
HAL Id: hal-01965048
https://hal.science/hal-01965048

Submitted on 24 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-objective Nonnegative Matrix Factorization: Linear
Versus Kernel-based Models

Fei Zhu, Paul Honeine

To cite this version:
Fei Zhu, Paul Honeine. Bi-objective Nonnegative Matrix Factorization: Linear Versus Kernel-based
Models. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (7), pp.4012 - 4022.
�10.1109/TGRS.2016.2535298�. �hal-01965048�

https://hal.science/hal-01965048
https://hal.archives-ouvertes.fr


1

Bi-objective Nonnegative Matrix Factorization:

Linear Versus Kernel-based Models
Fei Zhu, Paul Honeine, Member, IEEE

Abstract—Nonnegative matrix factorization (NMF) is a pow-
erful class of feature extraction techniques that has been suc-
cessfully applied in many fields, in particular in signal and
image processing. Current NMF techniques have been limited
to a single-objective optimization problem, in either its linear or
nonlinear kernel-based formulation. In this paper, we propose
to revisit the NMF as a multi-objective problem, in particular
a bi-objective one, where the objective functions defined in both
input and feature spaces are taken into account. By taking
the advantage of the sum-weighted method from the literature
of multi-objective optimization, the proposed bi-objective NMF
determines a set of nondominated, Pareto optimal, solutions.
Moreover, the corresponding Pareto front is approximated and
studied. Experimental results on unmixing synthetic and real
hyperspectral images confirm the efficiency of the proposed bi-
objective NMF compared with the state-of-the-art methods.

Index Terms—Kernel machines, nonnegative matrix factoriza-
tion, Pareto optimal, hyperspectral image, unmixing problem.

I. INTRODUCTION

NONNEGATIVE MATRIX FACTORIZATION (NMF)

has become a versatile technique with plenty of ap-

plications [1]. As opposed to other dimensionality reduction

approaches, e.g., principal component analysis, vector quanti-

zation and linear discriminant analysis, the NMF is based on

the additivity of the contributions of the bases to approximate

the original data. Such decomposition model often yields

a physical interpretation, as illustrated in many real world

applications including hyperspectral unmixing [2], face and

facial expression recognition [3], gene expression data [4],

blind source separation [5], and clustering [6], to name a few.

The NMF approximates a nonnegative input matrix by the

product of two low-rank nonnegative ones. As a consequence,

it provides a decomposition suitable for many signal process-

ing and data analysis problems, and in particular the hyper-

spectral unmixing problem. Indeed, a hyperspectral image is

a cube that consists of a set of images of the scene under

scrutiny, each corresponding to a ground scene from which the

light of certain wavelength is reflected. Namely, a reflectance

spectrum over a wavelength range is available for each pixel.

It is assumed that each spectrum is a mixture of a few “pure”

materials, called endmembers. The hyperspectral unmixing

problem consists of extracting the endmembers (recorded

in the first low-rank matrix), and estimating the abundance

of each endmember at every pixel (recorded in the second

one). Obviously, the above physical interpretation requires the

nonnegativity on both abundances and endmember spectrums.
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The NMF is a linear model, since each input spectrum is

approximated by a linear combination of a set of (bases) spec-

tra. To estimate the decomposition, the objective function for

minimization is defined in the so-called input space X , where

the difference between the input matrix and the product of the

estimated ones is usually measured either by the Frobenius

norm or by the generalized Kullback-Leibler divergence [1].

These objective functions are often augmented by including

different regularization terms, the sparsity constraint [7], the

temporal smoothness and spatial decorrelation regularization

[8], and the minimum dispersion regularization [9].

Many studies have shown the limits of a linear decomposi-

tion, as shown in hyperspectral unmixing [10], [11], [12]. To

extent the linear NMF model to the nonlinear scope, several

kernel-based NMF have been proposed within the framework

of kernel machines [13], [14]. Employing a nonlinear function,

the kernel-based formulations map the columns of the data

matrix to a so-called feature space H, where the existing linear

techniques are performed on the transformed data. The kernel

trick enables the evaluation of the inner product between

any pair of mapped data, without the need to explicit the

nonlinear map function, as studied in [13], [15], [16] for

kernel-based NMF. A major handicap of these methods resides

in having the bases lying in the feature space, making them

unavailable explicitly. This is due to the pre-image problem,

an obstacle inherited from kernel machines [17]. In [18], [19],

these difficulties are circumvented by defining a model in the

feature space that can be optimized directly in the input space.

In either its linear conventional formulation or its nonlinear

kernel-based formulation, as well as all of their variants, the

NMF has been tackling a single-objective optimization prob-

lem. In essence, the underlying assumption is that it is known

in prior that the linear model dominates the nonlinear one,

or vice versa, for the data under study. To obtain such prior

information about the given data is not practical in real-world

applications. Moreover, it is possible that the combination of

the linear and nonlinear models reveals the latent variables

closer to the ground truth than each single model considered

alone. Independently from the NMF framework, such combi-

nation of the linear model with a nonlinear fluctuation was

recently studied in [11] and [20] where, in the former, the

nonlinearity depends only on the spectral content, while it is

defined by a post-nonlinear model in the latter. A multiple-

kernel learning approach was studied in [21] and a Bayesian

approach in [22]. While all these methods show the relevance

of combining linear and nonlinear models, they share a major

drawback: they only consist in estimating the abundances,

while the endmembers need to be extracted in a pre-processing

stage using any conventional linear technique (e.g., N-Findr).
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As opposed to such separation in the optimization problems,

the NMF provides an elegant framework for estimating jointly

the endmembers and the abundances. To the best of our

knowledge, there have been no previous studies that combine

the linear and nonlinear models within the NMF framework.

