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Abstract

Nonnegative matrix factorization (NMF) has become a prominent signal pro-
cessing and data analysis technique. To address streaming data, online meth-
ods for NMF have been introduced recently, mainly restricted to the linear
model. In this paper, we propose a framework for online nonlinear NMF,
where the factorization is conducted in a kernel-induced feature space. By
exploring recent advances in the stochastic gradient descent and the mini-
batch strategies, the proposed algorithms have a controlled computational
complexity. We derive several general update rules, in additive and multi-
plicative strategies, and detail the case of the Gaussian kernel. The perfor-
mance of the proposed framework is validated on unmixing synthetic and
real hyperspectral images, comparing to state-of-the-art techniques.

Keywords: Nonnegative matrix factorization, online learning, kernel
machines, hyperspectral unmixing

1. Introduction

Nonnegative matrix factorization (NMF) aims to approximate a given
nonnegative matrix by the product of two low-rank ones [1], and has been
a prime dimensionality reduction technique for signal and image processing.
Due to its ability to extract the nonnegative and parts-based features for the
nonnegative input data, the NMF provides a framework appropriate to many
real-world applications. Of particular interest is the hyperspectral unmixing
problem. A hyperspectral image is an assemblage of scenes obtained across
a certain wavelength range, namely the reflectance spectrum is available at
each pixel. Assuming that each spectrum is a mixture of to-be-determined
pure spectra, termed endmembers, the unmixing problem estimates these
endmembers and their fractional abundances at each pixel. The estimated
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endmembers and abundances should be nonnegative for physical interpreta-
tion, and a sum-to-one constraint is often imposed to the abundance values
at each pixel. The NMF estimates jointly the endmembers (recorded in the
basis matrix) and their fractional abundances (recorded in the encoding ma-
trix). Without loss of generality, we follow this terminology in this paper.

In the linear NMF, each column of the input matrix can be viewed as a
linear combination of the basis vectors, with weights given by the encoding
matrix. This model has been extensively investigated, with the cost function
often augmented by including regularization terms, such as sparsity on the
encoding matrix [2] and smoothness penalty on the basis matrix [3]. Taking
advantage of the framework provided by kernel machines, a few attempts have
been recently made for nonlinear NMF. The trick is to map the data, with
some nonlinear transformation, to a higher dimensional feature space, where
the factorization occurs. Most kernel-based NMF, such as in [4, 5], suffer
from the pre-image problem which prevents them from extracting the basis
matrix [6]. We have recently proposed in [7, 8, 9, 10] the so-called KNMF
which bypasses this problem by optimizing directly in the input space.

To tackle large-scale and streaming dynamic data, a couple of online NMF
methods have been proposed. Most of them considered the conventional lin-
ear NMF model, as investigated in [11, 12, 13, 14]. In an online setting,
the computational complexity is the main concern to address. To prohibit
processing the whole data, early work presented in [14] factorized the matrix
composed by the previous basis matrix and novel samples. The incremental
online NMF (IONMF) in [11] proposed to fix the encoding for the past sam-
ples, thereby alleviating the computational overhead. Since that published
work, this assumption has been widely applied in online NMF algorithms
[12, 13, 15]. Moreover, as the online NMF possesses a separable cost function
with respect to samples, the authors of [16] applied the stochastic gradient
descent (SGD) strategy, which is a crucial complexity-reduction approach for
online learning [17]. This technique consists in substituting the real gradient
with the noisy stochastic one, since the latter involves merely a single or a
small batch of samples. In [13], the recent robust stochastic approximation
technique was exploited for the linear model, where the SGD was improved
with a smartly chosen step-size and an average step on the results.

It is noteworthy that the online NMF is closely related to the online dic-
tionary learning and sparse coding, where the basic idea is to adaptably learn
a dictionary from data, and to represent each sample as a sparse combination
of the dictionary elements. The linear model considers an Euclidean least-
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squares loss function, with an ℓ1-norm regularizer on the coding term in order
to promote its sparsity [18]. Extensions has been recently proposed, such as
a robust factorization with the Huber loss function as presented in [19], and
a nonlinear variation defined on a Riemannian manifold in [20].

To the best of our knowledge, there is no online algorithm for kernel-based
NMF. In this paper1, we propose an online KNMF (OKNMF) framework that
explores recent advances from stochastic optimization. By investigating the
SGD, mini-batch and averaged SGD (ASGD) strategies, we derive additive
and multiplicative update rules to estimate the basis matrix (endmembers)
and the encoding vectors (abundances). We provide extensive experiments
on synthetic and real hyperspectral images to demonstrate the relevance
of the proposed algorithms. The remainder of this paper is organized as
follows. Section 2 presents the NMF and its kernel-based variant KNMF. In
Section 3, we revisit the latter for online learning and provide appropriate
algorithms. Several extensions are presented in Section 4. Experimental
results are reported on synthetic and real hyperspectral images in Section 5.

