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Non-parametric and semi-parametric RSSI/distance modeling

for target tracking in wireless sensor networks

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, and Hichem Snoussi

Abstract—This paper introduces two main contributions to the
wireless sensor network (WSN) society. The first one consists
of modeling the relationship between the distances separating
sensors and the received signal strength indicators (RSSIs)
exchanged by these sensors in an indoor WSN. In this context, two
models are determined using a radio-fingerprints database and
kernel-based learning methods. The first one is a non-parametric
regression model, while the second one is a semi-parametric
regression model that combines the well-known log-distance
theoretical propagation model with a non-linear fluctuation term.
As for the second contribution, it consists of tracking a moving
target in the network using the estimated RSSI/distance models.
The target’s position is estimated by combining acceleration
information and the estimated distances separating the target
from sensors having known positions, using either the Kalman
filter or the particle filter. A fully comprehensive study of the
choice of parameters of the proposed distance models and their
performances is provided, as well as a study of the performance
of the two proposed tracking methods. Comparisons to recently
proposed methods are also provided.

Keywords—Distance estimation, Kalman filter, machine learning,
particle filter, radio-fingerprints, RSSI, target tracking.

I. INTRODUCTION

Recently, wireless sensor networks (WSNs) have received
much concern because of their practical applications in nowa-
days world. WSNs are rapidly gaining importance in many
fields, especially in the healthcare and industrial domains [1],
[2]. They are also being deployed to track enemy vehicles in
military applications [3], and to follow the movement of wild
animals in environmental monitoring [4].

In all applications, awareness of location information is
fundamental, since collected data are meaningless without any
geographical context. Typically, stationary sensors broadcast
signals in the network, while targets collect these signals
for location estimation. Many localization algorithms using
stationary sensors have been proposed. They are mainly based
on estimating the distances between the stationary sensors and
the targets to be localized. Estimating these distances can be
based on several types of measurements, such as received
signal strength indicators (RSSIs) [5], angle of arrival [6],
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time difference of arrival [7] and time-of-arrival [8]. The RSSI-
based techniques exploit the attenuation of the signal strength
with the traveled distance to estimate the distances separating
the emitters from the receivers. These techniques exhibit
favorable properties with respect to power consumption, size
and cost. Nevertheless, it is important to highlight that dis-
tance estimation using RSSI can be really challenging, since
the measurements of signals’ powers could be significantly
altered by the presence of additive noise, multi-path fading,
shadowing, and other interferences. One popular model used
to characterize the relationship between the RSSIs and the dis-
tances is the log-distance propagation model, also known as the
Okumura-Hata model [9], [10], [11]. Even though this model
has many limitations, it is still widely used because of its
simplicity. However, this model is basically for outdoors, since
it predicts the signal strength without taking the surrounding
environment into account, such as the walls and the floors.
Therefore, it becomes inaccurate in cases where there is no line
of sight between sensors. Different models have been proposed
to overcome this problem, such as modified versions of the log-
distance model [12], in which the attenuations due to floors
and walls are explicitly included. Several researchers have
determined a mathematical relationship between RSSIs and
distances, without taking physical properties into consideration
[13]. To this end, an empirical model is estimated with a
polynomial regression.

Once the distances are estimated from the RSSIs, they are
then combined using for instance triangulation [14] or trilat-
eration [15] to find the sensors’ positions. One can also use
methods based on filtering, since they can help in smoothing
the target’s trajectory, reducing thus the estimation error. One
widely used filter is the Kalman filter [16]. However, it is
known that this filter is only reliable for systems which are
almost linear. To overcome the non-linear estimation problem,
the extended Kalman filter (EKF) and unscented Kalman filter
(UKF) have been proposed. A tracking approach using the
EKF with the distances and acceleration information is pro-
posed in [17]. The main disadvantage of such an approach is
that the linearization and the approximations made might lead
to sub-optimal performance and sometimes divergence of the
filter [18]. Another tracking approach using the Kalman filter
is described in [19], where the authors first find the target’s
positions using the weighted K-nearest neighbor (WKNN)
algorithm. Then, they combine these estimates with accel-
eration information using the Kalman filter with a second-
order state-space model. The authors of [20] also propose
a tracking method that uses the Kalman filter with a third-
order state-space model to enhance the position of the target
estimated using a kernel-based model proposed by the authors.
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Another well-known filter used for tracking is the particle filter
(PF) [21]. The tracking methods described in [22], [23] take
advantage of such filter, by using the target’s motion and the
distances as well.

In this paper, we propose two original regression models that
estimate the distances separating sensors using their received
signal strength indicators (RSSIs), in an indoor wireless sensor
network. We then propose to solve the tracking problem using
two new methods. Our approach consists first of a collection
phase, aiming at building a training database composed of
RSSI measures and distances based on the radio-fingerprinting
concept [24]. The collection phase is then followed by an
offline training phase where the distance models are defined
using the collected database. Defining the distance models
is an essential step in the tracking process; in fact, in the
following, the estimated distances obtained using one of the
proposed distance models will be used to determine the target’s
position. The first proposed distance model is a non-parametric
model without any prior knowledge on the physical system,
while the second one is a semi-parametric regression model,
combining the well-known log-distance theoretical propagation
model with a non-linear fluctuation term, estimated within the
framework of kernel-based machines. Each model takes the
RSSIs as input and yields the distance to the corresponding
sensor as output. To the best of our knowledge, both models
have not yet been proposed in the literature. Then, in the online
tracking phase, a moving target collects RSSI measures and
uses them with the computed kernel-based models to estimate
the distances separating it from the sensors having known
locations. Based on these distances, the target’s position is
estimated using two different methods. The first one consists
of combining these distance estimates with the acceleration in-
formation, by means of a Kalman filter [25], [16], to determine
the target’s position. The second one consists of localizing the
target using a particle filter [21] with the distance estimates
and the acceleration information. Compared to [26] and [27],
the proposed methods take advantage of the target’s mobility
to enhance the obtained position estimate. Compared to [20],
where a kernel-based position model is used, we propose
in this paper two kernel-based distance models to find the
distances separating the target from the sensors. Because of the
logarithmic relationship between the RSSIs and the distances,
the use of distance models gives more relevant results than
position models. Moreover, the most important reason for
switching to distance models is that, by doing so, the sensors
are allowed to move in the network, without affecting the
tracking as it will be shown throughout this paper.

