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Denoising Smooth Signals Using a Bayesian
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Abderrahim Halimi, Member, IEEE, Gerald S. Buller, Stephen McLaughlin, Fellow, IEEE,
and Paul Honeine, Member, IEEE

Abstract—This paper presents a novel Bayesian strategy for the
estimation of smooth signals corrupted by Gaussian noise. The
method assumes a smooth evolution of a succession of continu-
ous signals that can have a numerical or an analytical expression
with respect to some parameters. The proposed Bayesian model
takes into account the Gaussian properties of the noise and the
smooth evolution of the successive signals. In addition, a gamma
Markov random field prior is assigned to the signal energies and to
the noise variances to account for their known properties. The re-
sulting posterior distribution is maximized using a fast coordinate
descent algorithm whose parameters are updated by analytical ex-
pressions. The proposed algorithm is tested on satellite altimetric
data demonstrating good denoising results on both synthetic and
real signals. In comparison with state-of-the-art algorithms, the
proposed strategy provides a good compromise between denoising
quality and necessary reduced computational cost. The proposed
algorithm is also shown to improve the quality of the altimetric
parameters when combined with a parameter estimation or a clas-
sification strategy.

Index Terms—Altimetry, Bayesian algorithm, coordinate de-
scent algorithm (CDA), gamma Markov random fields (gamma-
MRFs).

I. INTRODUCTION

IN MANY applications, the development of new sensor tech-
nologies allows for high-speed acquisition of a succession

of signals, leading to a slight variation from one signal to the
next. This is the case for satellite altimetric signals that can be
described as a succession of continuous functions corrupted by
noise [1], [2]. Indeed, when observing the ocean, the altimetric
successive signals show a reduced variation due to the nature
of ocean (see Fig. 1 that shows a succession of 800 signals ac-
quired by the Jason-2 mission). This paper aims to exploit this
correlation to denoise the observed altimetric signals.
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Fig. 1. (Top) Example of 800 noisy Jason-2 signals. (Bottom) Signal evolu-
tions in gates (30, 50, 90) (continuous lines) and their smooth approximation
with the proposed SSE algorithm (dashed lines). The blue, green, and red lines
are associated with the gates 30, 50, and 90, respectively.

A satellite altimeter is a nadir-viewing radar that emits regular
pulses and records the travel time, the magnitude, and the shape
of each return signal after reflection on the oceanic surface. This
reflected echo provides information about some physical param-
eters such as the range between the satellite and the observed
scene (denoted by τ ), the significant wave height (denoted by
μ), and the wind speed (related to the signal’s amplitude Pu ).
The shape of the signals carries additional information related to
the observed regions (such as coastal zone, iceberg, etc.), which
promotes the development of different altimetric classification
methods [3], [4].

Altimetric signals are corrupted by speckle noise, and many
recent studies and missions have been focusing on improving
the quality of these signals by reducing the effects of the noise.
This goal can be achieved by improving the instrument technol-
ogy [5], [6], the physical altimetric models [2], [7]–[9], or the
signal processing algorithms [10], [11]. In this paper, we focus
on signal processing approaches that can be divided into two
categories, as shown in Fig. 2. The first class focuses on the
altimetric parameters by providing realistic smooth estimates
[10]–[12]. The second class is more general and consists in fil-
tering the noisy signals [13], [14]. The filtered signals can then
be processed by several classical techniques, which have dif-
ferent goals such as parameter estimation [7], [10], [11], signal
classification [4], and object detection [15]. This study follows
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Fig. 2. Scheme summarizing some of the existing altimetric approaches and
the proposed filtering algorithm (in red).

the second class and proposes a new filtering algorithm that op-
erates on the observed signals. The resulting algorithm differs
from the CD-BM algorithm proposed in [12], since it can be
combined with many classical altimetric algorithms for differ-
ent purposes, while CD-BM is specialized on the extraction of
realistic altimetric parameters.

Filtering successive signals can be seen as a classical
image denoising problem, which has been tackled using
different approaches such as empirical, sparsity-based, and
statistical methods, etc. Empirical methods include the empir-
ical mode decomposition [16], [17] and other heuristic algo-
rithms [18]. Sparsity-based methods account for the sparsity of
the data under a given signal representation. This class includes
optimization-based algorithms such as FISTA [19] and SALSA
[20], and collaborative methods as the well-known BM3D [21],
and its variant for speckle noise SBM3D [22]. Statistical meth-
ods are generally based on the noise statistics of the image.
This class includes, as an example, the well-known PPB al-
gorithm [23], Kalman filtering [24], particle filtering methods
[25], [26], and Gaussian-process-based methods [27]. This last
class is considered in this paper by proposing a new Bayesian
algorithm especially designed to denoise altimetric signals un-
der the requirements of a good denoising quality and a reduced
computational cost. It should be noted that the provided list is
far from being exhaustive, and we refer the interested reader to
[18], [28], and [29] for more details regarding other methods.

