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Abstract

Statistical machine learning, such as kernel methods, have been widely used in

the past decades to discover hidden regularities in data. In particular, one-class

classification algorithms gained a lot of interest in a large number of applica-

tions where the only available data designate a unique class. In this paper,

we propose a framework for one-class classification problems, by investigating

the hypersphere enclosing the samples in the Reproducing Kernel Hilbert Space

(RKHS). The center of this hypersphere is approximated using a sparse solution,

by selecting an appropriate set of relevant samples. To this end, we investigate

well-known shrinkage and selection methods for linear regression, namely LARS,

LASSO, and Elastic Net. We revisit these selection methods and adapt their al-

gorithms for estimating the sparse center of the one-class problem in the RKHS.

The proposed framework is also extended to include the Mahalanobis distance

in the RKHS. We compare our algorithms to well-known one-class methods, and

the tests are conducted on simulated and real datasets.

Keywords: Elastic net, kernel methods, LARS, LASSO, machine learning,

one-class classification, shrinkage methods, sparse approximation.
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1. Introduction

. Over the last decades, kernel methods have become very popular in the ma-

chine learning and data mining fields for estimation and learning problems [1].

Machine learning techniques with kernel methods provide a powerful way for

detecting hidden regularities and patterns in large volumes of data [2]. They5

have been applied in different fields for classification and regression problems,

such as autonomous robotics [3], biomedical signal processing [4], and wireless

sensor networks [5][6]. Machine learning techniques use positive definite kernels

to map the data into a reproducing kernel Hilbert space, where linear algorithms

are applied on the mapped data in that space in order to detect nonlinear rela-10

tions existing in the input space [7]. In practice, only the pairwise inner product

between the mapped data is needed [8]. This inner product is computed directly

from the input data using a kernel function, without any explicit knowledge on

the mapping function.

. In several applications as in industrial systems, the only available data desig-15

nate the normal functioning modes of the studied system, while the data related

to the malfunctioning modes and to critical states are difficult to obtain. When

it comes to industrial processes with detecting machine faults or intrusions, the

number of the failure modes or the increasing number of new generated attacks

may not be bounded in general [9]. This is the reason why researchers have20

been developing in the last few years one-class classification algorithms for such

one-class problems, where the available dataset refers only to a single class.

One-class classifiers learn the normal behavior modes of the studied system,

and develop decision functions in a way to accept as many normal samples as

possible, and to reject the outliers (any sample not belonging to the same dis-25

tribution of the data) [10]. New samples are then classified as normal ones or

outliers according to the decision function of the classifiers. One-class classifi-

cation algorithms have been applied in many fields, including face recognition

applications [11], mobile masquerades detection [12], seizure analysis from EEG

signals [13], and recently for intrusion detection in industrial systems [14].30
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. Several formulations were proposed in the literature for one-class classification

problems. Researchers have been facing many challenges to elaborate relevant

one-class algorithms, namely in reducing the computational cost, and in improv-

ing the detection accuracy while maintaining a good decision rule that avoids

both overfitting and underfitting the data. Schölkopf et al. proposed in [15] the35

one-class Support Vector Machines (one-class SVM), in which the mapped data

are separated from the origin with maximum margin using a hyperplane. This

approach requires to solve a constrained quadratic programming problem, thus

it is greedy in terms of computational cost. Tax et al. introduced in [16] the

Support Vector Data Description (SVDD) which estimates the hypersphere with40

minimum radius enclosing most of the training data. The resulting optimization

problem is essentially similar to the one-class SVM, while they are equivalent

when unit-norm kernels are used, such as the Gaussian kernel. Neither one-class

SVM nor SVDD take into consideration the heterogenous nature of the mapped

data, namely the scale variation in each direction. An attempt to overcome this45

drawback is proposed in [17] with a kernel whitening normalization by rescaling

the data to have equal variance in each direction of the RKHS. The result-

ing optimization problem incorporated an eigen decomposition problem as well

as the conventional constrained quadratic programming problem. Azami et al.

proposed in [18] the use of the ℓ0 pseudo-norm in a SVDD formulation, and pro-50

vided an iterative procedure by solving a constrained quadratic programming

problem at each iteration, which is very expensive in terms of computational

cost. A fast one-class approach was introduced in [19] to overcome the draw-

backs of existing algorithms. The slab Support Vector Machine (slab SVM) is

described in [20][21][22], and unlike the original SVM, its optimization prob-55

lem aims at finding a slab (two parallel hyperplanes) that encloses the samples

which are maximally separated from the origin in the feature space. Similarly

to the SVM, this approach requires to solve a constrained quadratic program-

ming problem. All these methods use the Euclidean distance in the decision

function of the classifier, which leads to high sensitivity towards outliers. Other60

approaches that use the covariance information to learn the kernel in one-class
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SVM were proposed in [23][24]. These approaches require the optimization of

a second order cone programming (SOCP) problem, and their complexity is

cubic with the size of the training dataset. The “Robust SVM” algorithm was

introduced in [25] for binary and multiclass classification problems, and it was65

modified in [26] for anomaly detection in one-class classification problems. This

algorithm aims at reducing the influence of the existing outliers on the deci-

sion rule of the standard one-class SVM classifier, by introducing a new slack

variable related to the distance between each sample and the center of the data

in the feature space. This approach is less sensitive than the standard SVM70

towards outliers, yet it still requires to solve a constrained quadratic program-

ming problem. Kernel Principal Component Analysis (KPCA) was introduced

in [27] for several applications, and Hoffman used in [28] the KPCA for one-class

classification problems by projecting the data into the subspace spanned by the

most relevant eigenvectors. The reconstruction error used as a novelty measure75

has a relatively low computational cost, yet this approach loses the sparsity of

SVM and SVDD.