The rest of the paper is organized as follows. The proposed
tracking methods are described in Section II. In Section
III, we define the two kernel-based distance models using
machine learning. In Section IV, we solve the tracking problem
using the distances and acceleration information by means of
the Kalman filter, while in Section V, we find the target’s
positions using the particle filter. In Section VI, we examine
the performance of the two proposed distance models, and in
Section VII, we evaluate the proposed tracking methods, while
providing a comparison to state-of-the-art tracking methods.
Finally, Section VIII concludes the paper.

II. DESCRIPTION OF THE TRACKING APPROACH

Consider an environment of δ dimensions, with for instance
δ = 2 for a two-dimensional environment, and Ns sensors
having known locations. The sensors are allowed to move in
the network, and their locations are considered to be known at
any given time step. For simplicity, we denote the sensors’ lo-
cations by si = (si,1 . . . si,δ)

⊤, i ∈ {1, . . . , Ns}. In the collec-
tion phase, in order to construct a radio-fingerprints database,
N reference positions, denoted by pℓ = (pℓ,1 . . . pℓ,δ)

⊤, ℓ ∈
{1, . . . , N}, are either generated on a uniform grid or randomly
in the studied environment. The sensors continuously broadcast
signals in the network at a fixed initial power, and a sensor
is placed consecutively at the reference positions to detect
the broadcasted signals and measure their RSSIs. Let ρsi,pℓ

,
i ∈ {1, . . . , Ns}, denote the power of the signal received from
the sensor at position si by the sensor at reference position pℓ,
and let dsi,pℓ

, i ∈ {1, . . . , Ns}, denote the distance separating
these sensors. The distance dsi,pℓ

is then given by:

dsi,pℓ
=

√√√√
δ∑

v=1

(
si,v − pℓ,v

)2
. (1)

In this way, Ns training sets of N pairs (ρsi,pℓ
, dsi,pℓ

) are
obtained. The training phase consists then in finding a set of
Ns models χi : IR → IR, i ∈ {1, . . . , Ns}; each model takes
as input the RSSI received from the sensor si at a reference
position pℓ, ℓ ∈ {1, . . . , N}, and yields as output the distance
dsi,pℓ

separating si from pℓ. These distance models can be
non-parametric or semi-parametric; details will be provided in
the following section. Note that the database construction and
the computation of the models χi are performed only once at
a computation center, before the tracking phase, regardless of
the chosen model. The models are then communicated to the
target, that performs all the following computations.

Let x(k) = (x1(k) . . . xδ(k))
⊤ denote the target’s position

at a given time step k. Then, in the tracking phase, the moving
target collects the RSSIs of the signals received from the
Ns sensors, at time step k, and stores them into the vector
ρ
x(k) = (ρs1,x(k) . . . ρsNs ,x(k)

)⊤. An estimate of the distance

d̂si,x(k), i ∈ {1, . . . , Ns}, separating the sensor at position
si from the target is then obtained using the already-defined
distance model χi, as follows:

d̂si,x(k) = χi(ρsi,x(k)). (2)

The target is assumed to be equipped with a gyroscope and
an accelerometer that yield respectively its instantaneous ori-
entation and accelerations. Combining this information leads
to the instantaneous accelerations of the target over the δ
coordinates in the network coordinates system. We propose
then to solve the positioning problem in two ways. The first
solution is given in Section IV, where the distance estimates
are combined with the accelerometer information to obtain
an estimate of the target’s positions using the Kalman filter.
The second solution is given in Section V, where the target’s
position estimates are obtained by combining the accelerations
and the distance estimates using the particle filter.
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III. DEFINITION OF χi USING KERNEL METHODS

The objective of this section is to define the set of models
χi, i ∈ {1, . . . , Ns}, using the constructed training database.
Each model χi is defined in such a way that it associates to
each RSSI measure ρsi,pℓ

, ℓ ∈ {1, . . . , N}, the correspond-
ing distance dsi,pℓ

. To this end, we propose two distance
models. In the first subsection, we define the set of models
χi, i ∈ {1, . . . , Ns}, as non-parametric models, i.e., they
are taken as linear combinations of kernels centered on the
training samples. The second models, described in the sec-
ond paragraph of this section, are semi-parametric regression
models that combine the physical log-distance propagation
model of [9], [10] with a non-linear fluctuation term, defined
in a reproducing kernel Hilbert space. This non-linear term
compensates for the missing factors in the log-distance model,
therefore allowing a better modeling of the RSSI/distance
relationship.

A. Non-parametric regression models

In this paragraph, the distance model is derived using only
the training database. No assumptions on the model or prior
knowledge of the model are considered. Therefore, determin-
ing χi requires solving a non-linear regression problem. We
take advantage of kernel methods, that have been remarkably
successful for solving non-linear regression problems. To this
end, we consider the kernel ridge regression [28] to determine
the functions χi.

