ c

i+
a
i2

))
(B.15)

By using the basic inequality x
1+x 6 log (1 + x) 6 x for all x > −1 and the summation-integral

comparison test, we have from the one side:

n∑
i=n0

log
(
1 +

c

i
+
a

i2
)
6

n∑
i=n0

(
c

i
+
a

i2

)
6 A+

n∑
i=n0

c

i
6 A+ c log n (B.16)

where A > 0 is a (renamed at each step) suitable positive constant.
From the other side:
n∑

i=n0

log
(
1 +

c

i
+
a

i2
)
>

n∑
i=n0

( c
i +

a
i2

1 + c
i +

a
i2

)
>

n∑
i=n0

(
c

i+ c

)
> A′ + c log(n+ c) > A′ + c log n (B.17)

where A′ > 0 is a (renamed at each step) suitable positive constant.
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By (B.16) and (B.17) we infer that there exist n0 ∈ N and some suitable positive constants C1 and
C2 such that for all n > n0 it holds:

C1n
c 6

n∏
i=n0

(
1 +

c

i
+
a

i2

)
6 C2n

c (B.18)

From the hypothesis we have:

un+1 6 C0

n∏
i=n0

(
1 +

c

i
+
a

i2

)
(B.18)
6 Cnc (B.19)

which concludes the proof of Lemma B.4 for a suitable positive constant C > 0.

Lemma B.5. Let C > 0 a positive real number, α ∈ (0, 1) and {un}n∈N, {zn}n∈N two non-negative
sequences, such that for all n ∈ N∗ it holds

un 6 C + znu
α
n (B.20)

Then for all n ∈ N∗ it holds:
un 6 2max{C, (2αzn)

1
1−α } (B.21)

Proof. Let n ∈ N∗. We split the proof in two cases:

• Firstly we suppose that un > (2zn)
1

1−α .

Since un > (2zn)
1

1−α , we have that 1− znuα−1n > 1
2 , hence by using relation (B.20), we find:

1

2
un 6 un

(
1− znuα−1n

)
6 C

so that un 6 2C.

• If un 6 (2zn)
1

1−α the result holds trivially.
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