. In this paper, we propose a sparse framework for one-class classification prob-

lems. The proposed classifier is defined by a hypersphere enclosing the samples

in the Reproducing Kernel Hilbert Space (RKHS), determined by its center and80

its radius which discriminates new samples as normals or outliers. We approx-

imate the center of the hypersphere by the empirical center of the data in the

RKHS, where this sparse center depends only on a small fraction of the data.

Since a wise selection of these samples is crucial in such sparse approaches, we

propose to investigate well-known shrinkage methods [29], namely Least Angle85

Regression [30], Least Absolute Shrinkage and Selection Operator [31][32], and

Elastic Net [33][34]. These shrinkage methods have been usually used in regres-

sion problems in the input space. We revisit these methods and adapt their

algorithms to the estimation of the one-class center in the RKHS. Moreover,

we propose a modified version that takes advantage of the KPCA approach,90

by replacing the Euclidean distance in the decision function with the Maha-
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lanobis distance [35]. This allows to scale the data in the feature space, thus

overcoming the heteroscedastic nature of the data. We also provide some the-

oretical results related to the proposed algorithms, namely on the error of the

first kind, which represents the samples that are misclassified and considered95

as outliers. The tests are conducted on simulated datasets, and on three real

datasets from the Mississippi State University SCADA Laboratory [36][37] and

from the University of California machine learning repository [38].

The remainder of this paper is organized as follows. Section 2 provides

an overview on the common one-class classification methods in the literature.100

Section 3 describes the proposed one-class framework and the adapted shrinkage

methods. An extension including the Mahalanobis distance is detailed in Section

4. Section 5 provides some theoretical results, namely the error of the first kind.

Section 6 discusses the results on simulated and real datasets, and Section 7

provides conclusion and future works.105

2. One-class classification

. Consider a training dataset xi , i = 1, . . . , n, in a d -dimensional space X .

Kernel methods map the data from the input space X into a higher dimensional

feature space H via a mapping function φ(xi) = k(xi, ·). This allows to describe

nonlinear relations in the input space, by converting them into linear ones in110

the feature space. In practice, only the pairwise inner product between the

mapped data is needed, thus without any explicit knowledge of the mapping

function φ. This inner product is computed directly from the input data using

a kernel function. Let K be the n× n kernel matrix with entries k(xi,xj) for

x1, · · · ,xn ∈ X . The kernel matrix plays an important role in the learning115

algorithms. Next, we detail the common one-class classification methods in the

literature.

2.1. Support Vector Data Description

. Support Vector Data Description (SVDD) estimates the hypersphere with

minimum radius that encompasses all the data φ(xi) in the feature space H.

5
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The hypersphere is characterized by its center a and its radius R > 0, and

the SVDD algorithm minimizes its volume by minimizing R2. The presence of

outliers in the training set is allowed by introducing the slack variables ξi ≥ 0

for each training sample, in order to penalize the excluded ones. This boils

down to the following constrained optimization problem:

min
a,R,ξi

R2 +
1

νn

n∑

i=1

ξi (1)

subject to ‖φ(xi) − a‖2H ≤ R2 + ξi and ξi ≥ 0 ∀i = 1, ..., n. The predefined

parameter ν ∈ (0, 1) regulates the trade-off between the volume of the hyper-

sphere and the number of outliers. Its value represents an upper bound on the

fraction of outliers and a lower bound on the fraction of support vectors. SVDD

maximizes the following objective functional with respect to the Lagrangian

multipliers αi:

L =

n∑

i=1

αik(xi,xi)−
n∑

i,j=1

αiαjk(xi,xj) (2)

subject to
∑n

i=1 αi = 1 and 0 ≤ αi ≤ 1
νn

. This a constrained quadratic pro-

gramming problem, whose solution is found using any off-the-shelf optimization120

technique. For instance, one can use the MATLAB function quadprog.

The radius of the optimal hypersphere is obtained with the distance in the

feature space from the center a to any sample φ(xk) on the boundary as follows::

R2 = k(xk,xk)− 2

n∑

i=1

αik(xk,xi) +

n∑

i,j=1

αiαjk(xi,xj).

In order to evaluate a new sample z, the decision rule is obtained by evaluating

the distance between a and φ(z) in the feature space. The new sample z is

considered as a normal sample if the calculated distance is smaller than the

radius, namely: ‖φ(z)− a‖2H ≤ R2.125

2.2. Slab Support Vector Machine

The slab Support Vector Machine (slab SVM) is a modified version of the

standard SVM algorithm, and it aims at finding a region bounded by two parallel

hyperplanes, called a slab, that encloses the samples in the feature space and

6
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maximally separated from the origin. The constrained optimization problem of

the slab SVM is given as follows:

min
w,ρ,ξi

1

2
‖w‖2 + 1

νn

n∑

i=1

ξi − ρ (3)

subject to 0 ≤ 〈w, φ(xi)〉 − ρ+ ξi ≤ δ, where w, ρ and δ are the parameters of

the slab, ξi denote the slack variables and ν the upper bound on the fraction of

outliers. The following objective functional needs to be minimized with respect

to the Lagrangian multipliers αi and βi:

L =
1

2

n∑

i,j=1

(αi − βi)(αj − βj)k(xi,xj) + δ

n∑

i=1

βi (4)

subject to 0 ≤ αi, βi ≤ 1
νn

and
∑n

i=1(αi − βi) = 1 for αi, βi ≥ 0. A new

sample z is considered as a normal one if it lies between the lower hyperplane

and the upper hyperplane. Otherwise, it is considered as an outlier.