The first contribution of this paper is a hierarchical Bayesian
model to denoise a set of smooth altimetric signals corrupted by
a speckle noise. As a result of the averaging on-board the alti-
metric satellite, the speckle noise is generally approximated by
an independent and identically distributed Gaussian noise [7],
[11]. The proposed Bayesian model generalizes this assump-
tion by considering that each signal is corrupted by additive
independent and nonidentically distributed Gaussian noise. A
gamma Markov random field (gamma-MRF) prior [30] is also
considered to account for the correlation between the noise vari-
ances to better approximate the speckle noise. The signal ener-
gies are also assigned a gamma-MRF prior to account for their

continuity. Using the Bayes rule, the likelihood and the prior dis-
tributions lead to a posterior distribution that is used to estimate
the noiseless signals and the noise parameters (as described in
the next paragraph). Note that the proposed Bayesian hierarchy
is generic in the sense that it does not assume a specific sig-
nal model. Indeed, the signal can be expressed by a numerical
formula or by linear/nonlinear analytical function with respect
to (w.r.t.) some parameters. Therefore, the proposed algorithm
can be easily adapted to coastal altimetric signals [31], [32] or
other altimetric technologies such as delay/Doppler altimetry
[6], [33], [34]. It can also be generalized to hyperspectral im-
ages, which often present a high spectral correlation, as already
exploited by many algorithms in the literature to denoise these
images [35], [36].

The second contribution of this paper is the derivation of a
denoising algorithm associated with the proposed hierarchical
Bayesian model. The minimum mean square error (MMSE) and
maximum a posteriori (MAP) estimators of the unknown sig-
nals/parameters cannot be easily computed from the obtained
joint posterior. In this paper, the MAP estimator is evaluated
by considering a coordinate descent algorithm (CDA) [37], [38]
whose convergence to a stationary point is ensured. The pro-
posed algorithm sequentially updates the estimated noiseless
signals, noise variances, and other hyperparameters by ana-
lytical formulas leading to a reduced computational cost. The
proposed Bayesian model and the estimation algorithm are val-
idated using synthetic and real altimetric data acquired during
the Jason-2 mission. The obtained results are very promising
and show the potential of the proposed denoising strategy.

This paper is organized as follows. Section II introduces the
observation model and the considered altimetric signal. The
proposed hierarchical Bayesian model and its estimation algo-
rithm are introduced in Sections III and IV. Section V evaluates
and compares the proposed technique with the state-of-the-art
algorithms using simulated data with controlled ground truth
and real Jason-2 altimetric data. Finally, conclusions and future
work are reported in Section VI.

II. PROBLEM FORMULATION

Consider M successive signals S ∈ IRK×M and let Y ∈
IRK×M denote their noisy version. Let y:m ∈ IRK×1 be the
mth column of Y and yk : ∈ IR1×M its kth row, representing
the kth temporal gate for all signals. For notation simplicity,
we denote y:m = ym , for m = 1, . . . ,M , and yk : = yk , for
k = 1, . . . ,K (the same notation is used for s). The observation
model is given by

ym = sm + em , with em ∼ N (0K ,Σ) (1)

where ∼ means “is distributed according to,” ym and sm

are (K × 1) vectors representing the mth observed and noise-
less signals, and em is a centered Gaussian noise vector
with a diagonal covariance matrix Σ = diag(σ2), with σ2 =
(σ2

1 , . . . , σ2
K )T a (K × 1) vector. The signals S might depend

on some parameters (by a linear or nonlinear expression), which
are denoted by the (1 × H) vector Θm = [θ1(m), . . . , θH (m)]
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containing the H parameters of the mth signal. Note, how-
ever, that the proposed method does not necessarily require a
parametric expression for S and is valid provided that the sig-
nals satisfy some properties (as described in the following).
In different applications such as oceanic altimetry [10], [11],
the successive signals show a reduced variation mainly because
of the correlation between the successive physical parameters
Θ = (ΘT

1 , . . . ,ΘT
M )T (see Fig. 1). This smooth variation can

be highlighted by expressing the observed signals (1) as follows:

yk = sk + ek , with ek ∼ N (
0M , σ2

kIM

)
(2)

where k ∈ {1, . . . , K} indexes the signal samples that are
known as “temporal gates,” IM denotes the (M × M ) iden-
tity matrix, and sk is a smooth (M × 1) vector representing the
signal evolution at the kth gate (see Fig. 1(bottom) for exam-
ples). The proposed Bayesian method aims to filter the observed
signals yk , k ∈ {1, . . . , K}, to retrieve the noiseless signals sk ,
k ∈ {1, . . . , K}. The next section introduces the hierarchical
Bayesian model proposed to achieve this goal.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model to de-
noise M successive signals. The Bayesian approach first re-
quires the determination of the likelihood that is based on the
statistical model associated with the observed data. Second,
the known properties of the parameters of interest are modeled
via suitable prior distributions. The Bayes theorem allows the
likelihood and the priors to be combined to build the posterior
distribution of the statistical model. More precisely, if f(X)
denotes the prior distribution assigned to the parameter X , the
Bayesian approach computes the posterior distribution of X
using the Bayes rule

f(X|Y ) =
f(Y |X)f(X)

f(Y )
∝ f(Y |X)f(X) (3)

where ∝ means “proportional to” and f(Y |X) is the likelihood
of the observation vector Y . The parameter X is then estimated
from the posterior distribution by computing its MMSE esti-
mator (the mean of the distribution) or its MAP estimator (the
maximum of the distribution). The following sections introduce
the likelihood and the prior distributions considered in this pa-
per. The unknown parameters of the proposed model include
the (K × M ) matrix representing the noiseless signals S and
the (K × 1) vector σ containing the noise variances associated
with the M considered signals.