In this paper, we study the bi-objective optimization prob-

lem that performs the NMF in both input and feature spaces,

by combining the linear and kernel-based models. The first

objective function to optimize stems from the conventional

linear NMF, while the second objective function, defined in

the feature space, is derived from the kernel-based NMF

model. In case of two conflicting objective functions, there

exists a set of nondominated, noninferior or Pareto optimal

solutions. In order to acquire the Pareto optimal solutions,

we investigate the sum-weighed method from the literature

of multi-objective optimization, due to its ease for being

integrated to the proposed framework. Moreover, we attempt to

approximate the corresponding Pareto front. The multiplicative

update rules are derived for the resulting sub-optimization

problem when the feature space is induced by the Gaussian

kernel. The complexity and the convergence of the algorithm

are discussed, as well as the stopping criterion.

The remainder of this paper is organized as follows. We

first revisit the conventional and kernel-based NMF. The differ-

ences between the input and the feature space optimization are

discussed in Section III, with physical interpretation. In Sec-

tion IV, we present the proposed bi-objective NMF framework.

Section V demonstrates the efficiency of the proposed method

for unmixing both synthetic and real hyperspectral images.

Conclusions and future works are reported in Section VI.

II. A PRIMER ON THE LINEAR AND NONLINEAR NMF

The conventional NMF approximates a given nonnegative

data matrix X ∈ ℜL×T with the product of two low-rank

nonnegative matrices E ∈ ℜL×N and A ∈ ℜN×T , namely

X ≈ EA, (1)

under the constraints E ≥ 0 and A ≥ 0, where the

nonnegativity is element-wise [1]. An equivalent vector-wise

model is given by considering separately each column of the

matrix X , namely xt for t = 1, . . . , T , with

xt ≈
N∑

n=1

ant en, (2)

where en are the columns of E and ant the entries of A.

The space spanned by the vectors xt, as well as the vectors

en, is denoted the input space X . Both matrices E and A are

often estimated by minimizing the Frobenius (squared) error

norm 1

2
‖X − EA‖2F , subject to E ≥ 0 and A ≥ 0. In its

vector-wise formulation, the objective function to minimize is

JX (E,A) =
1

2

T∑

t=1

‖xt −
N∑

n=1

ant en‖
2, (3)

where the residual error of (2) is measured in the input space

X . The optimization is operated with a two-block coordinate

descent scheme, by alternating between the elements of E or

of A, while keeping the elements in the other matrix fixed [1].

A generalization to the nonlinear form is proposed within

the framework offered by kernel machines. In the following,

we present the kernel-based NMF recently proposed in [18],

[19]. Other formulations can also be investigated such as the

ones studied in [13], [16], [15]; the price to pay is that these

variants cannot construct the bases in the input space, due to

the pre-image problem [19]. See Section III-B for more details.

Consider a nonlinear function Φ(·) that maps the input

space X to some feature space H. The associated norm

is denoted ‖ · ‖H, and the corresponding inner product

〈Φ(xt),Φ(xt′)〉H, which can be evaluated using the so-called

kernel function κ(xt,xt′) in kernel machines. Examples of

kernels are the Gaussian and the polynomial kernels. By

analogy with the model (1)-(2), we consider the matrix factor-

ization [Φ(x1) · · · Φ(xT )] ≈ [Φ(e1) · · · Φ(eN )]A, namely

Φ(xt) ≈

N∑

n=1

ant Φ(en). (4)

Under the nonnegativity of all en and ant, the optimization

problem consists in minimizing the sum of the residual errors

in the feature space H, namely

JH(E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H

. (5)

By analogy to the linear case, a two-block coordinate descent

scheme can be investigated to solve this optimization problem.

III. NONLINEAR MODELS FOR UNMIXING

In this section, we provide connections between state-of-

the-art nonlinear models and the proposed model.

A. On augmenting the linear model with a nonlinearity

Several nonlinear models have been proposed within the

hyperspectral unmixing scope, as reviewed in [24], [25]. Often

advocated by a physical model, these nonlinear variations

mainly consist in a combination of the linear model with an

additive nonlinear term, thus of the form

xt =
N∑

n=1

ant en + ψ(E,at),

where ψ is an X -valued nonlinear function, as detailed next.

It is worth noting that the same abundances and endmembers

intervene in both the linear and nonlinear terms.

Bilinear models introduce bilinear mixtures of endmembers,

such as the generalized bilinear model (GBM) [26] and the

post-nonlinear mixing model [27], as well as the GBM-based

semi-NMF approach [28]. Several kernel-based models have

been proposed to define the nonlinearity term ψ in some

feature space. In [11], the nonlinearity depends exclusively on

the endmembers, namely ψ(E). In [21], the above additive

fluctuation is relaxed by considering a convex combination

with multiple kernel learning. More recently, the abundances

are incorporated in the nonlinear model, with a post-nonlinear

model ψ(Eat) in [20] and a Bayesian approach is used

in [22]. Another model is proposed in [12] in the context

of supervised learning. All these methods consider that the
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Fig. 1: Schema illustrating linear versus nonlinear models, and

single versus joint estimation. Marker ⊠ shows the combina-

tions between VCA/N-Findr and GBM/K-Hype, for instance.

endmembers en were already estimated using some linear

technique such as N-Finder and VCA [23]; only the abun-

dances are estimated with nonlinear models. See Fig. 1 for a

schematic illustration of these differences with respect to our

work that is described next (see Section III-C for connections

to the Mac-Mic [29], [30]).

