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In-network principal component analysis and

diffusion strategies
Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah

Abstract

Principal component analysis is a very well-known statistical analysis technique. It determines principal axes that

allow relevant data reduction. Thus, it is very useful in networks where a large number of measures is performed.

However, such a technique needs high-complexity computation, which does not scales well in large networks. This

paper proposes to overcome this issue, by describing several in-network strategies that estimate the principal axes

with lower computational complexity. These strategies are either noncooperative or cooperative with information

diffusion. The performance of the proposed strategies are illustrated on diverse applications, such as image processing

and dimensionality reduction of time series in wireless sensor networks.

Index Terms

Principal component analysis, network, adaptive learning, distributed processing, dimensionality reduction.

I. INTRODUCTION

Principal component analysis (PCA) is one of the most popular techniques for data analysis and processing,

investigated in statistical analysis, data compression, and feature extraction [1]. It consists in determining a subspace

that retains the largest variance of the data. This subspace is spanned by the most relevant principal axes. Projecting

the data onto the resulting subspace leads to the so-called principal components. By representing the data by these

principal components, one reduces the dimensionality and extracts the data structure. The PCA technique is very

useful in many applications involving multivariate analysis, e.g., data validation, fault detection [2], and quality

control [3]. It provides a powerful tool for data analysis and pattern recognition which is often used in signal

and image processing [4]. Moreover, in the context of sensor networks, the PCA has been investigated to extract

features from noisy samples [5], compress and denoise time series measurements [6], [7], as well as for detection

of intrusion [8] or anomaly [9].

The conventional PCA requires the eigen-decomposition of the sample covariance matrix, where the eigenvectors

associated to the largest eigenvalues are the most relevant principal axes. Therefore, it is necessary to send all data

to a fusion center (FC), where the covariance matrix is estimated and eigen-decomposed. Such configuration is

not scalable and inappropriate for network applications. Moreover, the computational complexity of such eigen-

decomposition is cubic with the size of the dataset. Several attempts have been made to alleviate this problem, such

as in [10], [11] where algorithms are investigated to compute the eigenspace, but still with high computational cost.

More recently, in [12], a technique was proposed in which the FC only receives the principal components, instead

of the whole time series. In [13], the most relevant principal axis is estimated by the power iteration method.

This method requires the computation of the sample covariance matrix, making it inappropriate for in-network

processing.

In this paper, we propose to estimate the most relevant principal axes without computing the sample covariance

matrix. To this end, we investigate the Oja’s neural-based rule [14], which has been recently revisited in [4] for

nonlinear PCA with kernel-based machines. We extend our study in [15] to incorporate several cost functions,

including the information theoretical criterion derived in [16], Rayleigh quotient, LUO and OJAn cost functions

derived in [17], [18]. Within a network setting, several in-network strategies are proposed, including noncooperative
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fusion center

Centralized network Noncooperative network Cooperative (diffusion) network

Fig. 1. Illustration of information processing in a network: While the centralized network requires a fusion center, the noncooperative and

cooperative networks provide in-network processing. The noncooperative network process the information by using a given routing path.

The cooperation network operates information diffusion, using either a combine-then-adapt or an adapt-then-combine strategy.

and cooperative strategies. In the latter, sensors cooperate with each other by information diffusion in order to

estimate the principal axes. We derive two diffusion strategies, the so-called combine-then-adapt and adapt-then-

combine strategies, which have been recently investigated in linear adaptive filtering literature by A. Sayed et al.

in [19]. To the best of our knowledge, our study is the first work that investigates these adaptation strategies for

unsupervised learning, as given here with the PCA. To provide a comprehensive presentation throughout this paper,

we first study in detail the estimation of a single principal axis for a given cost function, before generalizing it

to different cost functions. We then extend the proposed approach to the estimation of multiple principal axes, by

investigating orthogonalization processes, such as the well-known Gram-Schmidt orthogonalization and the deflation

scheme.

The rest of this paper is organized as follows. Section II briefly introduces the network topology. We describe

the proposed strategies for estimating the first principal axis based on Oja’s rule in Section III. In Section IV, we

generalize the proposed approach to other cost functions, beyond Oja’s rule. Section V extends the strategies for

multiple axes extraction. In Section VI, we present algorithms well-known in the literature. Section VII provides

experimentation results and discussions, whereas Section VIII concludes the paper.

II. NETWORK SETTING

Consider a network of N connected nodes (also called agents in the literature). In such a network, any two

nodes are necessarily linked: either directly if they are neighbors, or through other intermediate nodes. On the other

hand, there are mainly two types of networks: centralized and decentralized networks. In the former, the nodes are

connected to a FC, and in the latter the nodes are connected in a noncooperative way by a given routing path, or

in a cooperative way, where each node communicates with its neighbors. We denote by Vk the set of indices of the

neighboring nodes to node k, with k = 1, ..., N , i.e., the nodes that are directly connected to it. We consider that

the node k is adjacent to itself, that is to say k ∈ Vk. The network topologies studied in this paper are illustrated

in Fig. 1.