2.3. Robust Support Vector Machine130

The “Robust SVM” algorithm is another modified version of the standard

SVM, and it aims at reducing the influence of the outliers on the decision rule

of the classifier. The slack variables are replaced with other ones related to the

distance between the samples and the center of the data in the feature space,

which will cause the hyperplane to be shifted towards the normal samples.135

The new slack variable represents the ration between the distance of the

mapped samples to the center and the maximal value of this distance dmax, and

it is computed as follows:

di =
(
k(xi,xi)−

2

n

n∑

j=1

k(xi,xj)
)
/dmax.

The Robust SVM needs to solve the following constrained optimization problem:

min
w,ρ

1

2
‖w‖2 − ρ (5)

subject to 〈w, φ(xi)〉 ≥ ρ− λdi, where di are the slack variables and λ a regu-

larization parameter. The following objective functional needs to be minimized

7
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with respect to the Lagrangian multipliers αi:

L =
1

2

n∑

i,j=1

αiαjk(xi,xj) + λ

n∑

i=1

diαi (6)

subject to 0 ≤ αi ≤ 1 and
∑n

i=1 αi = 1. This type of slack variables makes

the decision boundary of the classifier less affected by the outliers.

2.4. Simple one-class

The simple one-class was introduced to overcome the time consumption

drawback of the existing algorithms. It is a fast and simple one-class approach,140

which is based on the computation of the Euclidean distance in the feature

space, and it does not need to solve any quadratic programming problem.

Let cn be the center of the data in the feature space, namely cn = 1
n

∑n

i=1 φ(xi).

The simple one-class approach computes the Euclidean distance between the

training samples and the center cn, and the expression of this distance is given

as follows:

∥∥φ(x)− 1

n

n∑

i=1

φ(xi)
∥∥2
H = k(x,x)− 2

n

n∑

j=1

k(x,xj) +
1

n2

n∑

i,j=1

k(xi,xj).

After evaluating the Euclidean distance between all the training samples and the

center, the simple one-class algorithm defines a threshold based on the estimated

fraction of outliers among the training dataset. The decision function for a new145

sample x is defined by its Euclidean distance to the center. If this distance is

greater than the predefined threshold, this sample is considered as an outlier.

3. Proposed One-class Framework

. In this paper, we propose a framework for one-class classification problems, by

investigating a sparse formulation. We define the one-class by the hypersphere150

enclosing the samples in the RKHS, and the decision function of the classifier

uses the distance in the RKHS between the sample φ(x) under scrutiny and the

center of this hypershpere. If this distance is greater than a fixed threshold,

8
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the sample is considered as an outlier. Otherwise, it is considered as a normal

sample, i.e., belonging to the same distribution as the training dataset.155

The mean of the mapped data is given by the expectation of the data in

the RKHS, namely E[φ(x)]. One can estimate this expectation by the empirical

center of the data in that space, namely:

cn =
1

n

n∑

i=1

φ(xi).

The center of the hypersphere is a linear combination of the mapped samples,

namely cA =
∑n

j=1 βjφ(xj), having βj the corresponding coefficients. The

center cA has to be chosen in a way to efficiently represent the first order

moment of the distribution of the training dataset in the RKHS. Therefore,

we define cA by the approximation of the empirical center cn in the RKHS.

The expression of the Euclidean distance between any sample x and the sparse

center is given as follows:

‖φ(x)− cA‖22 = k(x,x)− 2

n∑

i=1

βik(xi,x) +

n∑

i,j=1

βiβjk(xi,xj).

. In order to obtain a sparse approach, by analogy with the SVM formulation,

only a small fraction of the coefficients βj in the center’s expression has to

be nonzero. Therefore, in order to estimate the sparse center, we propose to

minimize the error of approximating the empirical center cn with cA in a way

to get a good representation of the training samples. The optimization problem

takes the following form:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2
2
, (7)

subject to some sparsity-inducing constraints. Such constraints include that the

ℓ0-norm of β shall not exceed some predefined threshold. For computational

reasons, the ℓ0-norm is often replaced by the ℓ1-norm, i.e.,
∑ |β|, which is the

closest convex norm to the ℓ0-norm.

We note that this optimization problem has a similar form as the one in160

shrinkage approaches used for regression problems, namely argminβ ‖y−Xβ‖22

9
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subject to some sparsity-inducing constraints, such as
∑ |β| cannot exceed some

predefined threshold. These shrinkage methods have been usually used for the

selection of the most relevant features, where only the corresponding coefficients

remain nonzero. We propose to revisit three of these well-known shrinkage ap-165

proaches, namely Least Angle Regression, Least Absolute Shrinkage and Selec-

tion Operator, and Elastic Net. We modify the algorithms of these approaches

in order to estimate the sparse center cA, by adapting them to solve the op-

timization problem (7), which selects the most relevant samples among the

training dataset. Next, we detail the modified shrinkage methods, by revisiting170

the corresponding optimization problems and the resulting solutions.