2. A Primer on NMF and KNMF

Given a nonnegative matrix X = [x1 x2 · · · xT ] with xt ∈ X ⊆ ℜL

being the t-th sample (i.e., spectrum), the linear NMF consists in factorizing
it into the product of two low-rank nonnegative matrices, namely X ≈ EA.
Let E = [e1 e2 · · · eN ] be the basis matrix. An equivalent formulation is

xt ≈
N∑

n=1

ant en, (1)

for t = 1, 2, . . . , T . This model represents each sample xt as a linear combi-
nation of the basis vectors e1, e2, · · · , eN with weights ant being the entries of
the encoding matrix A. The conventional NMF minimizes the cost function

J(E,A) =
1

2

T∑

t=1

∥∥∥xt −
N∑

n=1

ant en

∥∥∥
2

,

1This paper is an extended version of [21], and provides more relevant algorithms
(ASGD, sparse coding, ...), deeper theoretical analysis (convergence, complexity, ...) and
extensive experimental results.
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with the nonnegativity on the entries of E and A. NMF algorithms itera-
tively alternate the optimization over the two unknown matrices [1, 22].

The kernel-based NMF (KNMF) considers the factorization X
Φ ≈ E

Φ
A,

whereXΦ = [Φ(x1) · · · Φ(xT )] andE
Φ = [Φ(e1) · · · Φ(eN)], or equivalently

Φ(xt) ≈
N∑

n=1

ant Φ(en), (2)

for all t. Here, Φ(·) is a nonlinear function mapping any element of the input
space X to some feature space H. The induced norm is denoted ‖ · ‖H and
the corresponding inner product is evaluated using a kernel function κ(·, ·),
such as the Gaussian kernel. The corresponding cost function is

J (E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

ant Φ(en)
∥∥∥
2

H
, (3)

where the nonnegativity constraint is imposed on all en and A. To get the
solution, a two-block coordinate descent strategy is investigated in [9, 10].

3. Online KNMF

In the online setting, the samples arrive successively, at each instant. An
intuitive idea is to iteratively conduct the batch KNMF. As the samples
number continuously grows, this approach suffers from an intractable com-
putational complexity. We propose in the following a framework for online
KNMF (OKNMF) with a controlled computational complexity. Additive
and multiplicative update rules for the basis matrix (Section 3.2) and the
encoding matrix (Section 3.3) are described in the general form, while the
Gaussian kernel is detailed in Section 3.4. The computational complexity
and the stopping criterion are discussed in Section 3.5. All these develop-
ments can be easily extended to other kernel-based NMF formulations, e.g.,
[4, 5].

3.1. Problem formulation

From (3), the cost function at instant k (i.e. of the first k samples) is

Jk(Ẽ, Ã) =
1

2

k∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

ãnt Φ(ẽn)
∥∥∥
2

H
,
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where Ẽ and Ã are respectively the basis and encoding matrices at instant k.
We adopt the following assumption, initially proposed in [11] and employed
in [12, 13, 16] for online NMF: from k to k + 1, the encoding vectors for the

first k samples remain unchanged, i.e., the matrix Ã is only appended.
As a new sample xk+1 is available at instant k + 1, one estimates the

matrix E by updating Ẽ, and the novel sample’s encoding vector ak+1 is
appended to Ã, namely A = [Ã ak+1]. The above cost function becomes

Jk+1(E,A) =
1

2

k∑

t=1

∥∥∥Φ(xt)−
N∑

n=1

ãntΦ(en)
∥∥∥
2

H
+
1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
.

(4)
By removing the constant term, the optimization problem becomes

min
ak+1,E≥0

k+1∑

t=1

L(xt,at,E), (5)

where the sub-loss function L(xt,at,E) takes the form

1

2

N∑

n=1

N∑

m=1

antamtκ(en, em)−
N∑

n=1

antκ(en,xt).

In the following, we adopt an alternating strategy to solve the problem (5).

3.2. Basis matrix update

The gradient of the loss function in (5) with respect to the vector en is:

∇enJk+1 =

k+1∑

t=1

∇enL(xt,at,E), (6)

where ∇enL(xt,at,E) = ant
(∑N

m=1amt∇enκ(en, em)−∇enκ(en,xt)
)
. In this

expression, ∇enκ(en, ·) denotes the gradient of the kernel with respect to its
(first) argument en, as given in Table 1 for most commonly-used kernels. In
the following, we derive additive and multiplicative update rules.