B. From kernelized NMF to the proposed approach

The NMF allows to estimate simultaneously the endmem-

bers and the abundances. It has been applied either in its linear

model, i.e., in the input space, or in a kernel-based formulation,

i.e., in the feature space. In the former as studied for instance

in [1], [33], [9], each sample xt is approximated with a linear

combination of basis elements en, by minimizing the distance

in the input space between each xt and x̂t =
∑N

n=1
ant en.

In the latter as conducted in [13], [15], [16], [34], the basis

elements eΦn belong to some kernel-induced feature space

where the optimization occurs, by minimizing the distance

between Φ(xt) and
∑N

n=1
ant e

Φ
n .

To the best of our knowledge, there has not been any attempt

to examine simultaneously linear and nonlinear NMF. This

is mainly due to the fact that, while one may assume that

the abundances ant are the same in both representations, this

is not the case of the endmembers. The linear endmembers

are en ∈ X while the nonlinear ones are eΦn ∈ H. It is not

obvious to connect the former to the latter. Indeed, one needs

to estimate e′n ∈ X whose Φ(e′n) is as close as possible to

eΦn . This is the curse of the pre-image problem, an ill-posed

problem inherited from kernel machines [17]. Moreover, the

simultaneous optimization of the linear and nonlinear NMF

yields two different sets of endmembers, en and e′n, without

any connection between them and difficult interpretation. For

all these reasons, MercerNMF and KconvexNMF are not

shown in Fig. 1; while the underlying models are nonlinear,

the endmembers cannot be estimated.

In [18], [19], we have defined a novel nonlinear model in the

feature space with Ψ̂t =
∑N

n=1
ant Φ(en); as a consequence,

the endmembers en are estimated directly in X . In this paper,

physically-driven models

data-driven (kernel-based) models

linear model
[1], [9], [33]

intimate
[29]

GBM
[26]

post-nonlinear
[20]

K-Hype
[11]

Bi-objective NMF
[this paper]

Fig. 2: Schematic illustration of the physical interpretation

confronted to data-driven nonlinearity in unmixing models.
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Φ(e2)

Φ(en)

Ψ̂t =
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n
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Φ(x2)

Φ(·)

Φ(·)
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Fig. 3: In the linear NMF, each sample xt is approximated by

x̂t in the input space X , while in the kernel-based NMF, the

mapped sample Φ(xt) is approximated by Ψ̂t in the feature

space H. The proposed bi-objective NMF solves simultane-

ously the two optimization problems.

as illustrated in Fig. 3, we combine the estimation of this

model with the linear one. To this end, we minimize simul-

taneously JX and JH, namely the distance in the input space

between each xt and x̂t =
∑N

n=1
ant en, and the distance in

H between Φ(xt) and Ψ̂t =
∑N

n=1
ant Φ(en). The resulting

problem is the bi-objective NMF. We shall take advantage of

the sum-weighted method to tackle this problem as a sequence

of single-objective optimization problems, each corresponding

to a fusion of the linear and nonlinear optimization problems,

at different levels characterized by a parameter α, namely

min
E,A

αJX (E,A) + (1− α)JH(E,A). (6)

C. Remarks on the physical interpretation

We study the interpretation of the proposed bi-objective

NMF by connecting it to several state-of-the-art models.

The nonlinear model Φ(xt) ≈
∑N

n=1
antΦ(en) in (4)

is closely related to the microscopic mixture of the Hapke

model [29], [35], [30]. The latter uses the widely known

bidirectional reflectance distribution function for microscopic

mixtures, which describes the relationship of observed re-

flectance to the albedo of materials within the scene under

scrutiny [29]. Indeed, the single-scattering albedo (SSA), for

a wavelength λ, is defined as wλ =
∑N

n=1
fnwnλ, where wnλ

are the material albedos and fn the corresponding fractional

proportions. It is easy to see that this microscopic mixing

model as a linear model in the albedo domain, while it is

nonlinear in the reflectance domain. Indeed, the model in the

latter takes the form xt ≈ R(
∑N

n=1
fntwn), where R is the

nonlinear Hapke’s reflectance function and wn is the vector

of SSA at all wavelengths. By mapping the reflectance data

to the albedo-domain, the unknown microscopic proportions

are estimated using the model R−1(xt) ≈
∑N

n=1
fntR

−1(en),
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where we have used wn = R−1(en) as recommended in [30].

The nonlinear model in (4) has the same structure, where

the difference lies in a nonlinearity R−1 characterized by a

nonlinear kernel.

Machine learning with kernel-based models allow to alle-

viate missing physical interpretation of the underlying non-

linearity, as have been largely investigated in the literature

[21], [11], [20], [12]. Fig. 2 attempts to categorize unmixing

models/techniques in terms of both their “level” of physical

interpretation and their data-driven modeling to describe non-

linear relations. Consider for instance the post-nonlinear model

of the form ψ(Eat); while it has a physical interpretation as

stipulated in [20], the nonlinear function ψ(·) is estimated from

data with kernel-based methods, thus without any physical

interpretation. It is worth noting that linear and quadratic

models can be viewed as special cases of kernel-based models.