Each function χi is determined by minimizing the mean
quadratic error between the model’s outputs χi(ρsi,pℓ

) and
the desired outputs dsi,pℓ

, as follows:

min
χi∈H

1

N

N∑

ℓ=1

(dsi,pℓ
− χi(ρsi,pℓ

))2 + ηi‖χi‖
2
H, (3)

where H is a reproducing kernel Hilbert space, and ηi is a
regularization parameter that controls the tradeoff between the
training error and the complexity of the solution. According
to the representer theorem [29], the optimal function can be
written as follows:

χi(·) =
N∑

ℓ=1

αℓ,i κ(ρsi,pℓ
, ·), (4)

where “ · ” is the function’s input, κ : IR× IR 7→ IR is a
reproducing kernel, and αℓ,i, ℓ ∈ {1, . . . , N}, are parameters
to be determined. Let αi be the N×1 vector whose ℓ-th entry
is αℓ,i. By injecting (4) in (3), a dual optimization problem
in terms of αi is obtained, whose solution is given by taking
the derivative of the corresponding cost function with respect
to αi and setting it to zero. One can easily find the following
form of the solution:

αi = (Ki + ηiNIN )−1dsi
, (5)

where IN is the N × N identity matrix, dsi
=

(dsi,p1
. . . dsi,pN

)⊤, i ∈ {1, . . . , Ns}, and Ki is the N×N
matrix whose (u, u′)-th entry is κ(ρsi,pu

, ρsi,pu′
), for u, u′ ∈

{1, . . . , N}. For appropriate values of the regularization pa-
rameter ηi, the matrix between parentheses is always non-
singular.

Notice that this non-parametric model does not consider any
prior knowledge on the physical properties of the relationship
between the RSSIs and the distances. Indeed, the model
does not take into account the fact that this RSSI/distance
relationship is logarithmic. In the following subsection, we
propose a semi-parametric regression model in such a way
that the prior knowledge of the logarithmic RSSI/distance
relationship is taken into consideration.

B. Semi-parametric regression models

As we already stated, the theoretical log-distance signal
propagation model alone is insufficient to characterize the
RSSI/distance relationship, since it neglects all other factors
in the environment, such as physical obstacles, multi-path
propagation, additive noises, etc. This model characterizes the
RSSI/distance relationship as follows:

ρsi,pℓ
= ρ0i − 10nP log10

dsi,pℓ

d0i
, (6)

where ρsi,pℓ
is the power received from the sensor at position

si by the node at position pℓ, that is the i-th entry of the
vector ρℓ, ρ0i is the power at the reference distance d0i, and
nP is the path-loss exponent. In this paragraph, we propose
a new propagation model by adding to this model a non-
linear fluctuation term ϕi, that represents a combination of
all unknown factors affecting the RSSI measures, as follows:

ρsi,pℓ
= ρ0i − 10nP log10

dsi,pℓ

d0i
+ ϕi, (7)

This term provides the log-distance physical model with fur-
ther flexibility, resulting in a more accurate model. Equation
(7) can be written as follows:

log10 dsi,pℓ
=

ρ0i

10nP

+ log10 d0i −
ρsi,pℓ

10nP

+
ϕi

10nP

. (8)

One can see that (8) is a combination of a linear model in
terms of ρsi,pℓ

and a non-linear model. Let ψi(·) denote the
model that associates to each RSSI ρsi,pℓ

the logarithm of the
distance log10(dsi,pℓ

). This model ψi(·) can be decomposed
into two terms: a linear term and a non-linear fluctuation term,
such that:

ψi(·) = ψi,lin(·) + ψi,nlin(·),

where we have the following:

{
ψi,lin(ρsi,pℓ

) = ai ρsi,pℓ
+ bi,

ψi,nlin(ρsi,pℓ
) = ϕi

10nP
,

(9)

with ai = − 1
10nP

and bi =
ρ0i
10nP

+ log10 d0i.
We now consider that the non-linear term, given by ψi,nlin(·),

lies in a reproducing kernel Hilbert space denoted by H and
induced by a positive definite kernel function κ(·, ·). It is
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estimated by minimizing the regularized mean quadratic error
on the training set, given by:

1

N

N∑

ℓ=1

ε2ℓ + ηi‖ψi,nlin‖
2
H, (10)

where the quantity ηi is a regularization parameter that controls
the tradeoff between the training error and the complexity of
the solution, and the cost function εℓ,i is given by:

εℓ,i = log10 dℓ − ai ρsi,pℓ
− bi − ψi,nlin(ρsi,pℓ

),

where ℓ ∈ {1, . . . , N}. From the semi-parametric representer’s
theorem [29], ψi,nlin(·) can be written as a linear combination
of kernels:

ψi,nlin(·) =
N∑

ℓ=1

βℓ,i κ(ρsi,pℓ
, ·),

where κ : IR× IR 7→ IR, and βℓ,i, with ℓ ∈ {1, . . . , N}, are
parameters to be estimated.

By multiplying (10) by N for convenience and writing it in
matrix form, one gets the following:

Λ
⊤

i Λi + a2i ρ
⊤
i ρi +Nb2i + β⊤

i K
⊤

i Kiβi

− 2aiΛ
⊤

i ρi − 2bi1
⊤
Λi − 2Λ⊤

i Kiβi + 2aibi1
⊤ρi

+ 2aiρ
⊤
i Kiβi + 2bi1

⊤βi

+ ηiNβ⊤

i Kiβi, (11)

where βi = (β1,i . . . βN,i)
⊤, Ki is the N×N matrix whose

(u, u′)-th entry is κ(ρsi,pu
, ρsi,pu′

), for u, u′ ∈ {1, ..., N}, ρi
is the N×1 vector whose ℓ-th entry is equal to ρsi,pℓ

, with
ℓ ∈ {1, . . . , N}, 1 is the vector of ones of appropriate size, and
Λi is the N×1 vector whose ℓ-th entry is equal to log10 dsi,pℓ

.
By taking the partial derivatives in matrix form of (11) with

respect to ai, bi and βi and setting them to zero, we get the
following linear system having the form U i = W iY i, where

Y i =

[
ai
bi
βi

]
,U i =



1
⊤
Λi

Λi

Λ
⊤

i ρi


 ,

W i =




1
⊤ρi
ρi

ρ⊤
i ρi

N
1

1
⊤ρi

1
⊤Ki

Ki + ηiNIN

ρ⊤
i Ki


 (12)

The solution is then given by:

Y i = (W⊤

i W i)
−1W⊤

i U i. (13)

After computing the model’s parameters using (13), one can
find the logarithm of any distance separating a sensor at
position si and the target at position x(k) in the network using
only the RSSI information, as follows:

log10 dsi,x(k) = ψi(ρsi,x(k))

= ai ρsi,pℓ
+ bi +

N∑

ℓ=1

βℓ κ(ρsi,pℓ
, ρsi,x(k)).