We are interested in the case where the nodes estimate the same principal axis w based on some measured

information corresponding to a common phenomenon. Let xk be the p-by-1 vector collected by the node k, for

k = 1, . . . , N , p being the measurements’ dimension, and let X ⊂ R
p be the space of these collected data (assumed

to be zero-mean), with the conventional inner product x⊤
k xl for any xk,xl ∈ X. We denote by the scalar value

yw,k = w⊤xk the inner product associated with the orthogonal projection of any xk ∈ X onto the vector w ∈ X

and by yw the scalar random variable taking the values yw,k, with k = 1, ..., N . The ultimate goal would be to

compute w, optimaly for some given cost function and according to the network topologies, to keep afterwards

only yw,k and w, for k = 1, ..., N , allowing us to represent efficiently the data xk when needed.



3

III. IN-NETWORK PCA

In this section, we describe the different strategies depending on the network topology. We first consider the

centralized network and expose the conventional strategy for PCA. We then derive our new strategies applied to

the decentralized networks for extracting the first principal axis. We extend these techniques to the case of multiple

principal axes in Section V.

A. Centralized strategy

Here, the nodes are assumed to be connected to a FC. The latter receives the collected data without any local

processing from the nodes. In order to extract the first principal axis, the FC maximizes the variance of the projected

data (assumed to be zero-mean), namely maxw E(y2w), where E(·) is the expectation over the density of the input

data. By taking the empirical estimation of the variance of the projected data with respect to the available samples,

x1,x2, . . . ,xN , we get maxw w⊤Cw, where C = 1

N

∑N
k=1

xkx
⊤
k is the covariance of the measured data. The

problem takes the form Cw = λw. This is the well-known eigen-decomposition problem where w is the eigenvector

associated with the eigenvalue λ of C. In fact, the latter is the corresponding variance of the projected data, since

w⊤Cw = w⊤λw = λw⊤w = λ.

Therefore, we must consider the eigenvector associated with the largest eigenvalue to maximize this variance. Note

that the k-th principal component of x is w⊤
k x and var[w⊤

k x] = λk, where the k-th principal axis wk is the

eigenvector corresponding to the k-th largest eigenvalue λk.

Having the data, x1, . . . ,xN , the FC solves the eigen-decomposition problem. The eigenvector associated with

the largest eigenvalue corresponds to the principal axis, denoted w∗ in the following. The computational complexity

of the eigen-decomposition problem is O(p3). There is also the communication complexity, which is O(Np) over a

distance O(1). In the following, we propose strategies that avoid the computation of the sample covariance matrix

and its eigen-decomposition, thus allowing to reduce significantly the computational complexity.

B. Noncooperative strategy

We consider an in-network scheme where the first principal axis is learned adaptively instead of directly

maximizing the overall projected variance E(y2w) and explicitly investigating the covariance matrix. To this end, we

consider an “instantaneous” estimation of the principal axis w at each node. According to a given routing process,

each node k receives an estimate wt−1 from another node, and adjusts it using its own data xk by maximizing

y2
w,k. In other words, the node k minimizes the “instantaneous” quadratic reconstruction error, namely

Jk(w) = 1

4
‖xk − yw,kw‖2. (1)

The gradient of this cost function with respect to w is

∇wJk(w) = yw,k(yw,kw − xk), (2)

which leads to the gradient descent formulation

wt = wt−1 + ηt (xk ywt−1,k − y2wt−1,k
wt−1), (3)

where ηt is the learning rate. It turns out that this update rule is essentially Oja’s rule [14], which is a single-neuron

special case of the generalized Hebbian learning [20], applied here within the in-network setting described above.

This learning rule converges to an equilibrium state, which is the first principal axis w∗. In fact, when wt

converges to some state w, we have from (3) that xkyw,k = y2
w,kw, namely xkx

⊤
k w = y2

w,kw. Averaging the

latter expression over the whole data, we get the well-known eigen-decomposition problem of the covariance matrix

Cw = E(y2w)w, where the eigenvalue is the squared output yw,k to be maximized. Therefore, the update rule (3)

converges to the eigenvector associated with the largest eigenvalue of the covariance matrix.
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C. Cooperative strategies

We consider now a cooperative strategy where each node k has access to the information of its neighborhood

Vk, which is the subset of nodes directly connected to node k, including itself. The optimization problem can

be presented as a minimization of the cost function
∑N

k=1
Jk(w), where Jk(w) is the cost function at node k,

for instance (1). Since each node k communicates only with its neighboring nodes, we introduce the nonnegative

coefficients ckl that relate node k to its neighbors. They satisfy the following conditions:

ckl ≥ 0,
∑

l∈Vk

ckl = 1, and ckl = 0 if l /∈ Vk. (4)

It is worth noting that if l /∈ Vk, k /∈ Vl and thus clk is also null. Using these coefficients, we define, for each node

l, a local cost that consists of a weighted combination of the individual costs of the neighbors of node l (including

l itself):

J loc
l (w) =

∑

k∈Vl

ckl Jk(w) =

N
∑

k=1

ckl Jk(w). (5)

It turns out that the cumulative sum of these local cost functions is equal to the global cost function, since we have

N
∑

k=1

Jk(w)=

N
∑

k=1

(

N
∑

l=1

ckl

)

Jk(w)=

N
∑

l=1

N
∑

k=1

cklJk(w)=

N
∑

l=1

J loc
l (w).