Additive update rules — SGD and ASGD

Consider the projected gradient descent (PGD) (see [22] for an overview
of the PGD for batch NMF), then a PGD update for KNMF takes the form

en =
(
en − ηn

k+1∑

t=1

∇en
L(xt,at,E)

)
+
,
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Table 1: Commonly-used kernels and their gradients with respect to their first argument.
Kernel κ(en, z) ∇en

κ(en, z)

Linear z
⊤
en z

Polynomial (z⊤
en + c)d d (z⊤

en + c)(d−1)
z

Gaussian exp( −1
2σ2 ‖en − z‖2) − 1

σ2κ(en, z)(en − z)

Sigmoid tanh(γz⊤
en + c) γ sech2(γz⊤

en + c)z

for all n, where ηn is the step-size parameter and (·)+ is the operator that
projects to the nonnegative set. This rule cannot be applied in online learn-
ing, since it deals with all the k received samples at each instant k.

The stochastic gradient descent (SGD) update alleviates this compu-
tational burden, by approximating the above gradient based on a single
randomly-chosen sample xt at each instant, and is of the form

en =
(
en − ηn∇enL(xt,at,E)

)
+
. (7)

With a drastically simplified procedure, the SGD converges much slower
than its batch mode counterpart [17]. A compromise between these two
is the mini-batch mode, which aggregates the gradients corresponding to a
randomly-chosen subset of samples. Let I be this subset randomly-chosen
at each instant. The mini-batch update rule takes the following form

en =
(
en − ηn

∑

xt∈I

∇enL(xt,at,E)
)
+
, (8)

where the pre-fixed mini-batch size is denoted in the following by p = card(I).
To accelerate the convergence of the SGD, we further consider an averaged

stochastic gradient descent (ASGD) strategy, as initially proposed in [23]. By
averaging the results obtained by SGD (with mini-batch) over samples, the

ASGD is expressed as ej
n = 1

j−j0

∑j
j=j0+1 e

j
n, or in the recursive form

e
j+1
n = (1− ξj) e

j
n + ξj e

j+1
n , (9)

where ξj = 1/max(1, j − j0) is the averaging rate [24, 17]. Theoretical results
in [23] show that the ASGD converges as good as the second-order SGD [12],
where the latter requires the costly computation of the Hessian.

To appropriately tune the step-size parameters ηn, we revisit recent ad-
vances developed in the linear case, where the convexity of the loss function
enables robust stochastic approximation [13] and second-order PGD [12], i.e.,
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the use of the (approximate) inverse of the Hessian as a step-size [16]. How-
ever, the kernel-based loss function L(xt,at,E) may be nonconvex in terms
of en. Following recent theoretical results [17, 24], we adopt the step-size
ηj = η0(1 + η0λj)

−1, equally for all the basis vectors en. Hence, it starts
at a pre-determined value η0 and diminishes asymptotically as (λj)−1, λ be-
ing a tunable parameter. According to [17], this form of step-size proves to
be effective in SGD algorithms. Moreover, it leads to the best convergence
speed when the loss function is convex with λ being the smallest eigenvalue
of the Hessian [17, 24]. Regardless of the possible nonconvex loss function,
experiments show that this step-size provides excellent results for OKNMF.

Multiplicative update (MU)

We present next the multiplicative update rules, by revisiting the origi-
nal work in [1] for batch NMF. As opposed to the additive update rules, the
resulting algorithms neither require the rectification to impose the nonneg-
ativity, nor have the pain of choosing the step-size parameter. To this end,
we split the gradient in (6) as the subtraction of two positive terms, namely

∇enL(xt,at,E) = G+(xt,at,E)− G−(xt,at,E). (10)

By setting the step-size to ηn = en/
∑

xt∈I
G+(xt,at,E), this yields the fol-

lowing multiplicative update rule of the general form

en = en ⊗
∑

xt∈I
G−(xt,at,E)∑

xt∈I
G+(xt,at,E)

, (11)

where the multiplication ⊗ and the division are component-wise. Analo-
gous to the additive cases, three multiplicative update rules are proposed,
depending on the pre-fixed number p of samples investigated at each instant:
(i) If p = k + 1, all the samples are processed and (11) boils down to the
multiplicative update rule of the batch KNMF; (ii) If p = 1, then (11) uses a
single randomly chosen sample, as with the stochastic gradient descent (7);
(iii) If 1 < p < k + 1, then (11) operates with a mini-batch update of size
equal to p, as its additive counterpart (8).