3.1. Least Angle Regression

. The first shrinkage method studied in this paper is the Least Angle Regression

(LARS), which builds a model sequentially by augmenting the set of the most

relevant samples, one sample at a time. The modification of the LARS algorithm

for one-class problems allows to solve the following optimization problem:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2
2

(8)

subject to
∑ |β| < t, for some parameter t. Let ĉAk

be the estimation of

the sparse center in the subspace Ak of the most relevant samples at step k,

and (cn − ĉAk
) the current residual. LARS considers the sample having the175

largest absolute correlation with the current residual (cn − ĉAk
), and projects

the other samples on this first one. LARS repeats the selection process until

a new sample has the same correlation level with the current residual, and

continues in a direction that preserve equiangularity between the samples of A,

until a third one enters the set of the most correlated samples. LARS continues180

equiangularly between these three samples until a forth one enters this set, and

so on. An example of the successive LARS estimates is illustrated in figure 1,

where the algorithm starts at ĉA0
, and the equiangular vectors are updated in

a way to preserve equal angles with the original axes.

10
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φ(xi)

φ(xj)

cn

ĉA0 ĉA1

ĉA2

θ

θ

Figure 1: An illustration of the successive LARS estimates in a simple 2-dimensional space,

where the algorithm starts at ĉA0
= 0. In this example, the first residual (cn − ĉA0

) makes

a smaller angle with φ(xi) than with φ(xj), so we start moving in the direction of φ(xi) and

ĉA1
= β1φ(xi). At the next step, the current residual (cn − ĉA1

) makes equal angles θ with

φ(xi) and φ(xj), so we have to move in a direction that preserves this equiangularity, as given

with ĉA2
.

. LARS algorithm begins at ĉA = 0, and we update ĉA at each iteration. Let

X = (φ(x1), φ(x2), . . . , φ(xn)), XA denotes the matrix containing the retained

samples of the set A, based on the greatest absolute correlation criterion, and

KA the |A|×|A| corresponding kernel matrix, where |A| denotes the cardinality
of A. The expression of the current estimate of the sparse center takes the form:

ĉA = Xβ̂. LARS considers the sample having the largest absolute correlation

with the current residual, where the vector of current correlations is defined as

follows:

ĉorr = XT (cn − ĉA)

=
1

n

n∑

i,j=1

k(xi,xj)−
n∑

i,j=1

β̂jk(xi,xj),

11
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having β̂j the current estimate of the center’s coefficients. The next step is to

project all the samples on the subspace spanned by the samples of A, in a way

to preserve equal angles between these samples. The equiangular vector needed

for the projection operation has the following form:

uA = XAwA,

where wA = AAG
−1
A 1A is the weight vector making equal angles with the

columns of XA, GA = sTKAs is a matrix related to the set A, AA =

(1T
AG

−1
A 1A)−

1

2 , and s denotes the vector of the signs of the current correla-

tions with entries:

sj = sign{ĉorrj}, for j = 1, 2, . . . , n.

After computing XA, AA, and uA, the previous estimate ĉA is updated to:

ĉA+ = ĉA + γ̂uA

using the equiangular vector, where

γ̂ = min
j=1,··· ,|AC|

{ Ĉ − ĉorrj
AA − aj

,
Ĉ + ĉorrj
AA + aj

}
,

having min the minimum over the positive components, AC the complementary

set of A, aj an element of the inner product vector defined by

a = XTuA = XTXAwA =

n∑

i=1

|A|∑

j=1

k(xi,xj)wA,

and Ĉ = maxj{|ĉorrj |}. Finally, the coefficients β are updated as follows:

βnew = β̂ + γ̂sTwA. (9)

This algorithm inherits the drawbacks of the conventional LARS algorithm. The185

main drawback is with highly correlated samples, which may limit its application

to high dimensional data. Another drawback is its sensitivity to the effects of

noise.

12
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3.2. Least Absolute Shrinkage and Selection Operator

. The second shrinkage algorithm modified in this paper is the Least Abso-190

lute Shrinkage and Selection Operator (LASSO). The objective function in the

LASSO involves minimizing the residual sum of squares, the same entity as in

ordinary least squares (OLS) regression and LARS, subject to a bound on the

sum of the absolute value of the coefficients. In other words, LASSO minimizes

the residual sum of squares under a constraint on the ℓ1-norm of the coefficient195

vector. It is easy to see that the ℓ1-norm constraint induces sparsity in the

solution. The LASSO shrinks the estimated coefficients towards the origin and

sets some of them to zero, in a way to retain the most relevant samples and

to discard the other ones. The main advantage of LASSO is with large volume

datasets, where the coefficients of irrelevant samples are shrunk to zero.200

. The LASSO solves the following optimization problem:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2

2
+ λ‖β‖1 (10)

for a given tuning parameter λ > 0. The tuning parameter controls the sparsity

level of the solution. The solution path is obtained for several values of λ,

and all the LASSO solutions can be generated by some modifications of the

LARS algorithm detailed previously. Indeed, the sign of any nonzero coefficient

βj must agree with the sign sj of the corresponding current correlation ĉorrj ,

namely:

sign(βj) = sign(ĉorrj) = sj ,

for any xj ∈ A [30]. Unlike in LARS, the coefficients in LASSO do not change

signs during the update step since they are piecewise linear. Let d̂ be the the

vector with entries sjwAj for any xj ∈ A, and zero elsewhere. To update the

coefficients as in equation (9), we have:

βj(γ) = β̂j + γdj for xj ∈ A.