A. Likelihood

The observation model defined in (2) and the Gaussian prop-
erties of the noise sequence ek , k ∈ {1, . . . , K}, yield

f(yk |sk , σ2
k ) ∝

(
1
σ2

k

)M
2

exp
(
−||yk − sk ||2

2σ2
k

)
(4)

where || · || denotes the standard �2 norm such that ||x||2 =
xT x. Assuming independence between the temporal samples

of the observed signals leads to

f(Y |S,Θ) ∝
K∏

k=1

f(yk |sk , σ2
k ). (5)

B. Priors for the Observed Signal

As previously assumed, the successive observed signals
evolve slowly leading to smooth vectors sk , for k ∈ 1, . . . , K
[see Fig. 1(bottom)]. This property is satisfied by considering a
conjugate Gaussian prior for sk ensuring smoothness as follows:

sk |ε2
k ∼ N (

0M , ε2
kH
)

(6)

where H is an (M × M) matrix representing the squared-
exponential covariance function given by H(m,m′) =
exp[− (m−m ′)2

(ϑ)2 ], which introduces the correlation between the
successive signals, ϑ controls the degree of correlation between
the signals, and ε2

k is a variance parameter that is gate dependent.
From (6), it is clear that this variance is related to the energy of
the signals at the kth gate (via the norm sT

k H−1sk ). Moreover,
because of the continuity of the signal sm w.r.t. the temporal
gates, the signal energies vary smoothly from one gate to an-
other. Therefore, we expect ε2

k to vary smoothly from one gate
to another, which will be introduced by considering a specific
prior for ε2

k , as explained in Section III-D. As a result, the pro-
posed model accounts for the individual signal continuity w.r.t.
temporal gates and for the smooth evolution existing between
successive signals. An interesting property of this prior is that
the signals sk and sk ′ , k �= k′, are conditionally independent;
thus, they can be updated in parallel. Note that the coefficient
ϑ depends on some technical parameters such as the speed of
the satellite, and the number of emitted signals per second. Its
value affects the algorithm behavior where a high value of ϑ
leads to oversmoothing and a low value provides noisy signals.
Therefore, it should be empirically adapted to the considered
data. As a rule of thumb, ϑ should be increased for systems with
higher frequency of signals or lower satellite speed.1

C. Prior for the Noise Variance

The choice of a prior distribution is generally driven by
two points: the available knowledge about the parameter of
interest and the tractability of the resulting posterior distri-
bution. Regarding the first point, and due to the speckle ori-
gins of the corrupting noise, we expect the noise variances σ2

k ,
k ∈ {1, . . . , K}, to vary smoothly. The second point is often
fulfilled by considering a conjugate distribution for the param-
eter of interest. In our case, σ has a conjugate inverse gamma
distribution, which is the commonly used variance prior in many
Bayesian algorithms [39], [40]. In this paper, we satisfy these
two goals by introducing an auxiliary vector w (of size K × 1)
and assigning a gamma-MRF prior for the couple (σ,w) given

1The coefficient ϑ can be included in the Bayesian inference, but this should
be done by considering a different optimization strategy such as a Markov chain
Monte Carlo approach (which is likely to be time consuming).
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Fig. 3. Proposed first-order gamma-MRF neighborhood structures for (a) the
noise variances σ and (b) the signal energies ε.

by (see [30] for more details regarding this prior)

f (σ,w|ζ) =
1

Z(ζ)

(
K∏

k=1

σ
−2(2ζ+1)
k

)

×
(

K∏

k ′=1

w
(2ζ−1)
k ′

)

exp
(−ζw0

σ2
1

)

×
K−1∏

k=1

exp
[
−ζwk

(
1
σ2

k

+
1

σ2
k+1

)]
(7)

where Z(ζ) is a normalizing constant and ζ > 1 is a fixed cou-
pling parameter that controls the amount of correlation enforced
by the gamma-MRF. This prior ensures that each σ2

k is con-
nected to two neighboring elements of w and vice versa [see
Fig. 3(a)]. An interesting property of this joint prior is that the
conditional prior distributions of σ and w reduce to conjugate
inverse gamma (IG) and gamma (G) distributions, respectively
[30]:

σ2
k |wk−1 , wk , ζ ∼ IG [2ζ, ζ (wk−1 + wk )]

σ2
K |wK−1 , ζ ∼ IG (ζ, ζwK−1)

w2
k |σ2

k , σ2
k+1 , ζ ∼ G

⎡

⎣2ζ,
1

ζ
(

1
σ 2

k
+ 1

σ 2
k + 1

)

⎤

⎦ (8)

where k ∈ {1, . . . , K − 1}. Equation (8) clearly shows that the
variances σ2

k and σ2
k ′ , for k �= k′, are conditionally independent

and that the correlation is introduced via the auxiliary vari-
ables w. It also shows that the maximum of the conditional
distributions of σ and w can be analytically evaluated (as de-
tailed in Section IV). These interesting properties will no longer
hold if one marginalizes over the latent variables w, which is
not recommended. The coefficients associated with this prior
are ζ and w0 . The condition ζ > 1 ensures the existence of a
mode for the gamma distribution (necessary for the considered
algorithm). A high value of ζ enforces more correlation be-
tween the variances σ2

k . In this paper, we used ζ = 1000, and
the value of w0 has been empirically adjusted using the formula

w0 = max{10(−2) ,
√∑M

m=1 [y1m − (
∑M

m ′=1
y1 m ′
M )]2}.

D. Hyperparameter Priors

As previously explained, the hyperparameters ε2
k are closely

related to the signal energies via the norm (sT
k H−1sk ).