An analysis in depth of parametric, semi-parametric, and non-

parametric modeling is beyond the scope of this paper.

As opposed to augmenting the linear model with a nonlin-

earity (see Section III-A), the proposed model is related to

the Mac-Mic presented in [30] (see Fig. 1). Indeed, the latter

confronts two models for each pixel, the linear model, called

macroscopic, and the aforementioned microscopic one. The

proposed bi-objective NMF can also be viewed as confronting

two models, a “regularized” linear model and a “regularized”

nonlinear one. One way to understand this property is through

two complementary viewpoints of the bi-objective optimiza-

tion problem (6). In the first one, the investigated model

is xt ≈
∑N

n=1
ant en (results from minimizing JX ), while

the minimization of JH operates as a regularization. In the

second viewpoint, one can likewise say that the underlying

model is the nonlinear model Φ(xt) ≈
∑N

n=1
ant Φ(en),

while the minimization of JX operates as a regularization

by emphasizing that the nonlinear model should not be very

“distinct” from the linear one.

IV. BI-OBJECTIVE OPTIMIZATION FOR NMF

A. Problem formulation

We propose to minimize simultaneously the objective func-

tions JX (E,A) and JH(E,A), namely in both input and

feature spaces as shown in Fig. 3. Such problem is in a sense

an ill-defined one. Indeed, it is not possible in general to find

a solution that is optimal for both objective functions. As

opposed to single-objective optimization problems where the

main focus would be on the decision solution space, namely

the space of all entries (E,A) (of dimension LN + NT ),

the bi-objective optimization problem brings the focus on

the objective space, namely the space of the objective vector

[JX (E,A) JH(E,A)]. To study and solve this optimization

problem, we revisit in our context the following definitions

from the literature of multi-objective optimization:

• Pareto dominance: The solution (E1,A1) is said to

dominate (E2,A2) if and only if JX (E1,A1) ≤
JX (E2,A2) and JH(E1,A1) ≤ JH(E2,A2), where at

least one inequality is strict.

• Pareto optimal: A solution is a global (respectively local)

Pareto optimal if and only if it is not dominated by any

other solution (respectively in its neighborhood). That

is, the objective vector [JX (E∗,A∗) JH(E∗,A∗)]
corresponding to a Pareto optimal (E∗,A∗) cannot be

improved in any space (input or feature space) without

any degradation in the other space.

• Pareto front: The set of the objective vectors correspond-

ing to the Pareto optimal solutions forms the Pareto front

in the objective space.

Various multi-objective optimization techniques have been

successfully proposed e.g., evolutionary algorithms, sum-

weighted method, ε-constraint method, normal boundary in-

tersection method, to name a few. See [36], [37] for a survey.

Among the existing methods, the sum-weighted or scalariza-

tion method has been always the most popular one, since it is

straightforward and easy to implement [38], [39]. It converts

a multi-objective problem into a single-objective problem by

combining the multiple objectives. Under some conditions,

the resulting objective vector belongs to the convex part of

multi-objective problem’s Pareto front. Thus, by changing

appropriately the weights among the objectives, the Pareto

front of the original problem is approximated. The main

drawback of this method is that the nonconvex part of the

Pareto front is often unattainable [38]. Nevertheless, it is the

most practical one, in view of the complexity of the NMF

problem, which is nonconvex, ill-posed and NP-hard [40].

B. Bi-objective optimization with the sum-weighted method

Following the formulation introduced in the previous sec-

tion, we study the minimization of the bi-objective function

[JX (E,A) JH(E,A)], under the nonnegativity of the

matrices E and A. The decision solution, of size LN +NT ,

corresponds to the entries in the unknown matrices E and

A. We transform this bi-objective optimization problem into

an aggregated objective function (i.e., sum-weighted objective

function, also called scalarization value) which is a convex

combination of the two original objective functions, namely

min
E,A

αJX (E,A) + (1− α)JH(E,A)

subject to E ≥ 0 and A ≥ 0
(7)

where the weight α ∈ [0, 1] controls the relative importance

between objectives JX and JH. For a fixed value of α, this

problem is called the sub-optimization problem. Its solution

is a Pareto optimal for the original bi-objective problem, as

proven in [38] for the general case. By solving the sub-

optimization problem with a spread of values of α, we obtain

an approximation of the Pareto front. It is obvious that the

single-objective conventional NMF in (3) is given by α = 1,

while α = 0 leads to the kernel variant in (5).

Similar to the NMF, which is ill-posed, nonconvex and

NP-hard [40], the optimization problem (7) is difficult to

solve. It has no closed-form solution, a drawback inherited

from most nonnegative constrained optimization problems.

Moreover, the objective function is nonlinear, making the

optimization problem more difficult. As in NMF algorithms,

the global optimal solution cannot be guaranteed, thus the term

Pareto optimal referred in the following is in the local sense.
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TABLE I: Some common kernels and their gradients w.r.t. en

Kernel κ(en,z) ∇en
κ(en,z)

Gaussian exp( −1
2σ2 ‖en − z‖2) − 1

σ2 κ(en,z)(en − z)

Polynomial (z⊤en + c)d d (z⊤en + c)(d−1)z

Exponential exp( −1
2σ2 ‖en − z‖) − 1

2σ2 κ(en,z)sgn(en − z)

Sigmoid tanh(γz⊤en + c) γsech2(γz⊤en + c)z

Substituting the expressions given in (3) and (5) for JX and

JH, the aggregated objective function becomes

α

2

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2
+

1− α

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

ant Φ(en)
∥∥∥
2

H

.