Therefore, βj(γ) changes sign at:

γj = −βj

dj
,

13
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having the first such change occurring at γ̃ = minγj>0{γj}. The sign restriction

is violated when γ̃ < γ̂, and βj(γ) cannot be a LASSO solution; βj(γ) has

changed sign while cj(γ) has not. The corresponding sample xj is removed

from the set of the most relevant samples, namely A = A \ {xj}, and the

algorithm moves to the next equiangular direction. Therefore, this modification205

allows the set of the most relevant samples to increase or decrease one at a time

until the LARS algorithm leads to all LASSO solutions.

This modified version of the LASSO allows to overcome the LARS algorithm

by adding/removing one sample at a time. On the other hand, this algorithm

inherits the drawbacks of the conventional LASSO. The main drawback remains210

with high correlated variables, where LASSO tends to arbitrarily select only one

variable from the group and ignores the others, thus it cannot do group selection.

3.3. Elastic Net

. The Elastic net is a LARS-derived regularization and variable selection method

that overcomes the limitations of LARS and LASSO methods, specifically when215

it comes to hight correlated variables. The Elastic net optimization problem

combines the ℓ1 and ℓ2 penalties of the LASSO and ridge methods, thus Elastic

net produces a sparse model and it does both continuous shrinkage and variable

selection. In addition, unlike LARS and LASSO, Elastic net has a grouping

effect where strongly correlated samples are in or out of the model together.220

The Elastic net has the advantage of including automatically all the highly cor-

related variables in the group, and it was compared to a stretchable fishing net

that retains “all the big fish” [33]. In addition, the entire Elastic net solution

path can be directly computed from the LARS algorithm.

. The näıve Elastic net optimization problem is defined as follows:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2
2
+ λ1‖β‖1 + λ2‖β‖22,

for some given tuning parameters λ1, λ2 > 0, and it becomes a pure LASSO op-

timization when λ2 = 0, and a simple ridge regression when λ1 = 0. This
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optimization problem incurs a double amount of shrinkage from Ridge and

LASSO procedures, which introduces unnecessary extra bias compared with

pure LASSO or ridge shrinkage. In order to improve the prediction perfor-

mance, the coefficients of the näıve version of Elastic net are rescaled to obtain

the Elastic net coefficients as follows:

β(Elastic net) = (1 + λ2)β(näıve Elastic net).

Therefore, rescaling the coefficients will undo the double amount of shrinkage.225

. The näıve Elastic net problem can be transformed into an equivalent LASSO

problem as in equation (10), and this is achieved by replacing the parameter λ

with λ1/
√
1 + λ2 [33]. And as detailed in the previous section, a simple modi-

fication in the LARS algorithm leads all the LASSO solution paths. Therefore,

the LARS algorithm leads all the Elastic net solution paths. An example that230

highlights the differences in the solution paths of LARS, LASSO and Elastic net

algorithms is illustrated in figure 2.

4. Extension to the Mahalanobis Distance

. The main drawback of using the Euclidian distance is its sensitivity to the

scale variation in each direction, so we propose to use the Mahalanobis distance

in the decision function of the classifier. In fact, the Mahalanobis distance takes

into account the different scaling of the coordinate axes [35]. The Mahalanobis

distance between a sample φ(x) and the center cA in the RKHS is given as

follows:
∥∥φ(x)− cA

∥∥2

Σ
=

(
φ(x)− cA

)T
Σ−1

(
φ(x)− cA

)
, (11)

where Σ = 1
n

∑n

i=1(φ(xi)− cn)(φ(xi)− cn)
T denotes the covariance matrix of

the data. We cannot express Σ in terms of the data φ(x) without any explicit

knowledge on the mapping function φ(·). Therefore, we use the singular value

decomposition of the covariance matrix, namelyΣ = V TDV , having V the ma-

trix of eigenvectors vk of Σ, and D the diagonal matrix with the correspondent

15



DRAFT  E
N  C

OURS  D
E  F

IN
ALIS

ATIO
N0 20 40 60 80 100 120

−8

−6

−4

−2

0

2

4

6

8

10

∑ |β|

β

LARS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

|β|
max(|β|)

β

LASSO

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

|β|
max(|β|)

β

Elastic net

Figure 2: The solution paths of LARS, LASSO and Elastic net algorithms. The LARS solution

paths are the most unstable, while Elastic net has smoother solution paths that clearly show

the “grouping effect” advantage of correlated variables over the LASSO.

eigenvalues λk for k = 1, 2, · · · , n. Since V is an orthogonal matrix, Σ−1 takes

this form: Σ−1 = V TD−1V , where each eigenvalue λk satisfies λkv
k = Σvk,

and each eigenvector is a linear combination of the samples φ(xi) in the RKHS,

namely vk =
∑n

i=1 α
k
i (φ(xi) − cn). By injecting the expression of vk into the

eigen decomposition of Σ, namely λkv
k = Σvk, the coefficients αi are given

by solving the eigen decomposition problem nλkα
k = K̃αk, where the matrix

K̃ of entries2 k̃(xi,xj) is the centered version of K. Finally, the Mahalanobis

2The kernel function k̃(xi,xj) = k̃ij is the centered version of kij = k(xi,xj), and it is

computed as follows:

k̃ij = kij − 1

n

∑n
r=1

kir − 1

n

∑n
r=1

krj +
1

n2

∑n
r,s=1

krs.
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distance in equation (11) is computed in the RKHS as follows:

n∑

k=1

1

λk

( n∑

i=1

αk
i k(xi,x)−

n∑

i=1

αk
i

1

n

n∑

j=1

k(xj ,x)