For node k, the global cost function can be decomposed as

N
∑

l=1

Jl(w) = J loc
k (w) +

N
∑

l=1

l 6=k

J loc
l (w). (6)

While the first term in the right-hand-side is known at the node under scrutiny, the second one should be estimated

using information from the neighbors of node k; thus, the above summation is restricted to its neighborhood.

Moreover, we relax it by constraining the norm between the estimated vector w and the optimal (global) principal

axis w∗ within the neighborhood of node k, with the following regularization:

N
∑

l=1

l 6=k

J loc
l (w) ≈

∑

l∈Vk\{k}

blk ‖w −w∗‖
2,

where the parameters blk control the tradeoff between the accuracy and the smoothness of the solution. Such

regularization is also motivated by investigating the second-order Taylor expansion of J loc
l (w), as described in [21].

Note that we use w∗ knowing that we do not have access to its value. We shall show in the following how to

overcome this problem.

By injecting this approximation into (6), and using (5), the minimization of the global cost function at k is

equivalent to minimizing

Jglob

k (w) = J loc
k (w) +

∑

l∈Vk\{k}

blk‖w −w∗‖
2

=
∑

l∈Vk

clkJl(w) +
∑

l∈Vk\{k}

blk‖w −w∗‖
2, (7)

where the last equality follows from (5). In order to minimize the above cost function, the node k applies the

gradient descent to Jglob

k (w) with:

wk,t = wk,t−1 − ηk,t∇wJ
glob

k (wk,t−1). (8)

Here, ηk,t is the learning rate for node k at iteration t. Replacing Jglob

k (w) by its expression in (7), we get:

wk,t = wk,t−1 − ηk,t
∑

l∈Vk

clk∇wJl(wt−1) + ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1).
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In this expression, ∇wJl(wt−1) is the gradient of the PCA-based cost function, presented earlier in (2). In this

case, we get

wk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk
(

xl ywt−1,l − y2wt−1,l
wl,t−1

)

+ ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1). (9)

Without loss of generality, we shall consider the update rule (9) in the following. This update rule from wk,t−1

to wk,t involves adding two correction terms: the first one operates in the maximum variance direction and the

second one associates neighborhood regularization. By decomposing this calculation into two successive steps, we

get two possible strategies, depending on the order of adding the correction terms, and that differ essentially in the

approximation of the unknown w∗ in (9), as shown next.

Adapt-then-combine (ATC) strategy

We express the update rule (9) as follows:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk

(

xlywt−1,l − y2wt−1,l
wl,t−1

)

,

wk,t = φk,t + ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1).

The first step uses local gradient vectors from the neighborhood of the node k in order to update wk,t−1 to the

intermediate estimate φk,t. The second step updates φk,t to wk,t. This second step is not realizable since the nodes

do not know w∗. However, each node l has its own approximation of w∗, which is its local intermediate estimate

φl,t. Therefore, we replace w∗ by φl,t. On the other hand, the intermediate value φk,t at node k is obtained by

incorporating information from the neighbors (as given by the first step). Thus, it is generally a better estimate

for w∗ than wk,t−1. Therefore, we further replace wk,t−1 by φk,t in the second step. Hence, the second step is

rewritten as:

wk,t = φk,t + ηk,t
∑

l∈Vk\{k}

blk (φl,t − φk,t)

=
(

1− ηk,t
∑

l∈Vk\{k}

blk

)

φk,t + ηk,t
∑

l∈Vk\{k}

blk φl,t,

or, equivalently: wk,t =
∑

l∈Vk
akl φl,t where we have used the following nonnegative weighting coefficients:

akl =







1− ηk,t
∑

i∈Vk\{k}
bik, if l = k;

ηk,t blk, if l ∈ Vk\{k} ;

0, otherwise.

Finally, the update rule for the adapt-then-combine strategy is:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk

(

xlywt−1,l − y2wt−1,l
wl,t−1

)

,

wk,t =
∑

l∈Vk

akl φl,t.

In the special case where no information exchange is performed between nodes, except for the aggregation step,

i.e., ckk = 1 and ckl = 0 for all l 6= k, we get:

φk,t = wk,t−1 + ηk,t
(

xk ywt−1,k − y2wt−1,k
wk,t−1

)

wk,t =
∑

l∈Vk

aklφl,t.

Note that such particular configuration would allow minimizing the amount of information exchanged between

nodes, by excluding the transmission of the estimates y and the measurements x within the network, and restricting

the exchanges to w (or equivalently φ).
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Combine-then-adapt (CTA) strategy

In this strategy, we express the update rule (9) as follows:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1)

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

(

xl ywt−1,l − y2
wt−1,l

wl,t−1

)

.