3.3. Encoding vector update

To estimate the encoding vector ak+1 for the newly available sample xk+1,
the basis matrix E is fixed, as well as the previously estimated encoding
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vectors at, for t = 1, 2, . . . , k. The optimization problem becomes

min
ak+1≥0

1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
. (12)

The kernel-based model (2) is linear-in-the-parameters ant. As a consequence,
we can investigate well-known algorithmssuch as the active set method im-
plemented in [12, 13] and the multiplicative update routine of NMF [11, 15].

The derivative of Jk+1(E,A) in (4) with respect to an(k+1) is

∇an(k+1)
Jk+1(E,A) =

N∑

m=1

am(k+1) κ(en, em)− κ(en,xk+1).

Applying the gradient descent scheme yields the update rule

an(k+1) = an(k+1) − η′n∇an(k+1)
Jk+1,

for all n, where η′n denotes the step-size parameter. Additionally, a rectifi-
cation is necessary at each iteration in order to guarantee the nonnegativity.
By replacing the step-size parameter η′n with η′n = 1/

∑N

m=1 am(k+1)κ(en, em),
the multiplicative update rule for an(k+1) can be expressed as

an(k+1) = an(k+1) ×
κ(en,xk+1)∑N

m=1 am(k+1) κ(en, em)
,

for all n. If the sum-to-one constraint is required, the resulting encoding
vector can be divided at each iteration by its ℓ1-norm, namely

∑N

m=1 am(k+1).

3.4. Case of the Gaussian kernel

The update rules for any given kernel (including but not limited to the
ones in Table 1) can be derived, by appropriately replacing the expressions
of κ(en, z) and ∇en

κ(en, z) in (6) (SGD/ASGD), and splitting the gradient
as in (10) (MU). The trivial case with the linear kernel corresponds to the
linear NMF in batch mode, and to IONMF [11] in online mode.

We detail below the derivation of the update rules for the Gaussian kernel
(see Table 1). For the encoding vector update, the update rule remains
unchanged. For the basis matrix, the mini-batch SGD update (8) becomes

en =
(
en −

η

σ2

∑

xt∈I

ant
(
κ(en,xt)(en − xt)−

N∑

m=1

amt κ(en, em)(en − em)
))

+
.
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The corresponding ASGD update is given by sequently addressing the above
output of SGD with (9). By splitting the gradient of the loss function
∇enL(xt,at,E), as given in (10), we get the following two nonnegative terms:





G+(xt,at,E) =
ant
σ2

(
κ(en,xt)en +

N∑

m=1

amtκ(en, em)em

)
;

G−(xt,at,E) =
ant
σ2

(
κ(en,xt)xt +

N∑

m=1

amtκ(en, em)en

)
.

Setting the step-size as aforementioned leads to the multiplicative update

en = en ⊗
∑

xt∈I
ant

(
xt κ(en,xt) +

∑N
m=1 amt en κ(en, em)

)
∑

xt∈I
ant

(
en κ(en,xt) +

∑N
m=1 amt em κ(en, em)

) ,

where the multiplication ⊗ and the division are component-wise.

3.5. Complexity and stopping criterion

We first analyse the computational complexity and memory usage for the
OKNMF with SGD/ASGD/MU algorithms. Assume N ≪ min (L, k).

The time complexity for updating each basis vector en is O(pNL) per it-
eration, which holds for commonly-used kernels due to a roughly equal time
complexity of L for computing κ. Thus, the total time complexity for the ba-
sis matrix is O(ps1N

2L), where s1 is the number of iterations. In the online
setting, the sequential batch update has an increasing value O(ks1N

2L), k
being the current number of samples, and therefore is unrealistic for stream-
ing data. The mini-batch is attractive for its fixed complexity O(ps1N

2L)
and for its performance as demonstrated with the experiments conducted in
Section 5. The time complexity for the encoding vector update is O(s2NL),
s2 being the number of iterations. The total time complexity for the encoding
matrix update remains unchanged, since the matrix is only appended.

The complexity in terms of memory usage is O(Lk + Nk) at instant k,
by keeping in memory all the proceeded data and their encoding vectors. To
alleviate this storage burden, we retain in memory only the last q samples
with their encoding vectors. Termed “buffering strategy” in [13], this scheme
can reduce the memory complexity to the fixed value O(Lq +Nq).