−
n∑

i,j=1

αk
i βjk(xi,xj) +

n∑

i=1

αk
i

1

n

n∑

j,l=1

βlk(xj ,xl)

)2

,

We make use of the advantages in KPCA, and only the most relevant eigen-

vectors are taken into consideration while the remaining ones are considered as235

noise. In other words, in order to compute the Mahalanobis distance in the

RKHS, we project the data into the subspace spanned by the most relevant

eigenvectors. We also adopt the kernel whitening normalization of the eigenvec-

tors as proposed in [17], where the variance of the mapped data is constant for

all the feature directions.240

5. Theoretical Results

. In this section, we provide some theoretical results on the error of projecting

the center of the data cn and on the first kind error. To this end, we consider

the projection into the subspace spanned by the most relevant eigenvectors as

described in Section 4, thus replacing Σ by the corresponding approximation245

Σ̂. Therefore, the Mahalanobis distance, i.e., ‖φ(x)−cn‖2Σ, is approximated by

the distance between the projections in the corresponding subspace as follows:

‖Pφ(x)− Pcn‖Σ̂
, having P the projection operator.

5.1. Projection error

Theorem 1. Given a training dataset xi , i = 1, . . . , n in a d-dimensional

input space with its covariance matrix Σ. The error of projecting the center of

the data cn onto the subspace spanned by the most relevant eigenvectors can be

upper bounded by

1

n2

n∑

i=k+1

λi,

where λk+1, . . . , λn represent the least relevant eigenvalues related to the remain-250

ing eigenvectors unused in the projection operation.
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Proof. The error of projecting cn is expressed as follows:

∥∥(I − P)cn
∥∥2

Σ̂

=
∥∥ 1
n

n∑

i=1

(I − P)φ(xi)
∥∥2

Σ̂

≤ 1

n2

n∑

i=1

∥∥(I − P)φ(xi)
∥∥2

Σ̂

≤ 1

n2

n∑

i=k+1

λi,

where the first inequality follows from the triangular inequality, and the error

of projecting the samples φ(xi) can be bounded by
∑n

i=k+1 λi as detailed in [2,

Chapter 6].

5.2. Error of the first kind255

. Let c∞ denotes the expectation of the data in the feature space, namely

E[φ(x)], and ǫ0 the projection error between c∞ and cn, namely ǫ0 = ‖Pcn −
Pc∞‖

Σ̂
. The samples of the training dataset are generated from the same

distribution, and nout is the number of outliers among this dataset.

Theorem 2. If we consider the sphere centered on PcA with radius R, and by

the symmetry of the i.i.d assumption, we can bound the probability that a new

random sample x lies outside this sphere excluding the outliers, with

P(‖Pφ(x)− PcA‖Σ̂
> R+ 2ǫ0 + 2‖Pcn − PcA‖Σ̂

) ≤ nout + 1

n+ 1
.

Proof. When all the training samples are inside the sphere centered on cn, it

has been shown in [2] that the probability of a new sample x that lies outside

this description is bounded by

P(‖φ(x)− cn‖ > R1 + 2ǫ1) ≤
1

n+ 1
,

having ǫ1 the error of approximating c∞, and R1 the radius of the sphere,

namely R1 = maxi=1,··· ,n ‖φ(xi) − cn‖. If we consider the sphere centered on

the projected sparse center PcA with nout outliers, and the distance between

the projected sample Pφ(x) and PcA, we apply the triangular inequality twice

18
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and we get the following relations:

‖Pφ(x)− PcA‖Σ̂
≤ ‖Pφ(x)− Pcn‖Σ̂

+ ‖Pcn − PcA‖Σ̂

≤ ‖Pφ(x)− Pc∞‖
Σ̂
+ ǫ0 + ‖Pcn − PcA‖Σ̂

,

and

‖Pφ(x)− PcA‖Σ̂
≥ ‖Pφ(x)− Pcn‖Σ̂

− ‖Pcn − PcA‖Σ̂

≥ ‖Pφ(x)− Pc∞‖
Σ̂
− ǫ0 − ‖Pcn − PcA‖Σ̂

.

From these two inequalities, and by the symmetry of the i.i.d assumption, the

probability of a new sample x lying outside this distribution is bounded by

P(‖Pφ(x)− PcA‖Σ̂
> R+ 2ǫ0 + 2‖Pcn − PcA‖Σ̂

) ≤ nout + 1

n+ 1
.

6. Experimental Results260

. The proposed one-class algorithms are applied on two simulated datasets and

on three real datasets from the Mississipi State University SCADA Laboratory

and from the University of California machine learning repository. The selection

of the most relevant samples in the proposed framework is performed via the

aforementioned shrinkage algorithms, namely LARS, LASSO and Elastic net. In265

each case of these three subset selection approaches, the decision function of the

classifier is defined using the Euclidean diastance and the Mahalanobis distance.

The Gaussian kernel is used in this paper, for it is the most common and suitable

kernel for one-class classification problems. It is given by k(xi,xj) = exp
(
−

‖xi−xj‖2

2

2σ2

)
, where xi and xj are two input samples, and ‖ · ‖2 represents the l2-270

norm in the input space. The bandwidth parameter σ is computed as proposed

in [14], namely σ = dmax√
2M

, where dmax refers to the maximal distance between

any two samples in the input space, and M represents the upper bound on the

number of outliers among the training dataset.

