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The unscented transformation (UT) is an efficient method to solve the state estimation problem for a
non-linear dynamic system, utilizing a derivative-free higher-order approximation by approximating a
Gaussian distribution rather than approximating a non-linear function. Applying the UT to a Kalman
filter type estimator leads to the well-known unscented Kalman filter (UKF). Although the UKF works
very well in Gaussian noises, its performance may deteriorate significantly when the noises are non-
Gaussian, especially when the system is disturbed by some heavy-tailed impulsive noises. To improve the
robustness of the UKF against impulsive noises, a new filter for nonlinear systems is proposed in this
work, namely the maximum correntropy unscented filter (MCUF). In MCUF, the UT is applied to obtain
the prior estimates of the state and covariance matrix, and a robust statistical linearization regression
based on the maximum correntropy criterion (MCC) is then used to obtain the posterior estimates of
the state and covariance matrix. The satisfying performance of the new algorithm is confirmed by two
illustrative examples.

Keywords: Unscented Kalman Filter (UKF); Unscented Transformation (UT); Maximum Correntropy
Criterion (MCC).

1. Introduction

Estimation problem plays a key role in many fields, including communication, navigation, signal
processing, optimal control and so on (Dash, Hasan, & Panigrahi, 2010; D. Li, Liu, Qiao, &
Xiong, 2010; L. Li & Xia, 2013; Partovibakhsh & Liu, 2014). The Kalman filter (KF) assists
in obtaining accurate state estimation for a linear dynamic system, which provides an optimal
recursive solution under minimum mean square error (MMSE) criterion (Bryson & Ho, 1975;
Kalman, 1960; Nahi, 1969). Nevertheless, most practical systems are inherently nonlinear, and
it is not easy to implement an optimal filter for nonlinear systems. To solve the nonlinear filtering
problem, so far many sub-optimal nonlinear extensions of the KF have been developed by using
some approximations, among which the extended Kalman filter (EKF) (Anderson & Moore, 1979)
and unscented Kalman filter (UKF) (Julier, Uhlmann, & Durrant-Whyte, 2000) are two widely
used ones. As a popular nonlinear extension of KF, the EKF approximates the nonlinear system
by its first order linearization and uses the original KF on this approximation. However, the crude
approximation may lead to divergence of the filter when the function is highly non-linear. Moreover,
the cumbersome derivation of the Jacobian matrices often leads to the implementation difficulties.
The UKF is an alternative to the EKF, which approximates the probability distribution of the
state by a set of deterministically chosen sigma points and propagates the distribution though

∗Corresponding author. Email: chenbd@mail.xjtu.edu.cn



July 10, 2016 International Journal of Systems Science tSYSguide

the non-linear equations. The UKF does not need to calculate the Jacobian matrices and can
obtain a better performance than the EKF. However, the UKF may performs poorly when the
system is disturbed by some heavy-tailed non-Gaussian noises, which occur frequently in many
real-world applications of engineering. The main reason for this is that the UKF is based on the
MMSE criterion and thus exhibits sensitivity to heavy-tailed noises (Schick & Mitter, 1994).
Some methods have been proposed to cope with this problem in the literatures. In particular, the
Huber’s generalized maximum likelihood methodology is an important one (El-Hawary & Jing,
1995; Huber, 1964; Karlgaard & Schaub, 2007; X. Wang, Cui, & Guo, 2010), which is a
combined minimum `1 and `2 norm estimation method. Furthermore, the statistical linear method
instead of the first order linearization was introduced in (Karlgaard & Schaub, 2007).