Considering this property and the continuity of the signal sug-
gest the presence of a correlation between the parameters ε2

k .
This correlation can be introduced by considering a gamma-
MRF prior for (ε,v) as follows [30]:

f (ε,v|η) =
1

Z(η)

K∏

k=1

ε
−2(2η+1)
k

×
(

K∏

k ′=1

v
(2η−1)
k ′

)

exp
(−ηv0

ε2
1

)

×
K−1∏

k=1

exp
[
−ηvk

(
1
ε2
k

+
1

ε2
k+1

)]
(9)

where v are auxiliary variables and η > 1 is the coupling pa-
rameter. A schematic description of the variable correlations
is shown in Fig. 3(b), which is similar to that presented in
Section III-C. The conjugate conditional prior distributions for
ε and v are given by

ε2
k |vk−1 , vk , η ∼ IG [2η, η (vk−1 + vk )]

ε2
K |vK−1 , η ∼ IG (η, ηvK−1)

v2
k |ε2

k , ε2
k+1 , η ∼ G

⎡

⎣2η,
1

η
(

1
ε2

k
+ 1

ε2
k + 1

)

⎤

⎦ (10)

where k ∈ {1, . . . , K − 1}. The parameters (η, v0) play the
same role as (ζ, w0) and have been fixed to η = 1000 and
v0 = w0 in the rest of the paper.

E. Posterior Distributions

The parameters of interest associated with the proposed
Bayesian model are X = (S,σ,w, ε,v). The joint posterior
distribution of this Bayesian model can be computed as follows:

f (X|Y ) ∝ f(Y |S,σ)f (S|ε) f (ε,v) f (σ,w) (11)

where we have assumed a priori independence between the pa-
rameters. For simplicity, f(x|θ) has been denoted by f(x) when
the parameter θ is a user-fixed parameter. The MMSE and MAP
estimators associated with the posterior (11) are not easy to de-
termine. In this paper, and akin to [41], we propose to evaluate
the MAP estimator by using an optimization technique maxi-
mizing the posterior (11) w.r.t. the parameters of interest. At this
point, it should be noted that the proposed algorithm [denoted
as smooth signal estimation (SSE)] has many differences from
the CD-BM algorithm proposed in [12]. The latter assigns a
smooth evolution constraint on the altimetric parameters, while
SSE operates on the observed signals by imposing smoothness
on the signals and their energies. In addition, the SSE outputs are
filtered signals that can be combined with classical altimetric al-
gorithms to achieve classification or other tasks, while CD-BM
only provides the estimated altimetric parameters.

IV. COORDINATE DESCENT ALGORITHM

This section describes the optimization algorithm maximiz-
ing the posterior (11) w.r.t. the noiseless signals, the noise
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Algorithm 1: SSE Algorithm.
1: Input
2: The noisy data Y , ζ > 1, η > 1, ϑ
3: Initialization
4: Initialize parameters S(0) , σ(0) , w(0) , v(0) , ε(0) and

t = 1
5: conv= 0,
6: Parameter update
7: while conv= 0 do
8: Update s

(t)
k , for k ∈ {1, . . . , K} according to (33)

9: Update σ(t) according to (20)
10: Update w(t) according to (22)
11: Update ε(t) according to (21)
12: Update v(t) according to (23)
13: Set conv = 1 if the convergence criteria are satisfied
14: t = t + 1
15: end while

variances, and the hyperparameters. This provides the MAP
estimator of the parameters of interest X . An equivalent
problem is to minimize w.r.t. X , the negative log-posterior
C(X) = −log[f(X|Y )] denoted as “cost function” and given
by (after removing unnecessary constants)

C (X) =
K∑

k=1

[
(α1 + 1) log σ2

k +
β1

2σ2
k

− (2ζ − 1) log wk

+ (α2 + 1) log ε2
k +

β2

2ε2
k

− (2η − 1) log vk

]
(12)

where α1 = 2ζ + M
2 , α2 = 2η + M

2 , β1 = ||yk − sk ||2 + 2ζ

(wk−1 + wk ), and β2 = sT
k H−1sk + 2η(vk−1 + vk ). Because

of the large number of parameters in X = (S,σ,w, ε,v), we
propose a CDA [37], [38] that sequentially updates the different
parameters. More precisely, in each step, the posterior distribu-
tion is maximized w.r.t. one parameter, the others being fixed.
This process is repeated until the algorithm has converged to a
local minimum of the cost function C(S,σ,w, ε,v). Thus, the
algorithm iteratively updates each parameter by maximizing its
conditional distribution, as described in Algorithm 1. The next
section describes the suboptimization procedures maximizing
the cost function C(X) w.r.t. the noiseless signal S, the noise
variance σ, and the hyperparameters (w, ε,v).

1) Updating the Parameters: The noiseless signal S can be
updated by maximizing the conditional distribution associated
with each independent sk , which is a Gaussian distribution
given by

sk |yk , σ2
k , ε2

k ∼ N (sk ,Γk ) (13)

where

sk =
1
σ2

k

Γkyk (14)

Γk =
(

H−1

ε2
k

+
IM

σ2
k

)−1

. (15)

Therefore, the noiseless signal S can be updated using (14),
which is the maximum of the Gaussian distribution (an overline
is used to denote the mode associated with the updated param-
eters). Note that this solution corresponds to a least squares
solution of the quadratic problem w.r.t. sk shown in (12). Note
also that the matrix inversion in (14) should be computed at each
descent step leading to a high computational cost. Thus, the pro-
posed algorithm considers a useful modification to achieve this
computation with less operations, as discussed in the Appendix.
The conditional distributions of σ and ε (respectively, w and v)
are inverse gamma distributions (respectively, gamma distribu-
tions) as follows:

σ2
k |yk , sk ,wk ∼ IG

(
α1 ,

β1

2

)
(16)

ε2
k |yk , sk ,vk ∼ IG

(
α2 ,

β2

2

)
(17)

w2
k |σ2

k , σ2
k+1 , ζ ∼ G

⎛

⎝2ζ,
1

ζ
(

1
σ 2

k
+ 1

σ 2
k + 1

)

⎞

⎠ (18)

v2
k |ε2

k , ε2
k+1 , η ∼ G

⎛

⎝2η,
1

η
(

1
ε2

k
+ 1

ε2
k + 1

)

⎞

⎠ . (19)

The mode of each distribution is uniquely attained and given by

σ2
k =

β1

2α1 + 2
(20)

ε2
k =

β2

2α2 + 2
(21)

w2
k =

2ζ − 1

ζ
(

1
σ 2

k
+ 1

σ 2
k + 1

) (22)

v2
k =

2η − 1

η
(

1
ε2

k
+ 1

ε2
k + 1

) . (23)

These modes are used to update the parameters σ, ε,w, and v,
as shown in Algorithm 1.

2) Convergence and Stopping Criteria: The limit points of
the sequence generated by the CDA are stationary point of (12)
provided that the minimum of that function w.r.t. X along each
coordinate is unique and that the function C is monotonically
nonincreasing along each coordinate in the interval from xt

i to
xt+1

i (see [37, Proposition 2.7.1]). This is easily checked for
all the parameters, since they have unimode conditional distri-
butions (Gaussian, gamma, and inverse-gamma distributions),
the Gaussian and gamma distributions are log-concave, and the
inverse-gamma distribution is decreasing on each side of its
maximum. The cost function is not convex; thus, the solution
obtained might depend on the initial values that should be cho-
sen carefully. In this paper, the parameters have been initialized
as follows: σ(0) = s

(0)
m = 1

M

∑M
n=1 yn , ∀m, ε2

k = 10, ∀k, and

w
(0)
k = v

(0)
k = 10−12 , ∀k. Note that more elaborate initializa-

tion procedures can be investigated, but these proposed values
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have provided relevant results in the considered simulations (see
Section V).

Algorithm 1 is an iterative algorithm that requires the defini-
tion of stopping criteria. In this paper, we have considered two
criteria, and the algorithm is stopped if either of them is satisfied.
The first criterion compares the new value of the cost function
to the previous one and stops the algorithm if the relative error
between these two values is smaller than a given threshold, i.e.,

|C (X t+1)− C (X t
) | ≤ ξC (X t

)
(24)

where |.| denotes the absolute value and ξ is the threshold that
has been fixed to ξ = 0.001. The second criterion is based on a
maximum number of iterations Tmax = 100. The next sections
study the behavior of the proposed algorithm when considering
synthetic and real signals.

V. EXPERIMENTS

This section evaluates the performance of the proposed
algorithm with synthetic and real data. It is divided into six parts
whose objectives are: a) description of the parametric model
used to generate the synthetic altimetric signals, b) introduction
of the criteria used for the evaluation of the algorithm quality, c)
choice of the number of signals to be processed jointly, d) and
e) evaluation on synthetic data of the proposed algorithm when
combined with parameter estimation or classification strategies,
and f) validation on real Jason-2 altimetric data.

A. Conventional Altimetric Model

The altimetric model, in its simplified version, accounts for
three parameters that are the amplitude Pu , the epoch τ , and the
significant wave height μ. The resulting mathematical nonlinear
model for the altimetric signal is known as the “Brown model”
and is given by [2], [7]

s(t) =

Pu

2

[
1 + erf

(
t − τs − γσ2

c√
2σc

)]
exp

[
−γ

(
t − τs − γσ2

c

2

)]
(25)

where

σ2
c =

( μ

2c

)2
+ σ2

p (26)

and where erf(t) = 2√
π

∫ t

0 e−z 2
dz stands for the Gaussian error

function, t is the time, τs = 2τ
c (respectively, τ ) is the epoch

expressed in seconds (respectively, meters), c is the speed of
light, and γ and σ2

p are two known parameters (depending on
the satellite and on the measurement instrument). The non-
linear model described in (28) is commonly used in the al-
timetric community mainly because of its simplicity [2], [7].
Note that the discrete altimetric signal is gathered in the vector
s = (s1 , . . . , sK )T , where sk = s(kT ), T is the time resolution,
and Θm = [θ1(m), θ2(m), θ3(m)] = [μ(m), τ(m), Pu (m)] is
a (1 × 3) vector containing the three altimetric parameters
μ, τ, Pu for the mth signal.

The altimetric signals are corrupted by speckle noise that,
thanks to the averaging that takes place on-board of the satel-
lite, can be approximated by additive Gaussian noise, as shown

in [42]–[44]. Thus, the altimetric model satisfies (2). The
noise variances σ2

k , k ∈ {1, . . . , K}, obtained after averaging
on-board the satellite, are correlated due to the nature of the
speckle noise (this correlation will be considered in the pro-
posed Bayesian scheme). Note that this paper only considers
oceanic observations, which generally show a smooth variation
between successive signals.