6.1. Results On Simulated Data275

. The proposed algorithms are applied in the first place on two simulated

datasets, the sinusoidal and the square noise datasets [28]. The main chal-
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lenge when it comes to simulated data is to define a good description boundary

around the training data, in a way to enclose the normal samples while avoiding

the extremes cases, namely overfitting and underfitting the data. We compared280

the results of the proposed algorithms with four other one-class classification

approaches, namely SVDD, simple one-class, slab SVM and robust SVM as

shown in figures 3 and 4. We note that the sinusoidal dataset has 95 samples,

the square noise has 450 samples, and the sparse center used only 15% of the

training data to define these boundaries. When it comes to the results on the si-285

nusoidal dataset, the SVDD, simple one-class, slab SVM and robust SVM have

loose boundaries. The use of the Euclidean distance in the decision function

of the classifier in the proposed algorithms led also to loose boundaries, which

can be explained by the sensitivity of this distance to the scale in each feature

direction. On the other hand, the use of the Mahalanobis distance instead of290

the Euclidean distance gives better boundaries, and combining Elastic net with

the Mahalanobis distance outperforms both LASSO and LARS, and it leads to

the best result with the tightest description boundary. When it comes to the

square noise dataset, the SVDD, simple one-class, slab SVM and robust SVM

have the same loose boundaries, LARS and LASSO have good results with the295

Mahalanobis distance, and the best result is achieved when the Mahalanobis

distance is used with the modified Elastic net algorithm. Therefore, the lat-

ter combination, namely Elastic net with Mahalanobis distance, outperforms

LASSO, LARS and the other approaches.

6.2. Results On Real Data300

. The proposed one-class algorithms are now tested on two real datasets from

the Mississipi State University SCADA Laboratory, the gas pipeline and the

water storage tank testbeds [36]. The gas pipeline is used to move petroleum

products to the market, and the water storage tank is similar to the oil stor-

age tanks found in the petrochemical industry. These real datasets raise many305

challenges, where each input sample consists of 27 heterogeneous attributes for

the gas pipeline and 24 attributes for the water storage tank, i.e., gas pressure,
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water level, pump state, target gas pressure/water level, PID’s parameters, time

interval between packets, length of the packets, and command/response func-

tions. Furthermore, 28 types of attacks are injected into the network traffic310

of the system in order to hide its real functioning state and to disrupt the

communication. These attacks are arranged into 7 groups: Naive Malicious

Response Injection (NMRI), Complex Malicious Response Injection (CMRI),

Malicious State Command Injection (MSCI), Malicious Parameter Command

Injection (MPCI), Malicious Function Command Injection (MFCI), Denial of315

Service (DOS) and Reconnaissance Attacks (RA). See [36] for more details. We

also tested the one-class algorithm on another complex dataset, namely the wa-

ter treatment plant dataset from the UCI machine learning repository [38]. This

dataset comes from the daily measures of sensors in a urban waste water treat-

ment plant. Each sample contains 38 attributes related to the measurements320

of several important components in the water like input zinc, input PH, input

biological demand of oxygen, input suspended solids, input conductivity, input

volatile suspended solids, input sediments to secondary settler, output chemical

demand of oxygen, output volatile suspended solids, and other attributes. The

train set contains samples related to four different normal situations while the325

test set encloses measurements of abnormal situations like after storms or when

solids overload.

. In high-dimensional spaces, the first criterion for one-class classification algo-

rithms is to have good detection rates. We tested these one-class algorithms on

nearly 100 000 samples related to the aforementioned attacks, and the detec-330

tion rates are given in Tables 1, 2 and 3. We note that the sparse center in the

proposed algorithms depends only on 10% of the training samples. The worst

detection rates are achieved with the simple one-class approach, which can be

explained by its high sensitivity to the presence of outliers among the train-

ing dataset. The cases where the Mahalanobis distance is used in the decision335

function of the classifier have better results than the cases with the Euclidean

distance, due to the strong properties of the first one and to the scale sensitivity
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Table 1: Error detection probabilities for the gas pipeline testbed.

In this paper

Euclidean distance Mahalanobis distance

SVDD Slab Robust simple LARS LASSO Elastic net LARS LASSO Elastic net

SVM SVM one-class

NMRI 98.1 98.4 92.9 91.7 98.3 98.7 99.1 99.1 98.9 99.2

CMRI 99.5 99.5 98.5 95.4 98.1 98.3 99.2 98.7 98.8 99.5

MSCI 89.1 86.2 54.9 22.6 55.8 57.3 68.1 71.1 74.5 79.3

MPCI 98.2 96.9 98.1 94.1 97.1 96.7 97.8 98.2 97.6 98.9

MFCI 89.9 89.4 64.7 31.6 77.8 80.1 83.6 81.3 82.7 85.9

DOS 96.1 96.3 95.5 68.5 96.1 96.9 97.1 97.3 97.2 97.5

RA 99.8 99.8 99.7 98.1 99.1 99.5 99.8 99.6 99.7 99.8

of the latter one. LARS and LASSO algorithms have nearly the same good

results, whereas Elastic net outperforms both shrinkage algorithms with both

Euclidean and Mahalanobis distances. The best results are achieved when Elas-340

tic net is used to select the most relevant samples, and the norm in the decision