Then, the model χi(·) yields the distance as follows:

χi(ρsi,x(k)) = 10ψi(ρsi,x(k)). (14)

IV. TRACKING USING THE KALMAN FILTER

In this section, we propose to find the target’s position by
combining its instantaneous accelerations with the distances
separating it from the sensors in the network, by means of
a Kalman filter. These distances are estimated using either
one of the kernel-based distance models defined in Section
III The first and most challenging part is to find a model that
describes the target’s motion. To overcome cases where the
target does not follow a predictable path, we propose to use
a third-order state-space model. This model is based on the
assumption that the target’s accelerations vary linearly between
any two consecutive time steps k − 1 and k with a slope

equal to
γ(k)−γ(k−1)

∆t , where γ(k) = (γ1(k) . . . γδ(k))
⊤ is the

acceleration vector at time step k, and ∆t the time period
separating two consecutive time steps. Accordingly, one can
estimate recursively the velocity vector ν(k) of the target at
time step k as follows:

ν(k) = ν(k−1)+γ(k−1)∆t+
γ(k)− γ(k − 1)

∆t

∆t2

2
. (15)

Then, by taking the primitive integral of (15), the position of
the target can be written as follows:

x(k) = x(k − 1) + ν(k − 1)∆t + γ(k − 1)
∆t2

2

+
γ(k)− γ(k − 1)

∆t

∆t3

6
. (16)

Assuming that the target is at a fixed known position x(0) at
the beginning of the tracking and having ν(0) and γ(0) null,
one can then find x(k) at any time step k using the measured
accelerations. This model yields an accurate approximation of
x(k) for small values of ∆t.

Now let X(k) = (x(k) ν(k))⊤ denote the unknown state
of the target at time step k. The considered state-space equation
is then given by the following:

X(k) = A X(k − 1) +B(k) + ǫKF(k), (17)

where A is the state transition matrix and B(k) is a noisy
control-input vector depending on the accelerations given by:

A =

(
Iδ

0

∆tIδ
Iδ

)

B(k) =

(
γ(k − 1)⊤ ∆t2

3

γ(k − 1)⊤ ∆t
2

)
+

(
γ(k)⊤ ∆t2

6

γ(k)⊤ ∆t
2

)
,

where Iδ is the δ×δ identity matrix, and 0 is the matrix of
zeros of appropriate size. As for the quantity ǫKF(k), it is the
state equation error, whose probability distribution is assumed
to be normal, having zero mean and covariance matrix V of
size 2δ × 2δ.

Remark. In the previous paragraphs, the target is assumed
to be rotationally constrained. However, during its motion in
real applications, the target could rotate, leading to changes
in the coordinate system, where the accelerations are given.
The solution to this problem is to equip each target with
a gyroscope, which yields its orientations with respect to
the world coordinate system. At each time step, the target
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measures its acceleration vector in its coordinate system, then
finds its orientations using the gyroscope. Its accelerations
in the world coordinate system can then be computed using
the rotation matrix given in [20]. For simplicity, we only
consider rotationally constrained targets in our paper. However,
as just explained, the computations could be easily modified
to consider the targets rotations and find the accelerations in
the world coordinate system.

Having defined the state-space model, we now need to define
the observation in order to use the Kalman filter. However, by
using the equations of the estimated distances separating the
target from the sensors, the obtained observation model is non-
linear. To overcome this problem, we propose in this paper an
alternative linear observation model based on the distances.
Indeed, using (1), one can write the following:

d2
si,x(k)

=

δ∑

v=1

(si,v − xv(k))
2

=

δ∑

v=1

s2i,v +

δ∑

v=1

x2v(k)− 2

δ∑

v=1

si,v xv(k).

By subtracting d2
sNs ,x(k)

from d2
si,x(k)

, i ∈ {1, ..., Ns − 1},
we get the following:

d2
si,x(k)

− d2
sNs ,x(k)

=

δ∑

v=1

s2i,v −
δ∑

v=1

s2Ns,v

+ 2

δ∑

v=1

xv(k)(sNs,v − si,v).

After rearranging the terms in this expression, it becomes
possible to set a linear observation model as follows:

zKF(k) = CX(k) + n(k), (18)

where n(k)∼N (0,R) is an additive noise, assumed to have a
normal distribution, with zero mean and covariance matrix R,
and the observation vector zKF(k) can be written as follows:



d2
s1,x(k) − d2

sNs
,x(k) +

∑δ

v=1 s
2
Ns,v −

∑δ

v=1 s
2
1,v

...

d2
sNs−1,x(k) − d2

sNs
,x(k) +

∑δ

v=1 s
2
Ns,v

−

∑δ

v=1 s
2
Ns−1,v




The observation matrix C is then given by:

2




sNs,1 − s1,1
.
..

sNs,1 − sNs−1,1

. . .

. . .

sNs,δ − s1,δ
.
..

sNs,δ − sNs−1,δ

0(Ns − 1) × δ


 ,

To approximate R, a new set of reference positions is gener-
ated, and their distances to the sensors are estimated using χi.
Then, the differences between their observation vectors, using
their estimated distances, and the product of the matrix C by
their exact positions are computed and stored into a vector,
that is the error vector. The matrix R, assumed to be constant
over time, is then determined by computing the covariance of
the error vector.