Concerning the stopping criterion, a two-fold criterion is applied for both
basis matrix and encoding vector updates: either the decrease in objective
function between two successive iterations is small enough (10−4 in experi-
ments), or the preset maximum number of iterations is reached (e.g., 100).
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4. Extensions of OKNMF

This section presents several extensions of OKNMF, with the most known
regularizations. Other extensions can be conveniently incorporated in the
OKNMF framework, by revisiting the work on the batch mode in [10].

4.1. Sparse coding (sOKNMF)

Sparsity, introduced to NMF in [2] by penalizing the ℓ1-norm of the en-
coding vector, allows to represent each sample xt with only few basis vectors.
Under the nonnegativity constraint, ‖at‖ℓ1 =

∑N

n=1 ant. Adding such reg-
ularization in the initial cost function brings no effect to the basis matrix
update, since it is independent of en. For the encoding vector given with the
optimization problem (12), this leads to the sparsity-promoting version

min
ak+1≥0

1

2

∥∥∥Φ(xk+1)−
N∑

n=1

an(k+1)Φ(en)
∥∥∥
2

H
+ β

N∑

n=1

an(k+1),

where β controls the tradeoff between the factorization accuracy and the level
of sparsity. By taking the derivative with respect to an(k+1) and appropriately
choosing the step-size, the multiplicative update rule of ak+1 becomes

an(k+1) = an(k+1) ×
κ(en,xk+1)∑N

m=1 am(k+1) κ(en, em) + β
.

The influence of sparse coding on the regularization of the update is clear.

4.2. Smoothness on the basis vectors

The smoothness regularization is of great interest when dealing with ill-
posed problems, namely in hyperspectral unmixing since the extracted bases
should be less “spiky” in order to be relevant endmembers. In the following,
we examine several regularizations to promote the smoothness.

A natural regularization is the ℓ2-norm penalty [3], which leads to

J 2-norm
k+1 (E,A) =

k+1∑

t=1

L(xt,at,E) +
δ

2

N∑

n=1

‖en‖2.

Its gradient with respect to any en can be expressed with ease, as well as the
additive and multiplicative update rules. Another way to promote smooth
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solutions for NMF is proposed in [25] by penalizing variations between suc-
cessive values, by minimizing

∑L−1
l=2 |eln − e(l−1)n| for all n. In this case

J fluct
k+1 (E,A) =

k+1∑

t=1

L(xt,at,E) +
γ

2

N∑

n=1

L−1∑

l=2

|eln − e(l−1)n|.

The corresponding update rules can be obtained by following the derivations
given in Section 3. Other smoothness regularizations can be considered [10].

5. Experiments on Synthetic and Real Hyperspectral Images

This section first presents the relevance of the SGD/ASGD/MU algo-
rithms within the proposed OKNMF framework on several classes of syn-
thetic data, before investigating three well-known real hyperspectral images.

5.1. State-of-the-art methods for online NMF

The online NMF (ONMF) [14] has a reduced computational complexity
thanks to the full-rank decomposition theorem. However, it yields inferior
performance as demonstrated in many works, such as in [13] and in this
paper. The incremental online NMF (IONMF) [11] uses an incremental
subspace learning to tackle the increasing complexity in the online setting.
In [12], an optimization problem similar to IONMF is solved with additive
update rules. Therein, the update with first-order PGD is closely related to
the work in [16], where online factorization with sparse coding is discussed.
By replacing the step-size in the PGD with the approximated inverse Hes-
sian, the second-order PGD (HONMF) is advocated in [12]. The robust
stochastic approximation (RSA) [13] benefits from the recent progress in
choosing the step-size and averaging over the results, with a convergence
rate of O(1/

√
k) guaranteed for the basis update. The projective online

NMF (PONMF) yields orthogonal and sparse basis vectors, with the fac-
torization X = EE

⊤
X [26]. The volume-constrained online NMF in [15]

minimizes log |det(E)|, under the assumption of a square basis matrix.

5.2. Evaluation metrics

The reconstruction error is RE =
√

1
TL

∑
t ‖xt −

∑N

n=1 anten‖2. From

[7, 8, 10], the reconstruction error in the feature space is defined by REΦ =√
1
TL

∑
t

∥∥Φ(xt)−
∑N

n=1 antΦ(en)
∥∥2

H
. When ground-truth is available with
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Figure 1: The spectra used for generating the synthetic images, with N = 3 endmembers
for the GBM (left) and N = 6 for the PNMM (right).