B. Evaluation Criteria

For synthetic signals, the quality of the proposed algorithm
can be evaluated by comparing the noiseless signals sm to the
denoised signals ŝm using the reconstruction signal-to-noise
ratio (RSNR) given by [45]

RSNR = 10 log10

( ∑M
m=1 ||sm ||2

∑M
m=1 ||sm − ŝm ||2

)

. (27)

Note that a high RSNR corresponds to a good denoising result.
The benefit of the proposed algorithm can also be measured
by using the filtered signals as an input to classical altimetric
algorithms, as highlighted in Fig. 2. In this paper, we evaluate
the enhancement obtained on the estimated parameters and the
signal classification results. The latter is evaluated using the
accuracy criterion given by

accuracy =
100
M

M∑

m=1

δ (zm − ẑm ) (28)

where zm (respectively, ẑm ) denotes the actual (respectively,
estimated) label of the mth signal and δ denotes the Dirac delta
function. The effect on the altimetric parameters is evaluated
when considering the well-known gradient descent (GD)-based
strategy that is commonly used by the altimetric community
[7], [11]. For synthetic data, the true altimetric parameters are
known, and the estimation quality is evaluated using the root-
mean-square error (RMSE) and the standard deviations (STDs)
of the estimator θ̂i as follows:

RMSE
(
θ̂i

)
=

√
1
N

∑N

n=1

[
θ̂i(n) − θi(n)

]2
(29)

STD
(
θ̂i

)
=

√
1
N

∑N

n=1

[
θ̂i(n) −

(
1
N ′
∑N ′

n ′=1
θ̂i(n′)

)]2

(30)

for i ∈ {1, . . . , 3}, where θi(n) (respectively, θ̂i(n) ) is the true
(respectively, estimated) parameter for the nth signal and N is
the number of simulated signals (N ′ = N for synthetic signals).

When considering real signals, the performance of the pro-
posed algorithm is qualitatively evaluated by a visual compar-
ison between the noisy signals/parameters and the denoised
ones [7], [10], [11]. Quantitatively, a modified parameter STD
is computed using (30), in which the averaged parameter value
is approached by the mean of the estimated parameters along
each N ′ = 20 successive signals. This modified STD is called
“STD at 20 Hz” [33], [34], [46], [47].
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Fig. 4. Example of 1200 ground-truth synthetic parameters (black lines) and
their estimations using GD (in red), SVD + GD with M = 500 (in green), PPB
+ GD with M = 500 (in yellow), SBM3D + GD with M = 500 (in cyan), and
the proposed SSE + GD algorithm with M = 500 (in blue). (a) μ, (b) τ , and
(c) Pu .

C. Choice of the Number of Signals to be Processed Jointly

This section studies the behavior of SSE when varying the
number of the jointly denoised signals M . The SSE parame-
ters have been empirically fixed to ϑ = 30, ζ = η = 1000 in
the rest of the paper. Note, however, that they can be changed
according to the recommendations provided in Section III. For
this study, N = 5000 signals are generated according to the

TABLE I
PERFORMANCE OF THE PROPOSED SSE ALGORITHM W.R.T. THE LENGTH M

(5000 SIGNALS)

Number of signals: M

50 100 250 500 1000 2500 5000

RSNR (dB) 31.1 31.4 31.5 31.6 31.7 31.7 31.7
Time per signal (ms) 0.35 0.24 0.25 0.38 1.03 5.00 17.47

The corrupted data present an RSNR = 19.55 dB.

altimetric model (28), with K = 104 gates, using a realistic vari-
ation of parameters Θm = [μ(m), τ(m), Pu (m)]. The sequence
of parameters is obtained by applying the CD-BM algorithm
[12], on N real Jason-2 signals, where we obtain μ ∈ [3.4, 5.4]
m, τ ∈ [14.3, 15] m, and Pu ∈ [150, 190] unit (see black lines in
Fig. 4). The obtained signals are corrupted by a multiplicative
speckle noise generated according to a gamma distribution with
shape and scale parameters equal to (L, 1/L), L = 90 being
the number of looks. This leads to an SNR = 19.55 dB. The
noisy signals are processed by the proposed algorithm using
different set lengths, as shown in Table I. For example, for a
length set M = 250, the algorithm is run 20 times to process
the N = 5000 signals. Overall, these results show an ≈11 dB
improvement in the processed data with an increasing RSNR
w.r.t. M . By increasing the length M , higher computational
cost [mainly due to the computation of the singular value de-
composition (SVD) in (32)] is required, whereas small values
of M lead to more iterations. The value M = 500 represents a
good compromise, and we consider this value for the rest of the
paper.

D. Parameter Estimation Results on Synthetic Data

This section compares the proposed SSE algorithm with some
state-of-the-art algorithms when considering a parameter esti-
mation task. We consider three filtering algorithms that are the
SBM3D2 algorithm [22], the speckle noise variant of PPB3 [23],
and the SVD filtering strategy that is commonly used by the al-
timetric community [13], [14] (with a threshold equal to 84%).
We also consider the CD-BM algorithm specialized on param-
eter estimation [12]. Following [8], [46], and [47], the study is
carried out using μ (with fixed τ = 14.5 m and Pu = 130). For
each value of μ ∈ [0.5, 8] m, 500 synthetic signals are generated
using the Brown model with different noise realizations (with
L = 90 looks) and processed using the considered algorithms.

Table II reports the obtained RSNR of the considered al-
gorithms for different values of μ. The best performance is
obtained with the CD-BM, since it accounts for more physi-
cal information through the considered altimetric model. The
PPB and SBM3D provide better results than SSE; however, this
improvement is achieved at a price of a higher computational
times, as will be seen in the next section (see Table IV). Note

2SBM3D has been run with the number of looks L = {1, 30, 90} and we
only report the one which provided the best results.