Now that we have defined the two linear equations (17) and
(18), we can use the Kalman filter to find the target’s position at
each time step k. The Kalman filter first predicts the unknown
position using the previous estimated position and the state-
space equation (17), as follows:

X̂
−

(k) = AX̂(k − 1) +B(k),

where X̂(0) is assumed to be known. Then, the predicted
estimation covariance is updated by the following:

T−(k) = AT (k − 1)A⊤ +Q(k),

where T (k−1) is the covariance estimation at time step k−1,
and T (0) is null since the initial state is known. The matrix
Q(k) is the covariance matrix of X(k) given X(k−1), namely

Q(k) = Cov(X(k)|X(k − 1) = Cov(B(k) + ǫ(k))

= Cov(B(k)) + Cov(ǫ(k))

= Cov(B(k)) + V ,

where Cov(·) computes the covariance matrix of its argument.
Each coordinate acceleration noise is assumed to be inde-
pendent with zero-mean normal distribution, having known
variances σ2

γ,d, d = 1, ..., δ. Their values can be estimated
by performing a calibration of the accelerometer before the
tracking stage. We also assume that all the δ coordinates are
statistically independent. The matrix Q(k) is then given by:

Q(k) = V +

(
5∆t4

36 Diag
(
σ2

γ

)

0

0

∆t2

2 Diag
(
σ2

γ

)
)
.

The final step of the filter is the correction of the predicted

quantities X̂
−

(k) and T−(k) using the observation equation
(18) as follows:

X̂(k) = X̂
−

(k) +GKF(k) (zKF(k)
⊤ −CX̂

−

(k)),

T (k) = (I2δ −GKF(k)C)T−(k),

where GKF(k) is the optimal Kalman gain given by:

GKF(k) = T−(k)C⊤ (C T−(k)C⊤ +R)−1.

V. TRACKING USING THE PARTICLE FILTER

The objective in this section is to find the target’s position
estimates using the particle filter, the distances estimated by
either one of the kernel-based distance models of Section
III and the acceleration information of the target. Unlike the
Kalman filter, the particle filter makes no restrictive assumption
about the dynamics of the state-space or the density function.
The observation model can be non-linear, and the initial state
and noise distributions can take any required form. For this
reason, the observations here are taken equal to the estimated
distances separating the target from the sensors, that is:

zPF(k) = dx(k),

where dx(k) = (ds1,x(k) . . . dsNs ,x(k)
)⊤, obtained using the

kernel-based model. Like the Kalman-based method, the track-
ing problem is also defined by the third-order state-space
model. In order to solve the problem using the particle filter,
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NPF particles are first generated at the initial position of the
target x(0), considered to be known. All the particles are given
equal weights of 1

NPF
. It is important to note here that the higher

NPF is, the more computations we need. Let xm(0),m ∈
{1, . . . , NPF}, denote the initial particles positions, and νm(0)
their initial null velocities; then the particles positions at time
step k are denoted by xm(k),m ∈ {1, . . . , NPF}, and their
velocities by νm(k). Starting from the initial position, the
particles positions and their velocities are recursively predicted
using (15) and (16) as follows:

νm(k) = νm
′

(k − 1) + γ(k − 1)∆t+
γ(k)− γ(k − 1)

∆t

∆t2

2
,

xm(k) = xm
′

(k − 1) + νm
′

(k − 1)∆t+ γ(k − 1)
∆t2

2

+
γ(k)− γ(k − 1)

∆t

∆t3

6
+ ǫPF(k),

where xm
′

(k − 1) is one of the particles of time step k − 1,
selected randomly according to the discrete distribution of their

weights, νm
′

(k− 1) is the velocity associated to xm
′

(k − 1),
and ǫPF(k) ∼ N (0,H) is the state equation error whose
probability distribution is assumed to be normal, having zero
mean and covariance matrix H of size δ × δ. The particles’
weights are updated according to the observed distances.
Indeed, a particle is more valuable if its distances to the
sensors are closer to the observed ones [23]. This update rule
is formulated as follows:

wm(k) =
1

‖dxm(k) − zPF(k)‖
wm

′

(k − 1),

where dxm(k) = (ds1,xm(k) . . . dsNs ,x
m(k))

⊤, and ‖dxm(k) −
zPF(k)‖ is the distance between the vectors zPF(k) and dxm(k).
Then, the weights are normalized using the following:

wm(k) =
wm(k)

∑NPF

m=1 w
m(k)

.

Finally, the last step in the filtering process is the resampling.
In this step, the particles with negligible weights are replaced
by new particles in the proximity of the particles with higher
weights. It is applied only when the effective number of
particles Neff becomes less than a threshold value Nth, with
Neff given by:

Neff =
1

∑NPF

m=1 (wm(k))2
.

The threshold Nth is usually taken equal to 10% of the particles
number NPF. Having calculated the weights of the particles,
the target’s position at time step k is then given using the
following:

x̂(k) =

NPF∑

m=1

xm(k) wm(k).

Compared to the Kalman-based method, this algorithm needs
more computations, due to the generation and resampling of
the particles; however, it is more robust when the distances
errors are non Gaussian.

VI. EVALUATION OF THE ACCURACY OF THE PROPOSED

DISTANCE MODELS

We now propose to evaluate the accuracy of the proposed
distance models, in the case of real data and simulated data.
The proposed models are compared to the log-distance propa-
gation model, and to the polynomial model introduced in [13].
The polynomial regression in [13] determines a mathematical
relation between RSSIs and distances, without taking phys-
ical properties into consideration. In such a case, the signal
propagation model is the q-th degree polynomial given by the
following:

dsi,pℓ
= a0 + a1 ρsi,pℓ

+ a2 ρ
2
si,pℓ

+ · · ·+ aq ρ
q
si,pℓ

, (19)

where aj , j ∈ {0, . . . , q}, are the polynomial’s coefficients to
be determined. These parameters aj are chosen in a way to fit
the q-th degree polynomial through the training set, using the
least squares method.