function of the classifier is the Mahalanobis distance. The latter combination

gives better detection rates than all of the other approaches for the different

types of the studied attacks. The second criterion for one-class approaches is

the time consumption of the algorithms. Table 4 shows the estimated time for345

each approach, and it indicates that the modified subset selection algorithms in

the proposed framework are faster than the other approaches regardless of the

shrinkage method used, with both Euclidean and Mahalanobis distances. The

fastest algorithm occurs with LARS for the gas pipeline and the UCI testbeds,

and the simple one-class for the water storage testbed, while the slowest ap-350

proaches are the ones in which a constrained quadratic programming problem

has to be resolved, namely SVDD, slab SVM and robust SVM, having the slab

SVM the slowest one. Therefore, combining the Mahalanobis distance with

Elastic net leads to the best detection rates, and it is up to 25 times faster than

the other one-class algorithms.355

22



DRAFT  E
N  C

OURS  D
E  F

IN
ALIS

ATIO
N

Table 2: Error detection probabilities for the water storage testbed.

In this paper

Euclidean distance Mahalanobis distance

SVDD Slab Robust simple LARS LASSO Elastic net LARS LASSO Elastic net

SVM SVM one-class

NMRI 95.1 92.2 94.1 88.2 93.4 91.7 94.7 97.4 94.1 98.1

CMRI 61.2 63.5 59.7 46.2 59.1 62.4 69.2 71.8 67.7 74.1

MSCI 97.3 96.9 98.1 96.3 97.1 97.4 97.9 98.1 98.1 98.3

MPCI 98.6 99.1 99.2 97.6 98.9 97.9 99.1 99.1 98.4 99.7

MFCI 97.9 98.7 98.1 40.6 97.1 98.4 99.1 99.1 99.3 99.8

DOS 71.7 73.4 59.8 55.3 72.3 71.2 74.7 81.1 79.1 82.6

RA 97.8 98.1 98.7 95.9 98.1 98.4 98.7 99.1 99.3 99.5

Table 3: Error detection probabilities for the UCI water treatment testbed.

In this paper

Euclidean distance Mahalanobis distance

Approach SVDD Slab Robust simple LARS LASSO Elastic net LARS LASSO Elastic net

SVM SVM one-class

Ped 78.6 81.6 74.7 64.8 71.4 71.4 78.6 85.7 85.7 92.1

7. Conclusion

. In this paper, we proposed a sparse framework for one-class classification

problems. We defined our one-class classifier by the hypersphere enclosing the

samples in the Reproducing Kernel Hilbert Space. We defined the center of this

hypersphere by the approximation of the empirical center of the data in the360

RKHS, and this sparse center depends only on a small fraction of the training

samples. In order to select the most relevant samples, we modified the algo-

rithms of three well-known shrinkage approaches, namely LARS, LASSO and

Elastic net. We adapted these algorithms to the estimation of the center in the

RKHS. We used the Euclidean and the Mahalanobis distances in the decision365

function of the classifier, and we tested the proposed algorithms on simulated

data as well as on real data from the Mississippi State University SCADA Labo-

ratory and from University of California UCI machine learning repository. The

tests showed that the proposed algorithms have the best results specially when

the modified Elastic net is used to select the most relevant samples, and the370
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Table 4: Estimated time (in seconds) of each approach.

In this paper

Euclidean distance Mahalanobis distance

SVDD Slab Robust simple LARS LASSO Elastic net LARS LASSO Elastic net

SVM SVM one-class

gas 70.23 302.74 61.32 9.23 9.12 12.31 13.81 9.85 13.93 14.22

water 123.72 557.23 102.28 10.41 10.83 13.62 14.27 11.79 14.10 15.72

UCI 12.91 78.95 14.78 1.79 1.61 2.27 2.51 2.11 2.83 2.94

norm in the decision function of the classifier is the Mahalanobis distance. The

latter combination is faster than the common one-class algorithms existing in

the literature, and it leads to the best detection rates for most of the attacks.

. For future works, a detailed study on the other existing subset selection al-

gorithms could be investigated, since it is a very important step in sparse ap-375

proaches for the selection of the most relevant samples. The advantages of

using of the Mahalanobis distance should be widely investigated to obtain more

adapted kernel functions. Furthermore, the implementation of the modified

algorithms should be optimized in order to decrease their computational cost.

Online versions of the proposed algorithms could also be investigated to improve380

live detection in real time applications. Finally, an extension of this work to

become suitable for multiclass classification could be investigated in order to

identify the type of the detected intrusion.
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SVDD simple one−class

Slab SVM Robust SVM

LARS (Euclidean) LASSO (Euclidean)

Elastic Net (Euclidean) LARS (Mahalanobis)

LASSO (Mahalanobis) Elastic Net (Mahalanobis)

Figure 3: The decision boundaries on the sinusoidal dataset for several one-class algorithms.

The description boundaries are given by the green lines, the red samples are the ones con-

sidered as outliers while the normal samples are in blue. Elastic net outperforms LARS and

LASSO, and it gives the best decision boundary with the Mahalanobis distance.
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SVDD simple one class

Slab SVM Robust SVM

LARS (Euclidean)

LASSO (Euclidean)

Elastic Net (Euclidean) LARS (Mahalanobis)

LASSO (Mahalanobis) Elastic Net (Mahalanobis)

Figure 4: The decision boundaries on the square-noise dataset for the studied algorithms.

The description boundaries are given by the green lines, the outliers correspond to the red

samples while the normal samples are in blue. Elastic net outperforms LARS, LASSO, and

the other approches, and it leads to the best description boundary when the metric in the

decision function of the classifier is the Mahalanobis distance.
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