3PPB has been run with the alpha-quantile parameter equals to 0.9999, L =
90 looks and standard values for the other parameters.
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TABLE II
RSNR (IN DB) W.R.T. μ

μ (m)

0.5 1 2 3 4 5 6 7 8

SVD 26.35 26.43 26.30 26.02 26.03 26.07 26.08 25.92 25.86
PPB 34.89 35.00 34.95 35.01 35.04 35.21 35.04 35.06 35.17
SBM3D 37.96 38.13 37.64 37.72 37.31 36.25 36.31 36.68 36.87
CD-BM 47.34 47.26 47.60 47.47 47.35 46.79 47.61 47.39 47.58
SSE 32.24 32.21 32.22 32.13 32.15 32.10 32.22 32.13 32.07

The corrupted data presents an RSNR = 19.55 dB.

Fig. 5. RMSEs of the altimetric parameters w.r.t. μ for GD, SVD + GD, PPB
+ GD, SBM3D + GD, CD-BM, and SSE + GD algorithms.

Fig. 6. Example of noiseless (left) Brown echoes denoted by class 1, and
(right) Brown plus Gaussian peak denoted by class 13.

also that the algorithms performance are relatively stable w.r.t.
the variation of μ.

As previously explained, the results of the filtering algorithms
can be used to improve classical tasks such as parameter estima-
tion and signal classification. In this paragraph, we highlight the
filtering benefit on the estimated physical altimetric parameters
(μ, τ, Pu ). The estimated parameters are compared when apply-
ing the CD-BM algorithm [12] and the classical GD estimation
algorithm [7], [11] on filtered and noisy signals. Fig. 5 shows
the obtained parameter RMSEs w.r.t. μ when considering the
CD-BM algorithm, the GD algorithm (without filtering), and

TABLE III
CLASSIFICATION RESULTS (IN PERCENTAGE) WITH AND WITHOUT FILTERING

Class 1 Class 13 Overall accuracy

SVM 90.5 80.0 85.2
SVD + SVM 99.9 83.0 91.4
PPB + SVM 100.0 78.8 89.4
SBM3D + SVM 100.0 82.9 91.5
SSE + SVM 100.0 86.5 93.2

the filtered signals denoted by SVD + GD, PPB + GD, SBM3D
+ GD, and SSE + GD. As expected, the CD-BM provides the
best performance, since it is designed to achieve the parame-
ter estimation task. Apart from CD-BM, the proposed strategy
presents the best performance with the lowest RMSEs. Indeed,
at a typical μ of 2 m, the proposed SSE-GD improves the RM-
SEs of the GD algorithm by a factor of 4, 6, and 3 w.r.t. the
parameters μ, τ , and Pu , respectively. This parameter improve-
ment is also highlighted in Fig. 4, which shows the estimated
parameters when considering the settings of the previous sec-
tion (for clarity purpose, we only show 200 signal parameters).
It is clear from this figure that SSE-GD (blue lines) provides
smoother results that better approximate the actual parameters
(black lines) than the other algorithms. These results highlight
the interest of the proposed strategy in denoising the altimetric
signals and improving the estimated altimetric parameters.

E. Classification Results on Synthetic Data

This section highlights the benefit of the SSE in im-
proving the classification of altimetric data. As previously,
SSE will be compared to SVD, PPB, and SBM3D algo-
rithms. The altimetric classification algorithms are generally
not available. Therefore, we have considered a simple support
vector machine (SVM) strategy4 to classify two kind of
waveforms after the denoising step (see Fig. 2). The first
class includes Brown waveforms (i.e., class 1 from the Pis-
tach project [3]), while the second includes the sum of the
Brown signal and a Gaussian peak in the trailing edge of
the waveform (i.e., class 13 from the Pistach project), where
examples are shown in Fig. 6. The SVM has been trained using
2000 noiseless echoes from each class with random parameters
in the intervals μ ∈ [2, 4] m, τ = 31 gates, Pu ∈ [50, 200], ag ∈
[10, 200], pg = 60 gates, σg ∈ [4, 6] gates, where (ag , pg , σg )
denote the amplitude, position, and square root of the Gaussian
peak. The classification was achieved on 4000 signals that have
been generated using the parameters μ ∈ [2, 4] m, τ = 31, Pu ∈
[50, 200], ag ∈ [10, 200], pg = 60, σg ∈ [4, 6] and corrupted by
a multiplicative noise with L = 90 looks, as in the previous sec-
tions. Table III reports the obtained classification results with
and without the application of the studied filtering algorithms.
It can be seen that the filtering algorithms improve the clas-
sification results, and that SSE performs better than the other
strategies.

4The SVM-based MATLAB function “svmclassify” was used to achieve the
classification.
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TABLE IV
PERFORMANCE ON REAL JASON-2 DATA (45 000 SIGNALS)

μ (cm) τ (cm) Pu

Mean GD 242 14.68 167.73
PPB + GD 242 14.65 168.27

SBM3D + GD 238 14.64 168.87
SVD + GD 241 14.67 166.62
CD - BM 270 14.68 167.30
SSE + GD 248 14.68 164.83

STD GD 59.9 12.01 6.18
PPB + GD 29.05 8.21 3.63

SBM3D + GD 19.7 5.98 3.26
SVD + GD 18.14 6.02 6.09
CD - BM 2.01 4.46 1.92
SSE + GD 9.03 2.94 1.21

Average time per signal (ms) GD 8.56
PPB + GD 32

SBM3D + GD 33
SVD + GD 9.05

CD-BM 6.24
SSE + GD 9.63

Fig. 7. Example of Jason-2 echoes. (Top) without filtering and (bottom) with
SSE filtering.