A. Evaluation of the distance models on real data

To evaluate the proposed distance models, we use the set of
collected measurements available from [30]. In this work, the
measurements are carried out in a room of approximately 10
m × 10 m, where 48 uniformly distributed EyesIFX sensor
nodes are deployed. Furniture and people in the room cause
multi-path interferences affecting the collected RSSI values.
Now, for our evaluation, we consider that 5 sensors over the
48 are denoted as fixed sensors. The 43 remaining are used
to collect the measurements for the training phase. Fig. 1
shows the topology of the testbed. Note that it is the collected
measurements that are needed in the test phase with the 5 fixed
sensors, not the 43 remaining ones. It is also worth noting here
that the training data for our algorithm could be collected by
using one sensor, as explained in Section II, and this only
once at the beginning of the experiments. Indeed, by placing
consecutively one sensor over the reference positions, one can
collect RSSI/distance pairs and construct the training database.

It is important to note that the average values over time of
the RSSIs are used here. In fact, the RSSIs vary significantly
with respect to time and movements. These variations are
known as short-term or multi-path fading. On the other hand,
the local average of the signal varies slowly. These slow
fluctuations depend mostly on environmental characteristics,
and they are known as long-term fading. Therefore, it is more
suitable to use the average values of the RSSIs than to use
all the collected values [31]. Now the objective is to find the
RSSI/distance relationship; in other words, we need to find
the three distance models, i.e., one model per sensor. Each
model has a different set of training data to be used, and
different parameters that need to be found. In fact, the RSSIs
of the signals exchanged between each fixed sensor and the 43
other sensors are used along with the distances separating this
sensor from the other sensors. This information is then used in
the training phase as described in III to compute the models’
parameters. In the following, we use the Gaussian kernel given
by:

κ(ρsi,pu
, ρsi,pu′

) = exp

(
−
‖ρsi,pu

− ρsi,pu′
‖2

2σ2
i

)
,
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Fig. 1: Topology of the testbed (real data), where ∆ represents
the sensors and + represents the training positions.

where σi is its bandwidth that controls, together with the
regularization parameter ηi, the degree of smoothness, noise
tolerance, and generalization of the solution. The kernel param-
eters are chosen in a way to minimize the error on the training
set. The value of this error for the computed models is given in
Table I, along with the error on the training set for the physical
log-distance propagation model used in [9], [10], [11] and for
the polynomial model of [32], for several degrees q. We also
use the leave-one-out (LOO) technique in order to evaluate the
performance of the proposed model in the case of data that are
not part of the training set. The LOO technique involves using
a single observation from the collected data as the validation
data, and the remaining observations as the training data. This
is repeated 43 times, such that each observation is used once
as the validation data. This technique is interesting because it
allows us to compare the proposed models to the log-distance
model, even though the set of collected data is not really large.
Finally, the mean estimation error (in meters) is stored in Table
I for the computed models. For convenience, in the comparison
tables, let us denote the non-parametric model of Subsection
III-A by NPM, and the semi-parametric model of Subsection
III-B by SPM. We also denote the log-distance propagation
model, that is known for being a physical model, by PM and
the polynomial model by PolyM. One can see from Table I that
the proposed models yield better results than the log-distance
model, when comparing the mean estimation error. Moreover,
the two proposed models yield really close results.

B. Evaluation of the distance models on simulated data

In this subsection, we evaluate the accuracy of the distance
models on simulated data, in the case of two different sce-
narios. In the first paragraph, we present the first scenario,

TABLE I: Comparison between models (error in meters) for
real data.

Considered model Mean training error Mean LOO error

PM 1.36 1.41
PolyM, q = 2 1.30 1.40
PolyM, q = 3 1.29 1.48
PolyM, q = 4 1.29 1.74
NPM 1.21 1.33
SPM 1.17 1.33

TABLE II: Estimation errors for simulated data in the case of
the first scenario.

Considered model Mean training error Mean test error

PM 2.26 2.59
PolyM, q = 2 2.74 2.94
PolyM, q = 3 2.23 2.57
PolyM, q = 4 2.22 2.60
NPM 2.18 2.57
SPM 2.09 2.59

where an area without walls is considered. We then compare
the results obtained using the proposed distance models to the
results obtained with the log-distance propagation model. In
the second paragraph, we consider a different scenario, where
the signals are attenuated because of the presence of walls in
the proposed topology. As it will be shown in the following,
such topology allows a better comparison between models.

We start with the first scenario, where a 100 m × 100 m area
is considered, with Ns = 16 sensors and Np = 100 reference
positions distributed over the area. Fig. 2 illustrates the con-
sidered topology, where no walls or obstacles are present. The
RSSIs for the training phase are obtained using the theoretical
log-distance propagation model [9] given in (6), with nP set
to 4 as often given in the literature, and ρ0 set to 1 dBm.
As for the test phase, 100 positions are randomly generated
in the studied area, and their RSSIs are also obtained using
(6). Finally, a zero mean additive white noise εi,ℓ is added to
all the RSSIs, with σρ being its standard deviation. Here, we
take σρ equal to 1 dBm. Based on the study given in Section
III, we define Ns = 16 non-parametric distance models and
Ns = 16 semi-parametric distance models. Then, in the test
phase, we estimate the distances using these models, the log-
distance propagation model, and the polynomial model with
q = 2, q = 3 and q = 4. The mean estimation errors for the
16 models (in meters) are stored in Table II. One can see from
this table that the results are really close, especially for the
test error, which is of much great importance than the training
error. This result was expected, since we are generating the
RSSIs using the log-distance propagation model, and the noise
is a zero mean additive noise. Therefore, the proposed distance
models are trying to model the noise, which can not be learned
nor modeled, because of its randomness.