This objective function becomes, after removing the constant

terms that are independent of ant and en,

J = α
T∑

t=1

(
−

N∑

n=1

ante
⊤
nxt +

1

2

N∑

n=1

N∑

m=1

antamte
⊤
n em

)

+ (1− α)
T∑

t=1

(
−

N∑

n=1

antκ(en,xt) +
1

2

N∑

n=1

N∑

m=1

antamtκ(en,em)
)
.

(8)

In the following, we derive iterative techniques to minimize

it by alternating over the matrices E or A, while keeping the

other matrix fixed. The derivative of (8) with respect to ant is

∇ant
J = α

(
− e

⊤
nxt +

N∑

m=1

amt e
⊤
n em

)

+ (1− α)
(
− κ(en,xt) +

N∑

m=1

amt κ(en, em)
)
.

(9)

The gradient of (8) with respect to en is

∇en
J = α

T∑

t=1

ant

(
− xt +

N∑

m=1

amtem

)

+ (1− α)
T∑

t=1

ant

(
−∇en

κ(en,xt) +
N∑

m=1

amt∇en
κ(en, em)

)
.

(10)

Here, ∇en
κ(en, ·) represents the gradient of the kernel with

respect to its first argument en, and can be determined for

most valid kernels, as shown in TABLE I. Without loss of

generality, we restrict the presentation to the Gaussian kernel

for the objective function JH. In this case, expression (10)

becomes (11) (given on the top of the next page).

1) Optimization over E using projected gradient (PG):

We apply the projected gradient method (PG) [41], [9] to

address the bound optimization problem

min
E

J(E)

subject to Lln ≤ Eln ≤ U ln for l = 1, . . . , L and n = 1, . . . , N,

where the function J(E) : ℜL×N −→ ℜ is continuously

differential, and L and U are lower and upper bound matrices.

At iteration k, the PG update takes the form

E
k+1 = P[Ek − ηk∇EJ(E

k)],

where ηk is the stepsize and P[·] is the projection operator that

maps the elements of E back to the feasible bounded region.

Algorithm 1 The k-th iteration of the PG, following [9]

Input: 0 < ρ < 1
1: ηk ← ηk−1, p = 1
2: if ηk satisfies (12), then
3: while ηk/ρ

p satisfies (12) do

4: ηk ← ηk/ρ
p, p ← p+ 1

5: end while
6: else

7: while ηk does not satisfy (12) do

8: ηk ← ηk ρp, p ← p + 1
9: end while

10: end if

11: update E
k+1 = P[Ek − ηk∇EJ(Ek)].

Algorithm 2 The proposed bi-objective NMF, for a fixed

αm ∈ {α1, α2, ..., αM}

Input: k = 0, warm start by E
0
m = Em−1 and A

0
m = Am−1

1: repeat

2: update E
k+1 with Algorithm 1

3: update A
k+1 with (14)

4: k = k + 1
5: until stopping criterion

Output: Em and Am

To estimate ηk, we investigate the backtracking-Armijo line

search, proved effective for NMF [41], [9]. Let ∇EJ =
[∇e1

J ∇e2
J · · · ∇eN

J ]. At each iteration, if the condition

J(Ek)− J(Ek+1) ≤ γ ηk vec(∇EJ)
⊤vec(Ek −E

k) (12)

is satisfied, a sufficient decrease of objective function is

achieved. Here vec(·) reshapes the matrix into a vector, and

γ characterizes the decrease level and is often set to 1%. As

given in Algorithm 1, this modified PG accelerates the stepsize

search by eliminating the upper bound required in [41].

2) Optimization over A using multiplicative update (MU):

The PG update rule for A can be derived in the same way

as for E. However, the stepsize estimation in PG rule is very

time consuming. To alleviate this problem, we develop the

multiplicative update (MU) for A. Initially proposed in [42],

the MU has been largely investigated for NMF [1]. Thanks to

the convexity of the subproblem J(A), the MU for A yields

a monotone decrease in the objective function. Denote the

matrix Λk the stepsize matrix at iteration k, where (Λk)nt =
λk,nt. The PG update rule in terms of A is

A
k+1 = P[Ak − Λk∇AJ(A

k)]. (13)

Here, the stepsize balances the rate of convergence with the

accuracy of optimization, and can be set differently depending

on n and t. We choose the stepsize parameter in (13) as

λk,nt =
aknt

α
∑

m akmte
⊤
n em + (1− α)

∑
m akmt κ(en, em)

,

which yields

ak+1
nt = aknt

α e⊤nxt + (1− α) κ(en,xt)

α
∑

m akmte
⊤
n em + (1 − α)

∑
m akmt κ(en,em)

. (14)

It is noteworthy that the multiplicative update rule for en

can be elaborated in the same way, by using the so-called

split gradient method. However, since the sub-optimization
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∇en
J = α

T
∑

t=1

ant

(

− xt +
N
∑

m=1

amtem

)

+
1− α

σ2

T
∑

t=1

ant

(

κ(en,xt)(en − xt)−
N
∑

m=1

amtκ(en,em)(en − em)
)

. (11)

on en is possibly nonconvex1, the monotone property is not

guaranteed with an arbitrary kernel. That is, for a given weight

α, although the aggregated objective function J globally

decreases, the overshoot of stepsize in updating E may occur

during iterations. This discussion is summarized in TABLE II.