Besides Huber’s robust statistics, information theoretic quantities (e.g. entropy, mutual informa-
tion, divergence, etc.) can also be used as a robust cost for estimation problems (B. Chen, Zhu,
Hu, & Principe, 2013; Principe, 2010). As a localized similarity measure in information theoretic
learning (ITL), the correntropy has recently been successfully applied in robust machine learning
and non-Gaussian signal processing (Bessa, Miranda, & Gama, 2009; B. Chen & Principe, 2012;
B. Chen, Xing, Liang, Zheng, & Principe, 2014; B. Chen, Xing, Zhao, Zheng, & Principe, 2016;
X. Chen, Yang, Liang, & Ye, 2012; He, Hu, Yuan, & Wang, 2014; He, Hu, Zheng, & Kong, 2011;
He, Zheng, & Hu, 2011; Liu, Pokharel, & Principe, 2007; Shi & Lin, 2014; Singh & Principe,
2009; Y. Wang, Pan, Xiang, & Zhu, 2015; Xu & Principe, 2008; Zhao, Chen, & Principe, 2011).
The adaptive filtering algorithms under the maximum correntropy criterion (MCC) can achieve
excellent performance in heavy-tailed non-Gaussian noises (B. Chen et al., 2014, 2016; Principe,
2010; Shi & Lin, 2014; Singh & Principe, 2009; Y. Wang et al., 2015; Zhao et al., 2011). In
particular, in a recent work (B. Chen, Liu, Zhao, & Principe, 2015), a linear Kalman type filter has
been developed under MCC, which can outperform the original KF significantly especially when
the disturbance noises are impulsive.

The goal of this paper is to develop an unscented non-linear Kalman type filter based on the
MCC, called the maximum correntropy unscented filter (MCUF). In the MCUF, the unscented
transformation (UT) is applied to get a prior estimation of the state and covariance matrix, and
a statistical linearization regression model based on MCC is used to obtain the posterior state
and covariance. The new filter adopts the UT and statistical linear approximation instead of the
first order approximation as in EKF to approximate the nonlinearity, and uses the MCC instead
of the MMSE to cope with the non-Gaussianity, and hence can achieve desirable performance in
highly nonlinear and non-Gaussian conditions. Moreover, the proposed MCUF is suitable for online
implementation on account of the retained recursive structure.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the MCC. In
Section 3, we derive the MCUF algorithm. In Section 4, we present two illustrative examples and
show the desirable performance of the proposed algorithm. Finally, Section 5 concludes this paper.

2. Maximum correntropy criterion

Correntropy is a generalized similarity measure between two random variables. Given two random
variables X,Y ∈ R with joint distribution function FXY (x, y), the correntropy is defined by

V (X,Y ) = E [κ(X,Y )] =

∫
κ(x, y)dFXY (x, y) (1)

2
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where E denotes the expectation operator, and κ(·, ·) is a shift-invariant Mercer kernel. In this
work, without mentioned otherwise, the used kernel function is the Gaussian kernel:

κ(x, y) = Gσ(e) = exp

(
− e2

2σ2

)
(2)

where e = x− y, and σ > 0 stands for the kernel bandwidth.
In many practical situations, we have only a set of finite data and the joint distribution FXY is

unknown. In these cases, one can estimate the correntropy using a sample mean estimator:

V̂ (X,Y ) =
1

N

N∑
i=1

Gσ (e(i)) (3)

where e(i) = x(i)− y(i), with {x(i), y(i)}Ni=1 being N samples drawn from FXY .
Using the Taylor series expansion for the Gaussian kernel yields

V (X,Y ) =
∞∑
n=0

(−1)n

2nσ2nn!
E
[
(X − Y )2n

]
(4)

Thus, the correntropy is a weighted sum of all even order moments of the error variable X−Y . The
kernel bandwidth appears as a parameter to weight the second order and higher order moments.
With a very large kernel bandwidth (compared to the dynamic range of the data), the correntropy
will be dominated by the second order moment.

Suppose our goal is to learn a parameter vector W of an adaptive model, and let x(i) and y(i)
denote, respectively, the model output and the desired response. The MCC based learning can be
formulated as solving the following optimization problem:

Ŵ = arg max
W∈Ω

1

N

N∑
i=1

Gσ (e(i)) (5)

where Ŵ denotes the optimal solution, and Ω denotes a feasible set of the parameter.

3. Maximum correntropy unscented filter

In this section, we propose to combine the MCC and a statistical linear regression model togeth-
er to derive a novel non-linear filter, which can perform very well in non-Gaussian noises, since
correntropy embraces second and higher order moments of the error.