For the same reasons shown in the adapt-then-combine strategy, we replace in the first step w∗ by wl,t−1 and, in

the second step, we replace wl,t−1 by φl,t. Introducing the same coefficients akl, we obtain the update rule for the

combine-then-adapt strategy:

φk,t =
∑

l∈Vk

aklwl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

(

xl ywt−1,l − y2wt−1,l
φl,t

)

.

In the case of no information exchange except for the aggregation step, we obtain:

φk,t =
∑

l∈Vk

aklwl,t−1

wk,t = φk,t + ηk,t

(

xk ywt−1,k − y2
wt−1,k

φk,t

)

.

D. Connections to the consensus strategies

The consensus-type implementation [22] is a class of distributed strategies that reveals the coordination of

networks of autonomous agents. In order to estimate a common parameter w∗, the consensus allows each node k
to align its decision wk,t with the decisions of its neighbors:

wk,t =
∑

l∈Vk

aklwk,t−1,

where akl are nonnegative weights that node k gives to the estimates received from its neighbors. In order to

distribute the computations among the nodes, the authors in [23], [24], [25] propose to combine the consensus and

the gradient descent approaches. In such algorithm, each node k applies the negative gradient step to the average

of its neighbors’ estimates. Therefore, the node k aligns its decision wk,t with the decisions of its neighbors and

minimizes its own objective Jk(w) using:

wk,t =
∑

l∈Vk

aklwk,t−1 − ηk,t∇wJk(wk,t−1).

In this context, we revisit the estimation of the principal axis with the proposed cost function given in (1). This

strategy takes the following form:

wk,t =
∑

l∈Vk

aklwk,t−1 + ηk,t

(

xk ywt−1,k − y2wt−1,k
wk,t−1

)

.

The consensus strategy, the adapt-then-combine, and the combine-then-adapt diffusion strategies have the same

computational complexity. However, the diffusion strategies outperform the consensus implementation. Indeed, the

adapt-then-combine and the combine-then-adapt diffusion strategies can be expressed respectively by:

wk,t =
∑

l∈Vk

akl

(

wk,t−1 + ηk,t
(

xk yw,k − y2w,kwk,t−1

)

)

,

wk,t =
∑

l∈Vk

aklwk,t−1 + ηk,t

(

xk yw,k − y2
w,k

∑

l∈Vk

aklwk,t−1

)

.

Considering for instance the combine-then-adapt strategy, we note that the combination coefficients akl appear in the

correction term, while the consensus uses only wk,t−1 to correct the error (i.e., without involving the neighborhood),

which is less effective, as shown in the experimental results.
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IV. OTHER COST FUNCTIONS

In this part, we extend the study of Section III to include different cost functions. These cost functions are chosen

in the light of some known rules, as described next.

A. Information theory (IT)

Drawing inspiration from the information theoretical framework studied in [16], [26], we consider the maxi-

mization of the entropy, defined by ln(y2
w,k), under a constraint on the norm of w. To this end, we minimize the

following cost function associated with node k:

Jk(w) = 1

2
w⊤w − 1

2
ln(y2

w,k), (10)

whose gradient with respect to w is

∇wJk(w) = w −
xk

yw,k

. (11)

By applying the gradient descent technique to this cost function, we obtain the following noncooperative update

rule:

wt = wt−1 + ηt

( xk

ywt−1,k

−wt−1

)

.

Cooperative strategies are also investigated by information diffusion. The adapt-then-combine update rule becomes

in this case:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk

( xl

ywt−1,l

−wl,t−1

)

,

wk,t =
∑

l∈Vk

akl φl,t.

The combine-then-adapt update rule becomes:

φk,t =
∑

l∈Vk

akl wl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

( xl

ywt−1,l

−wl,t−1

)

.

While the cost function (1) studied in Section III and the cost function (12) inspired from the information theory

are very different, the corresponding update rules are intimately connected. Indeed, the latter can be derived from

the former by using the normalized learning rate ηt/y
2

wt−1,k
.

B. Rayleigh quotient (RQ)

The eigen-decomposition problem is highly connected to the Rayleigh quotient. Inspired from the Rayleigh

quotient framework studied in [17], [18], we minimize the following cost function associated with node k:

Jk(w) = −
y2
w,k

2w⊤w
, (12)

whose gradient with respect to w is

∇wJk(w) =
1

w⊤w

(

w
y2
w,k

w⊤w
− xkyw,k

)

. (13)

The gradient descent technique, applied to this cost function, leads to the following noncooperative update rule:

wt = wt−1 + ηt
1

w⊤
t−1

wt−1

(

xkywt−1,k −wt−1

y2
wt−1,k

w⊤
t−1

wt−1

)

.
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By including a diffusion process, we propose two cooperative strategies. In the case of the adapt-then-combine

update rule, we get:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk
1

w⊤
l,t−1

wl,t−1

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

,

wk,t =
∑

l∈Vk

akl φl,t.

For the combine-then-adapt update rule, we have:

φk,t =
∑

l∈Vk

akl wl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk
1

w⊤
l,t−1

wl,t−1

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

.