C. On the complexity, convergence and stopping criterion

The complexity of the PG for E is O(pTLN2), where p is

the average number of checking condition (12). See [41] for

details on the complexity of PG. The complexity of the MU

for A is O(TLN2). Thus, the total complexity of Algorithm

2 is O(k(p + 1)TLN2) after k iterations. This complexity

holds using any commonly-used kernel listed in TABLE I,

with essentially the same complexity O(L) for each kernel.

Similar to the PG and MU rules initially presented for

the linear NMF, the proposed algorithm is a stationary point

method. See also the discussions on the convergence of the

conventional NMF in [44], [43]. We use the two-fold stopping

criterion, that is, either a stationary point is attained, or

the preset maximum number of iterations is reached. To be

more specific, the algorithm stops when either the condition

‖J(Ek+1,Ak+1) − J(Ek,Ak))‖ < ε is satisfied, or k =
kmax, e.g., kmax = 2000. The threshold of the error difference

between successive iterations is set to ε = 10−4.

D. Posteriori analyse of the approximated Pareto front

It is worth noting that we apply the sum-weighted method as

a posteriori method, where different Pareto optimal solutions

are generated, and the decision maker (DM) makes the final

compromise among optimal solutions. Alternatively, in a priori

method, the DM specifies the weight α in advance to generate

a solution. See [37] for more details.

All the points on the approximated Pareto front are optimal

in some sense. To choose the α suitable to the studied data,

we employ the so-called level diagrams approach proposed in

[45]. This posteriori method classifies the points on the Pareto

front according to their proximities to the ideal point, defined

by J∗∗ = [min JX min JH] in our case, where min JX and

min JH denote respectively the minimum values of the two

objectives obtained on the Pareto front. For this purpose, each

point J = [JX JH] is first normalized to J = [JX JH]
using the maximum and minimum values achieved, that is

JX =
JX −min JX

max JX −min JX
, and JH =

JH −min JH
maxJH −min JH

.

The distance to the ideal point is then evaluated with a

particular ℓp-norm, e.g., ℓ1-norm ‖J‖1 = JX + JH ℓ2-norm

1In conventional NMF, the subproblem of estimating each matrix separately
is convex. From this, the monotone decreasing property of the MU was proved
by constructing an auxiliary function as an upper bound [1], [43]. In our work,
the proposed framework involves a nonconvex optimization problem on en,
since the Hessian matrix is no longer guaranteed to be positive semidefinite.

TABLE II: The convexity and the corresponding optimization

methods for the subproblem

Convexity PG MU

minE J(E) X

minA J(A) X X X

‖J‖2 =
(
JX

2
+ JH

2) 1
2 , ℓ∞-norm ‖J‖∞ = max(JX , JH)

and ℓ−∞-norm ‖J‖−∞ = min(JX , JH). It is clear that the

points with small norms locate nearly to the ideal point,

therefore the DM can choose a solution among them.

V. EXPERIMENTS

In this section, the performance of the proposed algorithm

for bi-objective NMF is demonstrated on the unmixing of

synthetic and real hyperspectral images. The unmixing per-

formance is evaluated by two criteria, the averaged spectral

angle distance between endmembers (SAD) and the root mean

square error on the abundances (RMSE), defined as

SAD=
1

N

N∑

n=1

arccos
e
⊤
n ên

‖en‖‖ên‖
RMSE =

√√√√ 1

NT

T∑

t=1

‖at − ât‖2.

A. State-of-the-art unmixing methods

The unmixing problem comprises the estimation of end-

members and the corresponding abundance maps. Some exist-

ing techniques either extract the endmembers (such as VCA)

or estimate the abundances (such as FCLS)2; other methods

enable the simultaneous estimations, e.g., NMF and its vari-

ants. We briefly present state-of-the-art unmixing algorithms.

The most-known endmember extraction techniques include

the vertex component analysis (VCA) [23], the N-Findr [32]

and the NMF based ones [47]. For fair comparison, the linear

NMF is applied for endmember extraction, jointly with three

abundance estimation techniques. The fully constrained least

squares algorithm (FCLS) [31] investigates the linear mixture

model to estimate the abundances with the nonnegativity and

sum-to-one constraints. K-Hype uses a linear-mixture with

an additive nonlinear-fluctuation for abundance estimation,

where the nonlinear term is described as a kernel-based model

[11]. In [28], a generalized bilinear model is formulated

with parameters optimized using the semi-nonnegative matrix

factorization (GBM-sNMF). We also consider the nonlinear

macroscopic/microscopic mixture model (Mac-Mic) [30].

We further consider NMF-based techniques that estimate

jointly the endmembers and abundances. The minimum disper-

sion constrained NMF (MiniDisCo) [9] includes the dispersion

regularization to the conventional NMF, by integrating the

sum-to-one constraint for each pixel’s abundance fractions and

the minimization of variance within each endmember. The

problem is solved by exploiting an alternate projected gradient

2See [46] for estimating abundances with endmember extraction techniques.
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Fig. 4: The USGS spectra used for synthetic data generation.

scheme. In the convex nonnegative matrix factorization (Con-

vexNMF) [33], the endmember matrix is restricted to the span

of the input data. The kernel convex-NMF (KconvexNMF)

is essentially a kernelized variants of the ConvexNMF [16].

Nonlinear NMF based on constructing Mercer kernels (Mer-

cerNMF) [34] uses a self-constructed kernel that preserves the

nonnegativity of the embedded bases and their coefficients; the

embedded data being finally factorized with the classical NMF.