Let’s consider a nonlinear system described by the following equations:

x(k) = f (k − 1,x(k − 1)) + q(k − 1), (6)

y(k) = h (k,x(k)) + r(k). (7)

where x(k) ∈ Rn denotes a n-dimensional state vector at time step k, y(k) ∈ Rm represents an m-
dimensional measurement vector, f is a nonlinear system function, and h is a nonlinear measurement
function and both are assumed to be continuously differentiable. The process noise q(k − 1) and

3
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measurement noise r(k) are generally assumed to meet the independence assumption with zero
mean and covariance matrices

E
[
q(k − 1)qT (k − 1)

]
= Q(k − 1), E

[
r(k)rT (k)

]
= R(k) (8)

Similar to other Kalman type filters, the MCUF also includes two steps, namely the time update
and measurement update:

3.1. Time update

A set of 2n+1 samples, also called sigma points, are generated from the estimated state x̂(k−1|k−1)
and covariance matrix P(k − 1|k − 1) at the last time step k − 1:

χ0(k − 1|k − 1) = x̂(k − 1|k − 1),

χi(k − 1|k − 1) = x̂(k − 1|k − 1)

+
(√

(n+ λ)P(k − 1|k − 1)
)
i
, for i = 1 . . . n,

χi(k − 1|k − 1) = x̂(k − 1|k − 1)

−
(√

(n+ λ)P(k − 1|k − 1)
)
i−n

, for i = n+ 1 . . . 2n.

(9)

where
(√

(n+ λ)P(k − 1|k − 1)
)
i

is the i-th column of the matrix square root of (n + λ)P(k −
1|k − 1), with n being the state dimension and λ being a composite scaling factor, given by

λ = α2(n+ φ)− n (10)

where α determines the spread of the sigma points, usually selected as a small positive number,
and φ is a parameter that is often set to 3− n.

The transformed points are then given through the process equation:

χi
∗
(k|k − 1) = f

(
k − 1, χi(k − 1|k − 1)

)
, for i = 0 . . . 2n (11)

The prior state mean and covariance matrix are thus estimated by

x̂(k|k − 1) =

2n∑
i=0

wimχ
i∗(k|k − 1), (12)

P(k|k − 1) =

2n∑
i=0

wic

[
χi
∗
(k|k − 1)− x̂(k|k − 1)

]
×
[
χi
∗
(k|k − 1)− x̂(k|k − 1)

]T
+ Q(k − 1).

(13)

4
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in which the corresponding weights of the state and covariance matrix are

w0
m =

λ

(n+ λ)
,

w0
c =

λ

(n+ λ)
+ (1− α2 + β),

wim = wic =
1

2(n+ λ)
, for i = 1 . . . 2n.

(14)

where β is a parameter related to the prior knowledge of the distribution of x(k) and is set to 2 in
the case of the Gaussian distribution.

3.2. Measurement update

Similarly, a set of 2n + 1 sigma points are generated from the prior state mean and covariance
matrix

χ0(k|k − 1) = x̂(k|k − 1),

χi(k|k − 1) = x̂(k|k − 1)

+
(√

(n+ λ)P(k|k − 1)
)
i
, for i = 1 . . . n,

χi(k|k − 1) = x̂(k|k − 1)

−
(√

(n+ λ)P(k|k − 1)
)
i−n

, for i = n+ 1 . . . 2n.

(15)

These points are transformed through the process equation as

γi(k) = h(k, χi(k|k − 1)), for i = 0 . . . 2n (16)

The prior measurement mean can then be obtained as

ŷ(k) =
2n∑
i=0

wimγ
i(k), (17)

Further, the state-measurement cross-covariance matrix is given by

Pxy(k) =
2n∑
i=0

wic
[
χi(k|k − 1)− x̂(k|k − 1)

] [
γi(k)− ŷ(k)

]T
. (18)

Next, we apply a statistical linear regression model based on the MCC to accomplish the mea-
surement update. First, we formulate the regression model. We denote the prior estimation error
of the state by

η(x(k)) = x(k)− x̂(k|k − 1) (19)

and define the measurement slope matrix as

H(k) =
(
P−1(k|k − 1)Pxy(k)

)T
(20)

5
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Then the measurement equation (7) can be approximated by (X. Wang et al., 2010)

y(k) ≈ ŷ(k) + H(k)(x(k)− x̂(k|k − 1)) + r(k) (21)

Combining (12) (17) and (21), we obtain the following statistical linear regression model:[
x̂(k|k − 1)

y(k)− ŷ(k) + H(k)x̂(k|k − 1)