Table 2: Parameter Settings for the Synthetic Images
GBM PNMM

σ p η0 λ σ p η0 λ

O
K
N
M
F SGD

5.5 30
0.25 2−8

6.5 30
0.25 2−8

ASGD 2 2−9 1 2−9

MU - - - -

the real endmembers en and abundances at, the unmixing quality can be fur-
ther evaluated with two other metrics. The averaged spectral angle distance

between endmembers [27] is SAD = 1
N

∑N

n=1 arccos
e
⊤
n en

‖en‖‖en‖
, and the root

mean square error of abundances [28, 29] is RMSE =
√

1
NT

∑
t ‖at − at‖2.

5.3. Performance of OKNMF on synthetic data

The performance is evaluated by unmixing two series of synthetic hy-
perspectral images, each composed of 50 000 pixels. The endmembers used
for data generation are from the USGS digital spectral library used in [30].
These spectra, with L = 224 bands, are shown in Figure 1. Five images are
generated using the generalized bilinear model (GBM) [28], defined by

xt =
N∑

n=1

ant en +
N−1∑

n=1

N∑

m=n+1

γnm ant amt (en ⊗ em) + n,
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Figure 2: Influence of the value of the mini-batch size p on the reconstruction errors in
the input and feature spaces, using the MU algorithm, with p = 10, 30, or 50.

where γnm ∈ [0, 1] is generated from the uniform distribution. Another five
images are defined with a postnonlinear mixing model (PNMM) [31], namely

xt =
N∑

n=1

ant en + b
( N∑

n=1

ant en

)
⊗
( N∑

n=1

ant en

)
+ n,

where b is uniformly generated within [−0.3, 0.3] according to [31]. For each
image, the abundance values ant are uniformly generated within [0, 1] under
the sum-to-one constraint, and n is a Gaussian noise with SNR = 30 dB.

Experiments are conducted with the following settings. The bandwidth
of the Gaussian kernel is determined with the batch KNMF [10]. The mini-
batch size is chosen with p = min{⌈ k

10
⌉, m}, which allows to balance between

the computational cost and the smoothness of the convergence. It influence
is shown with the MU (other algorithms depend also on the step-size param-
eter). As illustrated in Figure 2, a moderate value is 30. While small values
of p cause fluctuating convergence, an over-sized p = 50 is computational ex-
pensive without significant improvement due to the redundancy within the
data. Last, concerning the algorithms SGD/ASGD with additive updates,
the optimal values of η0 and λ are determined with a 10-fold cross-validation
on 1000 random pixels, using the candidate values η0 = {2−3, 2−2, . . . , 21}
and λ = {2−15, 2−14, . . . , 21}. Table 2 summarizes the parameter settings.

For the sake of fair comparison, the basis matrix is identically initialized
for all algorithms, using the endmembers estimated by the NMF algorithm
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Table 3: Unmixing Performance for the Synthetic Images (×10−2)
GBM PNMM

SAD RMSE RE REΦ SAD RMSE RE REΦ

ONMF 100.39±2.75 48.87±0.02 66.56±28.51 6.68±0.00 104.66±18.3 48.82±0.04 79.52±65.8 6.68±0.00
IONMF 3© 10.06±0.94 16.41±1.83 1.81±0.01 6.68±0.00 19.52±7.37 3© 15.06±2.29 3© 1.71±0.14 6.68±0.00
HONMF 20.62±4.07 3© 14.47±4.97 2© 1.57±0.21 5.58±1.76 10.40±1.67 19.16±4.30 1© 1.40±0.01 4.68±0.85
RSA 32.95±8.98 34.93±5.38 1© 1.56±0.19 635.38±0.04 33.96±8.63 35.56±5.11 2© 1.54±0.20 631.92±0.04

PONMF 71.53±0.03 1© 12.58±0.01 3© 1.81±0.00 71.34±0.01 71.54±0.04 1© 12.56±0.01 1.79±0.00 70.46±0.01

O
K
N
M
F SGD 12.48±2.42 17.17±2.77 2.51±0.19 3© 0.51±0.03 1© 8.44±3.46 19.70±2.71 2.65±0.13 2© 0.45±0.01

ASGD 1© 9.19±0.57 2© 14.43±1.30 2.25±0.01 1© 0.47±0.00 2© 8.93±1.70 2© 15.01±2.95 2.40±0.11 1© 0.42±0.01
MU 2© 10.00±1.48 17.08±4.89 2.38±0.13 2© 0.49±0.02 3© 9.42±3.18 18.72±3.85 2.60±0.08 3© 0.45±0.02