F. Results on Jason-2 Real Data

This section is devoted to the validation of the proposed SSE
denoising algorithm when applied to a parameter estimation
task on the oceanic Jason-2 dataset. The data represent a 36-min
time series and consist of 45 000 real signals that were extracted
from pass 30 of cycle 35. The signals contain K = 104 tempo-
ral gates, where each gate corresponds to a distance of 46.8 cm.
Fig. 7 shows a sequence of 800 Jason-2 signals before and af-
ter SSE filtering. Note first that this sequence shows a reduced
variation in the altimetric signals, which justifies the use of the
proposed strategy. Moreover, it clearly shows a reduction in
the noise affecting the signals after the application of the SSE
algorithm especially in the tail of the signal (i.e., the decreas-
ing part), which was most affected by the speckle noise. Fig. 8
shows the parameters estimated w.r.t. time when considering
the GD (in red), SVD + GD (in green), PPB + GD (in yellow),
SBM3D + GD (in cyan), CD-BM (in black), and SSE + GD
(in blue) algorithms. As observed for synthetic data in Section
V-D, the CD-BM and SSE + GD provide a smooth parameter
evolution, which is physically more consistent, while the other

Fig. 8. Estimated parameters using GD (in red), SVD + GD (in green), PPB +
GD (in yellow), SBM3D + GD (in cyan), CD-BM (in black), and the proposed
SSE + GD algorithm (in blue) for Jason-2 signals. (a) μ, (b) τ , and (c) Pu .

algorithms present high estimation noise. This result is quan-
titatively confirmed in Table IV, where the smallest STDs are
obtained for CD-BM and SSE + GD. This STD reduction has
initiated many altimetric missions [5], [6] and is of great impor-
tance for many practical applications related to oceanography
such as bathymetry. Comparing SSE + GD to GD, Table IV
highlights an STD improvement by a factor of 6 for μ, 4 for τ ,
and 5 for Pu . To better appreciate these STD improvements, it
should be noted that new delay/Doppler technology is expected
to reduce STDs by a factor lower than 2, as reported in [48]–
[50]. This table also shows a good agreement between the means
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of the estimated parameters for the different algorithms (except
Pu that is slightly reduced by SSE + GD, as shown in Fig. 8).
Finally, Table IV also compares the computational costs of the
considered algorithms when processing the 45 000 signals (the
result is reported for the processing of one signal). As expected,
the filtering algorithms require more computational times than
GD. However, the proposed SSE algorithm shows a good com-
promise between the computational cost and the quality of the
filtering. These results confirm the good performance of the pro-
posed strategy for the fast denoising of smooth signals such as
oceanic altimetric signals.

VI. CONCLUSION

This paper presented a new Bayesian strategy for the esti-
mation of smooth signals corrupted by Gaussian noise. The
successive continuous signals can have a numerical expression
or be given by a linear/nonlinear function w.r.t. some parame-
ters. A Bayesian model was proposed to take into account the
Gaussian properties of the noise and the smooth properties of
the signal evolutions. The resulting posterior distribution was
maximized using a fast CDA. Experiments on synthetic and
real data showed that the proposed algorithm provides good fil-
tering results at a reduced computational cost. An advantage of
the proposed algorithm is that it can be combined with the avail-
able altimetric algorithms to improve their results. To highlight
this, SSE was evaluated by combining it with a commonly used
parameter estimation strategy and a classification algorithm.
The obtained results showed a clear improvement highlighting
the benefit of the proposed algorithm. Future work will include
the combination of the proposed algorithm with other classifica-
tion and target detection altimetric algorithms. It is worth noting
that the proposed strategy is fast and generic and thus could be
applied when considering other altimetric technologies such as
delay/Doppler altimetry [6], [33], [34]. It can also be applied to
coastal altimetric signals that have recently been the subject of
growing interest [31], [32]. Finally, generalizing the proposed
approach for hyperspectral images, that show smooth spectral
variations, is also an interesting issue that is currently under
investigation.

APPENDIX

MATHEMATICAL DERIVATIONS

A. Updating the Noiseless Signal sk

The conditional distribution of sk in (13) has been computed
using the following property:

x ∼ N (μ1 ,Σ1) ×N (μ2 ,Σ2)

∼ N [
Σ
(
Σ−1

1 μ1 + Σ−1
2 μ2

)
,Σ
]

(31)

with Σ = (Σ−1
1 + Σ−1

2 )−1 . The (M × M ) matrix inversion in
(15) should be computed at each update of the noiseless signals,
which requires a high computational cost. To avoid this cost, we
divide this matrix inversion into two parts. Significant compu-
tations can be moved outside the “while” loop in Algorithm 1,
whereas simple vector multiplications are kept inside the loop.
To achieve this, the SVD decomposition is first applied to H−1

as follows:

H−1 = V D (ri) V T (32)

where D(xi) denotes a diagonal matrix with its ith diagonal
element equal to xi , ri is the ith singular value of H−1 , and V is
a unitary orthogonal matrix, i.e., V V T = IM . Straightforward
computations lead to the following expression for the noiseless
signal update:

sk = V D

(
ε2
k

riσ2
k + ε2

k

)
V T yk . (33)

Note that the operation V T yk in (33) and the SVD decompo-
sition (32) are only computed once outside the loop, while the
remaining vector operations in (33) are achieved inside the loop.
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