]
=

[
I

H(k)

]
x(k) + ξ(k) (22)

where ξ(k) is

ξ(k) =

[
η(x(k))

r(k)

]
with

Ξ(k) = E
[
ξ(k)ξT (k)

]
=

[
P(k|k − 1) 0

0 R(k)

]
=

[
Sp(k|k − 1)STp (k|k − 1) 0

0 Sr(k)STr (k)

]
= S(k)ST (k)

(23)

Here, S(k) can be obtained by the Cholesky decomposition of Ξ(k). Left multiplying both sides of
(22) by S−1(k), the statistical regression model is transformed to

D(k) = W(k)x(k) + e(k) (24)

where

D(k) = S−1(k)

[
x̂(k|k − 1)

y(k)− ŷ(k) + H(k)x̂(k|k − 1)

]
,

W(k) = S−1(k)

[
I

H(k)

]
,

e(k) = S−1(k)ξ(k).

It can be seen that E
[
e(k)eT (k)

]
= I.

We are now in a position to define a cost function based on the MCC:

JL (x(k)) =
L∑
i=1

Gσ (di(k)−wi(k)x(k)) (25)

where di(k) is the i-th element of D(k), wi(k) is the i-th row of W(k), and L = n + m is the
dimension of D(k). Under the MCC, the optimal estimate of x(k) arises from the following opti-
mization:

x̂(k) = arg max
x(k)

JL (x(k)) = arg max
x(k)

L∑
i=1

Gσ (ei(k)) (26)

6
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where ei(k) is the i-th element of e(k) given by

ei(k) = di(k)−wi(k)x(k) (27)

The optimal solution of x(k) can be solved through

∂JL (x(k))

∂x(k)
= 0 (28)

It follows easily that

x(k) =

(
L∑
i=1

(
Gσ (ei(k)) wT

i (k)wi(k)
))−1

×(
L∑
i=1

(
Gσ (ei(k)) wT

i (k)di(k)
)) (29)

Since ei(k) = di(k)−wi(k)x(k), the equation (29) is actually a fixed-point equation with respect
to x(k) and can be rewritten as

x(k) = g (x(k)) (30)

Hence, a fixed-point iterative algorithm can be obtained as (Agarwal, Meehan, & Regan, 2001;
B. Chen, Wang, Zhao, Zheng, & Principe, 2015; Singh & Principe, 2010)

x̂(k)t+1 = g (x̂(k)t) (31)

with x̂(k)t being the estimated state x̂(k) at the t-th fixed-point iteration .
The fixed-point equation (29) in matrix form can also be expressed as

x(k) =
(
WT (k)C(k)W(k)

)−1
WT (k)C(k)D(k) (32)

where C(k) =

[
Cx(k) 0

0 Cy(k)

]
, with

Cx(k) = diag (Gσ (e1(k)) , ...,Gσ (en(k))),
Cy(k) = diag (Gσ (en+1(k)) , ...,Gn+m (en+m(k))),
which can be further written as (see the Appendix A for a detailed derivation):

x(k) = x̂(k|k − 1) + K(k) (y(k)− ŷ(k)) (33)

where 
K(k) = P(k|k − 1)HT (k)

(
H(k)P(k|k − 1)HT (k) + R(k)

)−1

P(k|k − 1) = Sp(k|k − 1)C−1
x (k)STp (k|k − 1)

R(k) = Sr(k)C−1
y (k)STr (k)

(34)

7
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Meanwhile, the corresponding covariance matrix is updated by

P(k|k) =
(
I−K(k)H(k)

)
P(k|k − 1)

(
I−K(k)H(k)

)T
+ K(k)R(k)K

T
(k)

(35)

Remark 1: Since K(k) relies on P(k|k − 1) and R(k), both related to x(k) through Cx(k) and
Cy(k), respectively, the equation (33) is a fixed-point equation of x(k). One can solve (33) by a
fixed-point iterative method. The initial value of the fixed-point iteration can be set to x̂(k|k)0 =

x̂(k|k − 1) or chosen as the least-squares solution x̂(k|k)0 =
(
WT (k)W(k)

)−1
WT (k)D(k). The

value after convergence is the posterior estimate of the state x̂(k|k).