on a small subset of samples. With five Monte-Carlo simulations, the afore-
mentioned metrics are given in Table 3. OKNMF provides jointly the best
endmembers/abundances in terms of SAD/RMSE. The only competitive al-
gorithm seems to be PONMF when dealing with the RMSE of abundances.
However, the estimated endmembers are the worst with PONMF, up to eight-
fold compared to the proposed ASGD algorithm. The reconstruction errors
allow to measure the relevance of the jointly estimated endmembers and
abundances. The most accurate reconstruction is achieved by all the pro-
posed algorithms (SGD/ASGD/MU), with the reconstruction error in the
feature space REΦ. It is noticeable that these errors with REΦ are at least
threefold lower than the ones obtained by all state-of-the-art algorithms with
RE. This means that the Gaussian-based model (2) provides the most suit-
able factorization for the studied images, outperforming the linear one (1).

5.4. Performance of the sparse coding OKNMF on synthetic data

To study the relevance of the sparsity-promoting sOKNMF algorithm, we
generate four sets (each at a given sparsity level) of synthetic data, each set
consisting of five images of 50× 50 pixels using the PNMM model and end-
members shown in Figure 1. To define the sparsity level, a proportion (15%,
30%, 45% and 60%) of the encoding matrices are nullified, by ensuring at
least one non-zero entry existing for each column. For sOKNMF, the param-
eter β should be tuned according to the sparsity of the unknown abundance
matrix. According to [2, 32], a rough estimator from the input spectra is

s =
1√
L

L∑

l=1

√
T − ‖X l‖1/‖X l‖2√

T − 1
,

whereX l is the l-th row ofX. The candidate value set of β is {0, 0.01s, 0.1s, s},
with s = 0 corresponding to the non-sparse OKNMF. In all experiments, the
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Figure 3: The averaged spectral angle distance (SAD) and the averaged root mean square
error (RMSE) versus the sparsity level in the abundances, using OKNMF and sOKNMF.

 

(a) Moffett

 

(b) Samson

 

(c) Urban

Figure 4: The real hyperspectral images

ASGD is applied with η0 = 2, λ = 2 × 10−8, and σ = 6.0. With ten Monte-
Carlo simulations, the averaged SAD and RMSE are given in Figure 3. Both
SAD and RMSE are enhanced by the sparsity-promoting sOKNMF.

5.5. Real hyperspectral images

In the following, we describe three real hyperspectral images, and provide
experimental results in Section 5.6.

The first image is a 50× 50-pixel sub-image from the well-known Moffett
image, illustrated in Figure 4(a). This image, acquired with the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) with channels ranging from
0.4µm to 2.5µm, has L = 186 spectral bands after removing noisy and water
absorption bands. While this image is relatively small, it has been widely
investigated and is known to be composed of vegetation, soil and water. The

15



0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.2

0.4

0.6

0.8

1

Wavelength (µm)

R
ef

le
ct

an
ce

 

 
soil
water
tree

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (µm)

R
ef

le
ct

an
ce

 

 
asphalt road/parking
grass
tree
roof#1
roof#2/shadow
concrete road

Figure 5: The ground-truth endmembers in Samson (left) and Urban (right) images.

second image was acquired by the Spectroscopic Aerial Mapping System with
Onboard Navigation (SAMSON), with 156 channels ranging from 0.4µm to
0.9µm. We consider an image of 95 × 95 pixels illustrated in Figure 4(b),
as in [33]. Given in Figure 5, the scene is known to be mainly composed
of soil, water and tree. The third image is the relatively big Urban image
illustrated in Figure 4(c). It is available from the Hyperspectral Digital
Imagery Collection Experiment (HYDICE), and contains 307 × 307 pixels
with the wavelength ranging from 0.4µm to 2.5µm. After removing the
noisy bands, L = 162 spectral bands are of interest. With up to N = 6
endmembers [32, 33], this scene is mainly composed of asphalt road/parking,
grass, tree, roof♯1, roof♯2/shadow, and concrete road, as given in Figure 5.

5.6. Performance on real hyperspectral images

The parameter settings given in Table 4 are obtained by performing a sim-
ilar procedure as with the synthetic data, with ten Monte-Carlo simulations
are carried out for the Moffett and Samson images, and three Monte-Carlo
simulations for the Urban image.