C. OJAn and LUO algorithms

The OJAn and LUO algorithms, presented by Luo et al. in [18], are inter-connected to the Rayleigh quotient [17],

[27]. The OJAn algorithm is a normalized version of Oja’s rule. It can be obtained from the Rayleigh quotient by

using a learning rate ηt(w
⊤
t−1

wt−1). By revisiting the gradient descent formulation (3) in the light of this learning

rate, we get the following noncooperative update rule:

wt = wt−1 + ηt

(

xkywt−1,k −wt−1

y2
wt−1,k

w⊤
t−1

wt−1

)

.

In this case, the adapt-then-combine update rule becomes:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

,

wk,t =
∑

l∈Vk

aklφl,t.

The combine-then-adapt update rule becomes:

φk,t =
∑

l∈Vk

aklwl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

.

The LUO algorithm can be derived from the Rayleigh quotient by using the learning rate ηt(w
⊤
t−1

wt−1)
2. This

leads to following noncooperative update rule:

wt = wt−1 + ηt (w
⊤
t−1wt−1)

(

xkywt−1,k −wt−1

y2
wt−1,k

w⊤
t−1

wt−1

)

,

as well as the two cooperative strategies, the adapt-then-combine

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk(w
⊤
l,t−1wl,t−1)

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

,

wk,t =
∑

l∈Vk

akl φl,t.

and the combine-then-adapt update rule

φk,t =
∑

l∈Vk

akl wl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk(w
⊤
l,t−1wl,t−1)

(

xlywt−1,l −wl,t−1

y2
wt−1,l

w⊤
l,t−1

wl,t−1

)

.
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V. EXTRACTING MULTIPLE PRINCIPAL AXES

This section extends the previous derivations in Section III to multiple principal axes, generalization to other

cost functions as given in Section IV is straightforward. To this end, we denote by

W t = [w1,t w2,t · · · wr,t]
⊤

the r-by-p matrix of the first r principal axes estimated at iteration t, sorted in descending order of their eigenvalues.

Let

yW,k = [yw1,k yw2,k · · · ywr ,k]
⊤,

where ywj ,k = w⊤
j,txk. Next, we combine the update rules given in Sections III-B and III-C with several

orthogonalization processes, including the well-known Gram-Schmidt orthogonalization and the deflation [28].

Note that other orthogonalization processes exist in the literature, such as the symmetric orthogonalization [29].

However, the latter is inappropriate in network applications due to its high computational complexity.

A. Gram-Schmidt orthogonalization process

We use a generalized Hebbian approach as proposed by Sanger for the linear principal component analysis [30],

[31]. In the noncooperative strategy, we write the update rule of the j-th principal axis as follows:

wj,t = wj,t−1 + ηt

(

xk ywj ,k − ywj ,k

j
∑

l=1

ywj ,l wl,t−1

)

. (14)

It is clear how the estimation of the j-th component wj,t at iteration t involves the previous estimates (at iteration

t− 1) of lower-order components, i.e., wl,t−1, for l = 1, . . . , j. By collecting all these estimates in a single matrix

Wt, we obtain the following update rule:

Wt = Wt−1 + ηt
(

yWt−1,k
x⊤
k − LT(yWt−1,k

y⊤
Wt−1,k

)Wt−1

)

, (15)

where LT(·) makes its argument lower triangular by setting to zero the entries above its diagonal. Note that the

learning rate does not need to be the same for all the principal axes.

In the cooperative strategies, we denote by Φk,t = [φ1,k,t φ2,k,t · · · φr,k,t]
⊤ the r-by-p matrix of the

r intermediate estimates. In matrix form, the update rule associated with the adapt-then-combine strategy is as

follows

Φk,t = Wk,t−1 + ηk,t

(

yWt−1,kx
⊤
k − LT(yWt−1,ky

⊤
Wt−1,k

)Wk,t−1

)

,

Wk,t =
∑

l∈Vk

aklΦl,t.

The update rule for the combine-then-adapt strategy becomes

Φk,t =
∑

l∈Vk

akl W l,t−1,

Wk,kt = Φk,t + ηk,t

(

yWt−1,kx
⊤
k − LT(yWt−1,ky

⊤
Wt−1,k

)Φk,t

)

.

B. Deflation scheme

Like the Gram-Schmidt orthogonalization, the deflation scheme updates all estimates at each iteration. However,

it proceeds in two consecutive steps, within each iteration. First, intermediate estimates wj,⋆, for j = 1, . . . , r are

independently calculated using:

wj,⋆ = wj,t−1 + ηt (xk ywj ,k − y2wj ,k
wj,t−1). (16)

Let W⋆ = [w1,⋆ w2,⋆ · · · wr,⋆] be the matrix of the intermediate estimates. We can write:

W⋆ = Wt−1 + ηt

(

xky
⊤
W,k −Wt−1diag(yW,k y

⊤
W,k)

)

,

where diag(·) makes its argument diagonal by setting all non-diagonal entries to zero.
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TABLE I

EXPRESSIONS OF THE TIME CONSTANTS FOR THE FIRST AND THE i-TH PRINCIPAL AXES, FOR EACH OF THE ALGORITHMS

STUDIED IN THIS PAPER.