We now propose another scenario given in Fig. 3, where we
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Fig. 2: Topology of the testbed, ∆ represents the sensors and
+ represents the training positions.

consider a 25 m × 5 m area, 2 fixed sensors and 45 known
positions for the training phase. This figure shows that there
are 5 rooms in the area, meaning that the signal penetrates
a maximum of 4 walls during its propagation. Therefore,
we consider the average walls model described in [33] to
generate the RSSI measures. This model is a modified version
of the log-distance model that explicitly takes into account
the attenuations due to walls. The received signal strength
indicator is then given by the following:

ρsi,pℓ
= ρ0 − 10nP log10 dsi,pℓ

−Nwi
Lwi

+ εi,ℓ, (20)

where the quantities Lwi
and Nwi

denote respectively the loss
due to walls and the number of penetrated walls. The quantity
Lwi

is taken equal to 6.9 dBm, since we consider the case of
heavy thick walls [33]. Now for the test phase, 100 positions
are randomly generated in the studied area, and their RSSIs are
obtained using (20). Then, the distances are estimated using
the obtained models from Section III, and the log-distance
propagation model. The estimation errors for the 2 models,
i.e. a model for each sensor, are stored in Table III, when the
standard deviation of εi,ℓ is taken equal to 0.5 dBm. Table IV
yields the estimation errors when the noise’s standard deviation
is increased to 1 dBm. One can see from both tables that the
two proposed distance models outperforms the log-distance
propagation model in terms of accuracy. Moreover, it is the
non-parametric model that yields the best results.

VII. EVALUATION OF THE PERFORMANCE OF THE

TRACKING METHODS

This section evaluates the performance of the two proposed
tracking methods on simulated data. In the first subsection,
we evaluate the performance of the proposed methods in
terms of accuracy for fixed values of the noises standard
deviations σγ and σρ. Then, we study the impact of varying

TABLE III: Estimation errors for simulated data in the case of
the second scenario, with σρ =0.5 dBm.

Considered model Mean training error Mean test error

PM 1.26 1.37
PolyM, q = 2 0.56 0.62
PolyM, q = 3 0.55 0.61
PolyM, q = 4 0.54 0.61
NPM 0.20 0.32
SPM 0.22 0.34

TABLE IV: Estimation errors for simulated data in the case
of the second scenario, with σρ =1 dBm.

Considered model Mean training error Mean test error

PM 1.29 1.39
PolyM, q = 2 0.68 0.66
PolyM, q = 3 0.67 0.65
PolyM, q = 4 0.67 0.66
NPM 0.39 0.51
SPM 0.43 0.52

the number of sensors Ns on the estimation error. Next, in the
third subsection, we study the impact of varying the noises
standard deviations σγ and σρ on the estimation error. Then,
we compare our results to ones obtained with two recently
proposed positioning method; the first one is based on the
WKNN algorithm combined with a Kalman filter [34], while
the second one makes use of the ridge regression learning
method to find the position estimates [26]. Finally, we compare
the accuracy of the proposed methods to the tracking method
proposed in [20] when the sensors change their locations. In
the following, we consider the setup of Fig. 2, and the RSSI
measures are generated using (6), with nP set to 4 and ρ0
set to 1 dBm. Now for the choice of the distance model, one
can see from the results of Section VI that the non-parametric
model yields the best results in all scenarios. Therefore, this
model will be used in this section. As we already explained,
the kernel parameters ηi and σi are chosen in such a way to
minimize the error on the training set. As for the application of
the particle filter in all our simulations, the number of particles
NPF is set to 50.

A. Evaluation of the proposed methods

We consider a moving target in the defined area. The
target’s accelerations are given in Fig. 4, γ1 and γ2 being
the first and the second acceleration coordinates respectively.
By taking twice the primitive integrals of the accelerations,
we compute the coordinates expressions of the target. The
trajectory obtained is then of 100 points with ∆t = 1 s, and
it is illustrated in Fig. 5. We consider that noises are present
in all scenarios, since a noiseless setup is not realistic in a
practical environment. To this end, we take σρ equal to 10%
of standard deviation of the RSSI measures, i.e., σρ = 1.08
dBm, and we take σγ equal to 5% of the standard deviation of
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Fig. 3: Topology of the simulated area for the second scenario, ∆ represents the sensors and + represents the training positions.
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Fig. 4: Acceleration signals of the target.

the accelerations. Let the estimation error be evaluated by the
root mean squared distance between the exact positions and the
estimated ones. Fig. 5 shows the estimated trajectories when
using the two proposed methods. The results are averaged over
50 Monte-Carlo simulations. The mean error obtained when
using the Kalman filter of Section IV is equal to 1.03 m. As
for the mean error obtained with the particle filter of Section
V, it is equal to 0.68 m. One can see that both methods allow
an accurate tracking of the target, with a better estimation error
when considering the particle filter with this setup.

B. Impact of σγ and σρ

In this subsection, we study the impact of the noises standard
deviations σγ and σρ on the estimation error. First, we take a
fixed value for σρ, equal to 10% of standard deviation of the
RSSI measures. Then, different percentages of the standard
deviation of the acceleration are considered, ranging from 1%
to 10%. The estimation errors are averaged over 50 Monte-
Carlo simulations. Fig. 6 shows the impact of the variation of
σγ on the estimation error. This figure shows that both filters
have similar performances when the noise on the accelerations
is small; however, with higher noise values, the particle filter
outperforms the Kalman filter.

Next, we take a fixed value for σγ equal to 5% of the stan-
dard deviation of the accelerations, with several percentages
of the standard deviation of the RSSI measures, going from
0% to 50%. Fig. 7 shows the impact of the variation of σρ
on the estimation error for both methods. One can see here as
well that the particle filter yields better results than the Kalman

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

 

 

Reference positions

Stationary sensors

Real trajectory

Kalman filter

Particle Filter

1st coordinate

2
n
d

co
o
rd

in
at

e

Fig. 5: Trajectory estimation.

filter. This is due to the distribution of the observation errors,
assumed to be Gaussian in the Kalman filter. Indeed, small
RSSI errors yield slightly varying observation errors. However,
with higher RSSI errors, the noise distribution gets farther
from a Gaussian one, and the particle filter performs better.
Nevertheless, one can see that both methods have relatively
small estimation errors, compared to the space dimensions.