The learning curves (i.e., averaged cost at each instant) in Figure 6 show
the fast convergence of the ASGD, SGD, and MU algorithms on the three
images, with ASGD having the most stable decrease. The reconstruction
errors (RE and REΦ) are given in Table 5. With ground-truth information

Table 4: Parameter Settings for the Real Images
Moffett Samson Urban

σ p η0 λ σ p η0 λ σ p η0 λ

O
K
N
M

F SGD
3.3 30

1 2−8

7.0 30
1 2−11

3.0 30
1 2−8

ASGD 1 2−12 2 2−11 1 2−12

MU - - - - - -
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Table 5: Unmixing Performance for the Moffett, Samson and Urban Images (×10−2)
Moffett Samson Urban

RE REΦ RE REΦ RE REΦ

ONMF 11.94±3.49 7.36±0.01 31.95±11.83 8.01±0.01 231.48±23.23 7.88±0.01
IONMF 1© 0.82±0.13 7.33±0.00 2.85±0.86 8.01±0.01 1.27±0.32 7.86±0.00
HONMF 3© 1.03±0.69 9.60±3.69 1© 0.87±0.24 346.24±138.02 2© 0.87±0.22 17.02±4.56
RSA 1.21±0.01 84.66±0.12 3© 1.36±0.31 235.35±0.52 1© 0.69±0.04 228.64±0.04
PONMF 2© 0.90±0.02 23.82±0.93 2© 0.99±0.01 29.38±0.21 3© 1.12±0.08 39.02±1.25

O
K
N
M
F SGD 1.53±0.26 1© 0.55±0.08 3.99±0.99 2© 0.62±0.12 3.16±0.15 1© 0.95±0.02

ASGD 1.54±0.21 2© 0.57±0.05 3.45±0.70 1© 0.58±0.01 2.53±0.02 3© 1.02±0.01
MU 2.08±0.96 3© 0.93±0.27 3.91±0.96 3© 0.63±0.12 2.45±0.07 2© 1.01±0.04

Table 6: Averaged spectral angle distance (SAD) for the Samson Image (×10−2)
soil water tree MEAN

ONMF - - - ≥ 97.16
IONMF 41.87 3© 9.01 45.65 32.18
HONMF 37.60 1© 5.92 3© 26.01 3© 23.18
RSA 2© 21.42 10.23 98.22 43.29
PONMF 122.54 20.27 47.12 63.31

O
K
N
M
F SGD 3© 28.26 12.87 2© 23.93 2© 21.68

ASGD 1© 17.71 2© 8.01 30.33 1© 18.68

MU 48.37 11.71 1© 19.02 26.37

on the Samson and Urban images, the relevance of the estimated endmembers
is measured with the SAD, as given in Tables 6 and 7. The nonlinear model
in OKNMF leads to the smallest reconstruction error in the feature space.
Despite a relatively high RE in the input space, the nonlinear model results
in the lowest SAD, namely the extracted endmembers are the closest to the
ground-truth, which reveals the underlying nonlinearity in the images.

Figures 7 and 8 illustrate the estimated endmembers and abundance maps
for the Moffett and Samson images, and Figure 9 for the Urban image. As
observed, the proposed OKNMF is able to recognize regions that are the most
consistent with the ground-truth, whereas state-of-the-art techniques can
only distinguish partly the regions while resulting in spiky/noisy endmembers
and incoherent abundance maps.

6. Conclusion

This paper presented a novel framework for online kernel-based NMF
methods, by exploring the stochastic gradient descent and the mini-batch
strategies in stochastic optimization. Experimental results for unmixing syn-
thetic and real hyperspectral images demonstrated the effectiveness of the de-
rived algorithms. These algorithms outperformed state-of-the-art methods,
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Table 7: Averaged spectral angle distance (SAD) for the Urban Image (×10−2)
asphalt grass tree roof♯1 roof♯2 cr. road MEAN

ONMF - - - - - - ≥ 133.75
IONMF 53.45 46.84 41.38 24.47 3© 64.15 56.77 47.84
HONMF 56.25 58.99 40.64 53.87 2© 48.39 47.93 51.09
RSA 58.83 2© 27.68 3© 29.90 41.89 86.15 29.27 45.61
PONMF 94.86 97.55 101.84 97.85 105.83 109.44 101.12

O
K
N
M
F SGD 3© 35.63 42.06 51.27 3© 17.84 68.59 1© 2.97 3© 36.39

ASGD 1© 29.02 1© 25.37 1© 6.93 1© 5.48 71.32 2© 3.41 2© 23.58

MU 2© 31.54 3© 36.47 2© 9.59 2© 15.92 1© 31.56 3© 3.68 1© 21.45
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Figure 6: The learning curves (averaged cost per instant), of the ASGD, SGD, and MU
algorithms on the Moffett, Samson and Urban (first 10 000 samples) images.

and the estimated bases are the closest to the ground-truth endmembers.
Future works include theoretical results on the convergence rate.
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