B. Simulation with synthetic data

The performance of the proposed method is firstly studied

on a series of synthetic images, each of size 20×20 pixels. The

generalized bilinear model (GBM) [26], is considered with

xt =

N∑

n=1

ant en +

N−1∑

n=1

N∑

m=n+1

γnm ant amt (en ⊗ em) + n,

where γnm ∈ [0, 1] and n ∈ ℜL×1 is the additive noise.

The data are generated as follows. First, N = 3 or N = 6
endmembers are randomly selected from the candidate spectra

set. This set is composed by 19 spectra drawn from the United

States Geological Survey (USGS) digital spectral library [48],

as given in Fig. 4. Second, the abundance vectors are uniformly

generated using a Dirichlet distribution on the simplex defined

by the nonnegativity and the sum-to-one constraints [48]. Last,

the data is corrupted with a Gaussian noise at two levels, with

the signal-to-noise ratio of 30 dB and 15 dB.

Experiments are conducted employing the weight set α ∈
{0, 0.1, . . . , 0.9, 1}, which implies the model varying grad-

ually from the nonlinear Gaussian NMF (α = 0) to the

conventional linear NMF (α = 1). For each α from the

weight set, the Algorithm 2 is applied. The maximum iteration

number is set to kmax = 2000 in all the comparing methods.

The bandwidth parameter in the Gaussian kernel is roughly

set as σ = 3.0 for all the experiments. By performing ten

Monte-Carlo simulations, the average values in terms of SAD
and RMSE are compared with the aforementioned unmixing

approaches, as given in TABLE III.

We observe the following. For all the considered numbers of

endmembers and noise levels, the proposed bi-objective NMF

TABLE III: Unmixing performance on synthetic data (×10−2)

N = 3 N = 6

SNR = 30dB SNR = 15dB SNR = 30dB SNR = 15dB

SAD RMSE SAD RMSE SAD RMSE SAD RMSE

FCLS - 32.48 - 31.99 - 30.01 - 28.17

GBM-sNMF - 28.91 - 27.48 - 27.79 - 26.49

K-Hype - 8.40 - 10.63 - 12.31 - 11.11

MiniDisCo 8.20 10.49 11.60 12.24 14.53 2©7.66 17.93 2©7.99

ConvexNMF 14.19 21.43 13.91 21.96 19.06 12.15 20.00 12.86

KconvexNMF - 14.40 - 16.36 - 12.45 - 12.40

MercerNMF - 16.02 - 15.94 - 1©7.60 - 1©7.54

Mac-Mic 9.93 12.72 13.34 12.34 14.48 13.01 19.05 9.04

B
i-

o
b

je
ct

iv
e

N
M

F
[t

h
is

p
ap

er
]

α = 1 8.29 25.26 11.14 24.18 15.88 37.01 24.08 36.44

P
ar

et
o

O
p

ti
m

al

α = 0.9 1©4.80 1©4.67 1©6.22 3©6.83 12.58 3©8.83 21.97 3©8.44

α = 0.8 2©5.34 2©4.86 2©6.40 1©6.37 2©11.78 8.93 18.83 8.85

α = 0.7 3©6.19 3©6.13 3©6.95 2©6.76 1©11.77 8.85 17.36 9.10

α = 0.6 7.10 7.81 7.49 7.62 3©11.95 9.28 16.56 9.14

α = 0.5 7.85 9.06 7.95 8.40 12.27 9.93 16.11 9.80

α = 0.4 8.48 9.80 8.45 8.90 12.70 10.80 3©15.46 10.45

α = 0.3 9.16 10.59 8.90 9.36 13.10 11.72 2©15.19 10.89

α = 0.2 9.92 11.74 9.51 9.82 13.67 12.27 1©15.16 11.14

α = 0.1 10.95 13.00 10.34 10.60 14.42 12.93 15.57 11.08

α = 0 12.32 17.55 12.54 15.54 15.22 13.83 16.42 12.32

TABLE IV: Performance on the Urban image (×10−2)

Spectral Angle Distance

SAD Asphalt Grass Tree Roof

MiniDisCo 3©30.23 25.91 1©25.62 13.86 55.51

ConvexNMF 34.83 48.15 47.87 14.29 35.01

Mac-Mic 33.53 3©10.78 2©43.65 53.00 26.68

th
is

p
ap

er
α = 1(ℓ−∞-norm) 40.84 87.29 60.03 1©7.92 3©8.14

P
ar

et
o

o
p

t.
α = 0.48 (ℓ2-norm) 31.28 66.74 46.11 2©8.30 1©3.95

α = 0.40 (ℓ∞-norm) 30.45 64.18 3©44.95 3©8.37 2©4.30

α = 0.04 (ℓ−∞-norm) 2©29.79 1©8.34 70.54 9.77 30.46

α = 0 1©28.55 2©8.93 62.31 10.10 32.84

with the Pareto optimal outperforms not only state-of-the-art

methods but also the linear (α = 1) and Gaussian (α = 0)

NMF in terms of endmember estimation. Given relatively

small number of endmembers with N = 3, the proposed

method also yields the smallest root mean square error on

the abundances regardless of the noise level. For N = 6, it

provides comparable results to MercerNMF and MinDisCo,

being slightly worse in terms of RMSE and slightly better in

terms of SAD.

C. Experiments with Urban image

As depicted in Fig. 5, the real hyperspectral image studied

is from the Urban image, acquired by the HYDICE sensor.