C. Comparison to other methods

The objective now is to first compare the proposed approach
to two recently proposed positioning methods [19], [34], [26].
We consider the same setup as the one in Subsection VII-A,
and the same values for σγ and σρ. Then, taking the same
setup, we consider the case where sensors are moving in the
surveillance area, and we compare the performance of the
proposed methods to the tracking method of [20] in such a
case.

We first describe briefly the methods in [19], [34]. It con-
sists of estimating the position using the weighted K-nearest
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Fig. 6: Estimation error as a function of the noise on the
accelerations with σρ equal to 10% of the standard deviation
of the RSSIs.
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Fig. 7: Estimation error as a function of the noise on the RSSI.

neighbor (WKNN) algorithm, then applying the Kalman filter
to enhance the estimation. A target’s first position estimate
using WKNN is given by weighted combinations of the K
nearest neighboring positions from the training database, with
the nearness indicator being based on the Euclidean distance
between RSSIs. The number of neighbors K is taken equal
to 8 as in the simulations of [19], where more details can
be found. As for the position enhancement using the Kalman
filter, a second-order state-space model is used. The estimation
errors (in meters) obtained when using this algorithm (WKNN
+ Kalman) are computed 50 times, and the mean estimation
error is stored in Table V. The table also shows the mean
estimation error of this algorithm without using the accelera-
tion information (WKNN) and the errors standard deviations as
well. One can see that the two proposed methods outperform
the WKNN-based methods in terms of accuracy.

TABLE V: Estimation error (in meters) for the different
methods.

Tracking method Estimation error

Proposed Kalman filter 1.03
Proposed particle filter 0.68

RR 2.98
WKNN 4.57

WKNN + Kalman 2.15
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Fig. 8: Estimation error as a function of the noise on the RSSI,
using different methods.

As for the localization method of [26], a radio-fingerprinting
database and the ridge regression learning method are used to
define a model that takes as input the RSSI measures and gives
as output the position of the target. However, this method does
not take into account the acceleration information. Table V
also shows the estimation error obtained using this method
(RR). The errors obtained with the proposed methods are
significantly smaller than the one obtained with the method
of [26].

Next, several percentages of the standard deviation of the
RSSI measures are taken using the methods in [19] and [26].
The value of σγ is taken equal to 5% of the standard deviation
of the accelerations as in the scenario of Fig. 7. The estimation
error obtained in this case is shown in Fig. 8. This figure shows
that the two proposed methods outperform the other methods
for all values of σρ, compared to the results obtained in Fig. 7.

We now compare these methods for several values of
the number of sensors Ns, for a fixed number of reference
positions N = 100. σρ is taken equal to 10% of the standard
deviation of the RSSI measures and σγ equal to 5% of
the standard deviation of the accelerations. Fig. 9 shows the
estimation error as a function of Ns. One can see that the
two proposed methods yield the smallest errors for all values
of the number of sensors; moreover, at Ns = 4, the other
methods do not give such accurate results. Another important
thing to notice is that the proposed methods are more robust
to the changes in the number of sensors and they present less
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Fig. 9: Estimation error as a function of the number of
stationary sensors.

variations than the other methods.
Finally, we consider that the Ns = 16 sensors are moving in

the surveillance area, and we compare the performance of the
proposed tracking methods of this paper to the performance of
the method of [20]. In [20], the target is first localized using
a predefined model that takes as input the RSSI measures and
gives as output the position of the target such as in [26]. The
estimated positions are then combined with acceleration infor-
mation using a Kalman filter along with a third-order state-
space model. This approach gives accurate position estimates
in the case of stationary sensors. However, if the sensors were
to move, the results would not be accurate anymore, since
the sensors’ positions are included in the learning process.
The advantage of the proposed methods is that we find the
RSSI/distance relationship, and thus find directly the distance
from the RSSI measures. When the sensors change their
positions, this relationship does not change, thus we do not
need to reconfigure the model, i.e. a new training phase is
not needed. Now we consider that the sensors have circular
movements. The trajectory of Fig. 5 is estimated using the
three methods for different radii ranging from 0 to 30m and
for random angles going from 0 to 2π (radians). The results are
then averaged over 50 Monte-Carlo simulations. Fig. 10 shows
the mean estimation error as a function of the radius for the
three tracking methods. One can see that all three methods
yield close results at the beginning, when the radius is equal
to zero, that is when the sensors remain stationary. However,
when the value of the radius increases, the estimation error
also increases for the method of [20], while the estimation
error almost remains the same for the two proposed methods
in this paper. This result proves that the new proposed methods
are more robust to changes in the initial configuration of
surveillance area than the method of [20].

VIII. CONCLUSION

In this paper, we proposed two original regression models
that relate the received signal strength indicators (RSSIs) to
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Fig. 10: Estimation error as a function of the radius defining
the movement of the sensors.

the distances separating sensors in a wireless sensor network.
Then, we solved the tracking problem using the estimated
distances and two new methods that take into account the tar-
get’s motion. We provided a fully comprehensive study of the
proposed distance models and their performances. Simulation
results show that our models yield accurate distance estimation.
Results also show that our tracking methods allow accurate
position estimation, and are proved to be robust in the case of
noisy data. Both proposed tracking methods outperform track-
ing using recently developed methods based on the WKNN
method and the Kalman filter or some other learning strategy.
Future work will handle further improvements of this work,
such as wisely choosing a group of sensors instead of using
all the available distance information. Solutions to cases where
zones of the surveillance area are not covered by all sensors
could also be provided.
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