Algorithm Time constant for w1 Time constant for wi

Oja 1/λ1 1/(λ1 − λi)
IT 1 1
RQ ‖wk,0‖

2/λ1 ‖wk,0‖
2/(λ1 − λi)

OJAn 1/λ1 1/(λ1 − λi)
LUO ‖wk,0‖

−2/λ1 ‖wk,0‖
−2/(λ1 − λi)

Then, each estimate is updated by the node k using the intermediate estimates from (16) as follows:

wj,t = wj,⋆ −

j−1
∑

l=1

(w⊤
l,t−1wj,⋆)wl,t−1.

By regrouping all these vectors wj,t in a matrix Wt, this expression for noncooperative strategy is written in matrix

form as:

Wt = W⋆ −Wt−1

(

W⊤
t−1 W⋆ − LT(W⊤

t−1 W⋆)
)

.

A normalization of wj,t is required by the orthogonalization procedure, by operating the projection
wj,t

‖wj,t‖
.

Note that this scheme could be applied in a sequential way: The node k can extract the principal axes one after

the other, by operating on a simple vector update. For the j-th principal axis, for j = 1, . . . , r, the intermediate j-th

estimate defined in (16) is used. Then, the node under scrutiny updates the j-th principal axis with the following

update rule:

wj,t = w⋆ −

j−1
∑

l=1

(w⊤
l,∞wj,⋆)wl,∞, (17)

where wl,∞ is the extracted l-th principal axis obtained after convergence of wl,t, for l = 1, . . . , j − 1. However,

such process is ill-suited for real-time network applications, because the extraction of the (j + 1)-th principal axis

cannot start before the convergence of wj,t.

For the cooperative strategies, the deflation scheme can be easily incorporated in the adapt-then-combine strategy,

with







Φk,⋆ = Wk,t−1 + ηk,t

(

xky
⊤
Wt−1,k

−Wk,t−1diag(yWt−1,k y
⊤
Wt−1,k

)
)

Φk,t = Φ⋆ −Φk,t−1

(

Φ
⊤
k,t−1

Φk,⋆ − LT(Φ⊤
k,t−1

Φk,⋆)
)

Wk,t =
∑

l∈Vk

akl Φl,t.

as well as the combine-then-adapt strategy, with

Φk,t−1 =
∑

l∈Vk

akl W l,t−1







Wk,⋆ = Φk,t−1 + ηk,t

(

xky
⊤
Wt−1,k

−Φk,t−1diag(yWt−1,k y
⊤
Wt−1,k

)
)

Wk,t = W⋆ −Wk,t−1

(

W⊤
k,t−1

Wk,⋆ − LT(W⊤
k,t−1

Wk,⋆)
)

.



11

Remarks on the convergence

The previous study takes into account the cost function (1) and can be easily generalized to other algorithms

by considering the cost function. In the light of the work in [32], it is worth noting some observations on the

convergence of these algorithms. We refer the reader to [32] and references therein for more details.

The convergence of the IT algorithm is independent of the largest eigenvalue λ1. The convergence of all

other algorithms increases with λ1 and λ1/λ2, when extracting the first and second principal axes. Moreover,

the convergence of Oja’s based rule and the OJAn algorithm cannot be improved by increasing ‖wk,0‖, while the

convergence of the LUO algorithm decreases for smaller ‖wk,0‖ and the convergence of the RQ algorithm decreases

for larger ‖wk,0‖. TABLE I shows the the rate of convergence in terms of the expressions of the time constants

for the first and the i-th principal axes, for all the algorithms studied in this paper.

The algorithms associated to Oja’s rule and to the IT converge to unit norm vectors, i.e., ‖wk,∞‖ → 1. On the

other hand, the RQ, OJAn, and LUO algorithms require a normalization ‖wk,0‖ = 1 for the principal eigenvector

wk,∞ to converge to a unit-norm solution.

VI. COMPARISON WITH OTHER ALGORITHMS

In this section, we present two algorithms well-known in the literature, collective-PCA and PCA-based distributed

approach. As opposed to these algorithms where one or many eigen-decomposition problems are solved, the in-

network noncooperative and cooperative strategies proposed in this paper neither estimate the covariance matrix

nor operate an eigen-decomposition. Experimental results are given in the following section.

A. Collective-PCA

The collective-PCA (CPCA) introduced in [33] essentially operates in two stages: pre-processing the data in

cluster-heads (i.e., local fusion centers) before sending them to a FC. Let X be the N -by-p matrix of the entire

data, i.e., X = [x1 x2 · · · xN ]⊤. This matrix is divided into d submatrix: X = [X1 X2 · · · Xd], where Xi is

a N -by-pi submatrix of X , and
∑d

i=1
pi = p. A local centralized PCA is performed on the data of each Xi. Let

W i be the pi-by-ri matrix of the ri first principal axes, and W tot be a diagonal matix with matrices W 1, . . . ,W d

on the diagonal. The principal component corresponding to Xi, Y = XiW
i is sent to the FC and collected into

N -by-r matrix Y = [Y 1 Y 2 · · · Y d], where r =
∑d

i=1
ri. The FC performs a PCA on Y and extract its principal

axes vi. Finally, the principal axes of X are wi = W tot vi. This centralized algorithm reduces the complexity

of the communication with the FC. However, it still has an important computational complexity compared to our

algorithms, because it requires to perform centralized PCA on different stages.