The top left part with 150 × 150 pixels is taken from the

original 307 × 307 pixels’ image. The raw data consists of

210 channels covering the bandwidth from 0.4µm to 2.5µm.

As recommended in [49], only L = 162 bands of high-SNR

are of interest. According to the ground truth provided in [49],

[50], the studied area is mainly composed of four endmembers

shown in Fig. 6: asphalt, grass, tree and roof. In experiments,

the weight set is chosen as α ∈ {0, 0.04, . . . , 0.96, 1}, and the

maximum iteration number is set to kmax = 300. Starting from

α1 = 0, the matrix E1 is initialized by conducting NMF on

1000 randomly chosen samples, while the elements in A1 are

generated using a [0, 1] uniform distribution. The bandwidth in

the Gaussian kernel is selected as σ = 4.2, after preliminary

analysis using the single-objective Gaussian NMF with the

candidate set {0.2, 0.3, . . . , 9.9, 10, 15, 20, . . . , 50}.

The unmixing performance is shown in TABLE IV, with

several ℓp-norms as described in Section IV-D. Methods that
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Fig. 5: The scene from the Urban image
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Fig. 6: The four ground truth endmembers in the Urban image.

do not extract endmembers are not included in this table, such

as FCLS, sNMF, K-Hype, MercerNMF and KconvexNMF.

Compared with the state-of-the-art methods, three endmem-

bers out of four, i.e., Asphalt, Tree and Roof, are better

estimated by Pareto optima. The estimated abundance maps

corresponding to the four endmembers are shown in Fig. 9.

We compare in TABLE V the computational time of the pro-

posed method with the aforementioned unmixing algorithms

that jointly estimate the endmembers and abundances. Non-

linear methods, and in particular kernel-based ones, are time-

consuming in general. Regarding the proposed bi-objective

NMF, its computational complexity is lower than the one of

MercerNMF, for a fixed value of α. When considering a spread

of values of α, the sub-optimization problems can be addressed

in parallel.

TABLE V: Estimated computational time (in seconds)

MiniDisCo 220

ConvexNMF 996

n
o
n
li

n
ea

r KconvexNMF 2622

MercerNMF 20332

Mac-Mic 4244

Bi-Objective NMF, average per α 5420

D. Approximating the Pareto front

Inherited from nonlinear multi-objective optimization prob-

lems, the determination of the whole Pareto front is intractable

and the target becomes to approximate the Pareto front by a set

of discrete points, as stated in [36]. To this end, we operate as

follows: For each value of α, we obtain a solution (endmember

and abundance matrices) from the proposed algorithm; by

evaluating the objective functions JX and JH at this solution,

we get a single point in the objective space, as shown in Fig. 7.

The evolution of these objectives functions and the aggregated
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0
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J

   
1
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2
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X

H

ℓ
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ℓ

ℓ

Fig. 7: Illustration of the approximated Pareto front in the

objective space for the Urban image. The (normalized) objec-

tive vectors of the 25 non-dominated solutions, marked in red,

approximate a part of the Pareto front; the dominated solutions

are marked in blue.

objective function J , evaluated at the solution obtained for

each α, are shown in Fig. 8. We observe the following:

1) Regarding the sum-weighted approach, the minimizer of

the sub-optimization problem is proven to be a Pareto

optimal for the original multi-objective problem, i.e., the

corresponding objective vector belongs to the Pareto front

in the objective space [38]. For the Urban image, we obtain

25 (out of 26) dominated solutions. The solution for α = 0
is dominated by the solutions on the approximated Pareto

front, with respect to both objectives. Such phenomenon is

not surprising. Indeed, there exist multiple Pareto optimal

solutions in a problem only if the objectives are conflicting

to each other, as demonstrated in [51]3. As shown in Fig. 7

and Fig. 8, the obtained solutions are Pareto optimal within

the objectives-conflicting interval α ∈ [0.04, 1].
2) A uniform distribution of the values of α from [0, 1] does

not lead to a uniform spread of the solutions on the ap-

proximated Pareto front. Moreover, the nonconvex part of

the Pareto front cannot be attained using any weight. These

are two major drawbacks of the sum-weighted method, as

stated in [38] and illustrated in Fig. 7.

Nevertheless, the obtained approximation of Pareto front is

of high value. On one hand, it provides a set of non-dominated

solutions for the DM. On the other hand, an insight of the

tradeoff between objectives JX and JH reveals the underlying

linearity/nonlinearity of the data under study.

VI. CONCLUSION

This paper presented a bi-objective nonnegative matrix

factorization by exploiting the kernel machines, where the

decomposition was performed simultaneously in the input

and the feature spaces. The multiplicative update rules were

3For example, the Pareto optimal solutions for the well-known Schaffer’s
function, defined by J(x) = [x2 (x − 2)2], are found only within the
interval [0, 2], where a tradeoff between two objectives exists. See [52].
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Fig. 8: Visualization of the tradeoff between the two objectives

JX and JH, and the change of the aggregated objective

function J , along with the increment of α for the Urban image.

derived. The performance of the method was demonstrated

for unmixing synthetic and real hyperspectral images. The

approximation of the Pareto front was analyzed. Future work

include a more efficient way to determine the good value

of α. In addition, we will incorporate physical-based unmix-

ing models, namely the bilinear ones and the macroscopic-

microscopic models, by defining appropriately the kernel in

the proposed framework. Considering simultaneously several

kernels, and consequently several feature spaces, is also under

investigation.
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