B. PCA-based distributed approach

The PCA-based distributed approach (PCADID) proposed in [34] is a distributed method. The N nodes are

divided into d groups of ni nodes, for i = 1, . . . , d where
∑d

i=1
ni = N . Each group i deals pi features where

∑d
i=1

pi = p. Therefore, X = [X1 X2 · · · Xd], where Xi is a ni-by-pi submatrix of X . First, for each group,

data are normalized to the range [0 , 1] and then one computes the column-centered matrix Xc
i . For each group i,

The principal axes of Xc
i are extracted using a singular value decomposition: Xc

i = U i ΣiV
⊤
i . The matrix of the

principal axes is given by the matrix V i. Each group sends this matrix to its neighbor group according to a routing

process. Finally, the principal axes of X are W =
⋃

i V i. The PCADID operates through a “divide-to-conquer”

scheme in order to reduce the computational complexity of the eigen-decomposition problem. However, it still

requires the eigen-decomposition of several matrices, making it inappropriate for large scale networks. Moreover,

our approach outperforms the PCADID technique as shown with experimental results in the following section; see

for instance Fig. 2.
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VII. EXPERIMENTAL RESULTS

In this section, the performance of the proposed approach is illustrated within two different contexts: dimensional-

ity reduction of time series in wireless sensor networks and image processing. The performance is measured in terms

of the angle between the principal axis w∗, obtained from the centralized strategy with an eigen-decomposition of

the covariance matrix, and the estimate w∗,l at node l, namely

Θi = arccos

(

w⊤
∗,lw∗

‖w∗,l‖‖w∗‖

)

. (18)

In order to provide a fair comparative study, we use the same initial random estimate for all strategies.

A. Time series measurements in a WSN

In this section, we consider the problem of tracking a gas spread using a wireless sensor network (WSN) [35].

The sensor k at a position denoted by zk ∈ Z measures, at time θ, a gas quantity denoted by xk,θ. The region

under scrutiny Z = [−0.5, 0.5]× [−0.5, 0.5] is a two-dimensional unit-area. We aim to reduce the order of the time

series of the measurements. The gas diffusion within this region is governed by the following differential equation:

∂G(z, θ)

∂θ
− c∇2

zG(z, θ) = Q(z, θ),

where G(z, θ) is the density of gas depending on the position z and time θ, ∇2
z is the Laplace operator, c is the

conductivity of the medium, and Q(z, θ) corresponds to the added quantity of gas. A gas source placed at the

origin is activated from θ = 1s to θ = 15s. We use N = 100 sensors uniformly deployed in the region Z, each

acquiring a time series of 15 measurements, between θ = 1s and θ = 15s.

We consider a predetermined range of communication in the WSN: two nodes are considered as being connected

when they are less than s units of distance apart, that is

Vk = {l : ‖zk − zl‖ < s}.

In our experiments, we set this threshold to s = 0.38. On the other hand, throughout our simulations, we have noted

that the value of the second eigenvector λ2 is generally very small (λ2 ≈ 0). The reason behind this is that the rate

of the measurement increase of each sensor, between two consecutive moments, is approximately the same for all

sensors. This behavior is inherent to the nature of gas propagation in the space. Therefore, the second principal axis

is difficult to be determined in this case. As for the choice of the stepsize parameters ηk,t, we use a cross validation

approach: we vary the stepsize according to three series of values, the first being from 0.1, 0.01, . . . , 0.1 · 10−12,

the second from 0.25, 0.025, . . . , 0.25 · 10−12, and the third from 0.5, 0.05, . . . , 0.5 · 10−12. Then, we choose the

step size which leads to the best result in the noncooperative strategy. Note that the noncooperative strategy is used

at this phase because of its smaller computational cost, compared to the other strategies. We consider a stepsize

η1 = 0.0025 for the first principal axis. The same stepsize value is taken for the cooperative strategies.For the

information theory, we use η1 = 0.025, for OJAn algorithm η1 = 0.005, for LUO algorithm η1 = 0.0025 for both

cooperative and noncooperative strategies.

Fig. 2 and Fig. 3 show the convergence of each strategy for Oja’s rule, the information theory, the Rayleigh

quotient, the OJAn, and the LUO algorithms respectively, in terms of the angle Θ1 for the first axis, averaged

over the N nodes. The confronted strategies are the noncooperative strategy, the combine-then-adapt (CTA) and

adapt-then-combine (ATC) diffusion strategies, and the consensus implementation. For the diffusion strategies, we

take the simplified case where no information exchange is performed between nodes, except for the combination

step; in other words, we use ckk = 1, and clk = 0 for each k 6= l, with l, k = 1, . . . , 100. Results are shown

in terms of the angle averaged over all the nodes. Moreover, Fig. 2 shows that our strategies outperforms the

PCADID. These learning curves show that the noncooperative strategy is outperformed by any diffusion strategy.

The analysis of the diffusion strategies shows that the adapt-then-combine strategy performs slightly better that

the combine-then-adapt strategy. The overall efficiency of the diffusion strategies is shown in terms of stability.

On the other hand, considering the rate of convergence, the figures show that the LUO algorithm has the fastest

convergence, followed consecutively by OJAn, Oja, RQ and IT algorithms. Oja and OJAn have the same behavior

in terms of speed of convergence, RQ and LUO have a conflicting behavior as expected from TABLE I. Another
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criterion for comparison is the level of the floor. The IT algorithm has the largest average angle at the convergence.

All the other algorithms have comparable levels of the floor. Note that the consensus with RQ, OJAn, and LUO has

a smaller average angle at the convergence than the other strategies, and it is slower in convergence than the other

strategies with Oja, OJAn and LUO. Altogether, we can say that the best combinations that allow for a small angle

floor, together with an acceptable rate of convergence, are the Oja and OJAn rules with the adapt-then-combine

diffusion strategy.

B. Image processing application

In this section, we study an image processing application. For this purpose, we consider a dataset of the

handwritten digit “1” given by images of 28-by-28 pixels, treated as 784-dimensional vectors. In order to compare

with the “ground truth” solution obtained from the eigen-decomposition of the sample covariance matrix, the number

of images is restricted to 90. This time, the connectivity between nodes is tested for s = 2240. For the stepsize

parameters, we take η1 = 5 · 10−8 for the first principal axis and a different one, η2 = 1 · 10−7 for the second

principal axis, in order to insure a better convergence. Note that η2 ≥ η1 because the estimation of the second

principal axis w2,t requires the estimation of the first principal axis w1,t−1. The same stepsize values are taken

for cooperative and noncooperative strategies. As for the IT algorithm, we take η1 = η2 = 0.05, for the Rayleigh

quotient algorithm η1 = η2 = 5 · 10−6, for the OJAn algorithm η1 = η2 = 5 · 10−8, and for the LUO algorithm

η1 = 5 · 10−11 and η2 = 2.5 · 10−10, in cooperative and noncooperative strategies.

Fig. 4 shows the convergence of the different orthogonalization processes using Oja’s rule. It shows that the Gram-

Schmidt orthogonalization and the deflation schemes have a comparable efficiency, especially with the cooperative

strategies. The Gram-Schmidt orthogonalization is slightly better than the deflation scheme. In what follows, we

use the Gram-Schmidt orthogonalization for multiple axes.

Fig. 5 to Fig. 7 show the convergence of each strategy for Oja’s rule and for the IT, the Rayleigh quotient, the

OJAn, and the LUO algorithms respectively, with the angles averaged over the N nodes. Again, the noncooperative

strategy is significantly outperformed by all diffusion strategies. On the other hand, considering the rate of

convergence, the figures show that the OJAn, the Oja, and the IT algorithms have the fastest convergence, followed

consecutively by the RQ and the LUO algorithms. In terms of the floor level, the IT algorithm has the largest

average angle at the convergence. All the other algorithms have a comparable level of the floor. As in the WSN

application given in Section VII-A, the combination of the Oja or the OJAn algorithms with the adapt-then-combine

diffusion strategy seems to present the best compromise between the angle floor and the rate of convergence.

VIII. CONCLUSION

In this paper, we proposed several strategies for estimating the principal axes for PCA in networks. Noncooperative

and cooperative strategies with information diffusion were studied for this purpose. Experiments were conducted

by taking into account the constraints imposed in WSNs and image processing applications. The results showed

the relevance of these strategies. The convergence of all proposed algorithms was better than the non-cooperative

strategy, in the case of WSNs. The main reason for this result is the ratio of the first and second eigenvalues which

is greater in the case of wireless sensor networks. Furthermore, the level of efficiency of certain cost functions, like

with the RQ and the LUO, highly depends on the choice of the initialization of the principal axes, which is not the

case for the Oja and the OJAn rules. A similar behavior was observed for the image processing application. As a

future work, we will also include the use of the spatial information within the study.
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Fig. 2. Convergence analysis for Oja’s rule, in the WSN settings.
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Fig. 3. Convergence analysis in the WSN settings of the strategies based on information theory (top left), on Rayleigh quotient (top right),

on OJAn (bottom left) and on LUO (bottom right) algorithms.
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Fig. 4. Convergence analysis for the image dataset, with Oja’s rule, for different orthogonalization processes.
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Fig. 5. Convergence analysis for the image dataset, with Oja’s rule and Gram-Schmidt orthogonalization.
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Fig. 6. Convergence analysis of the strategies based on the information theory (top figure) and the Rayleigh quotient (bottom figure), for

the image dataset.
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Fig. 7. Convergence analysis of the strategies based on the OJAn algorithm (top figure) and the LUO algorithm (bottom figure), for the

image dataset.