A detailed description of the proposed MCUF algorithm is as follows:

1) Choose a proper kernel bandwidth σ and a small positive ε; Set an initial estimate x̂(0|0)
and corresponding covariance matrix P(0|0); Let k = 1;

2) Use equations (9)∼(14) to obtain prior estimate x̂(k|k − 1) and covariance P(k|k − 1), and
calculate Sp(k|k − 1) by Cholesky decomposition ;

3) Use (14)∼(17) to compute the prior measurement ŷ(k) and use (13) (18) and (20) to acquire
the measurement slope matrix H(k), and construct the statistical linear regression model
(22);

4) Transform (22) into (24), and let t = 1 and x̂(k|k)0 =
(
WT (k)W(k)

)−1
WT (k)D(k);

5) Use (36)∼(42) to compute x̂(k|k)t;

x̂(k|k)t = x̂(k|k − 1) + K̃(k) (y(k)− ŷ(k)) (36)

with

K̃(k) = P̃(k|k − 1)HT (k)
(
H(k)P̃(k|k − 1)HT (k) + R̃(k)

)−1
, (37)

P̃(k|k − 1) = Sp(k|k − 1)C̃−1
x (k)STp (k|k − 1), (38)

R̃(k) = Sr(k)C̃−1
y (k)STr (k). (39)

C̃x(k) = diag (Gσ (ẽ1(k)) , ...,Gσ (ẽn(k))) (40)

C̃y(k) = diag (Gσ (ẽn+1(k)) , ...,Gσ (ẽn+m(k))) (41)

ẽi(k) = di(k)−wi(k)x̂(k|k)t−1 (42)

6) Compare the estimation at the current step and the estimation at the last step. If (43) holds,
set x̂(k|k) = x̂(k|k)t and continue to step 7); Otherwise, t+ 1→ t, and go back to step 5).∥∥x̂(k|k)t − x̂(k|k)t−1

∥∥∥∥x̂(k|k)t−1

∥∥ ≤ ε (43)

8
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7) Update the posterior covariance matrix by (44), k + 1→ k and go back to step 2).

P(k|k) =
(
I− K̃(k)H(k)

)
P(k|k − 1)

(
I− K̃(k)H(k)

)T
+ K̃(k)R(k)K̃T (k)

(44)

Remark 2: As one can see, (9)∼(18) are the unscented transformation (UT). In the MCUF, we
use a statistical linear regression model and the MCC to obtain the posterior estimates of the state
and covariance. With the UT and statistical linear approximation, the proposed filter can achieve
a more accurate solution than the first order linearization based filters. Moreover, the usage of
MCC will improve the robustness of the filter against large outliers. Usually the convergence of the
fixed-point iteration to the optimal solution is very fast (see Section 4). Thus, the computational
complexity of MCUF is not high. The kernel bandwidth σ, which can be set manually or optimized
by trial and error methods in practical applications, is a key parameter in MCUF. In general, a
smaller kernel bandwidth makes the algorithm more robust (with respect to outliers), but a too
small kernel bandwidth may lead to slow convergence or even divergence of the algorithm. From
(B. Chen, Wang, et al., 2015), we know that if the kernel bandwidth is larger than a certain
value, the fixed-point equation (29) will surely converge to a unique fixed point. When σ → ∞,

the MCUF will obtain the least-squares solution
(
WT (k)W(k)

)−1
WT (k)D(k).

4. Illustrative examples

In this section, we present two illustrative examples to demonstrate the performance of the proposed
MCUF algorithm. Moreover, the performance is measured using the following benchmarks:

MSE1(k) =
1

M

M∑
m=1

(x(k)− x̂(k|k))2, for k = 1 . . .K (45)

MSE2(m) =
1

K

K∑
k=1

(x(k)− x̂(k|k))2, for m = 1 . . .M (46)

MSE =
1

M

M∑
m=1

MSE2(m) =
1

K

K∑
k=1

MSE1(k) (47)

where K is the total time steps in every Monte Carlo run and M represents the total number of
Monte Carlo runs.

4.1. Example 1

Consider the univariate nonstationary growth model (UNGM), which is often used as a benchmark
example for nonlinear filtering. The state and measurement equations are given by

x(k) = 0.5x(k − 1) + 25
x(k − 1)

1 + x(k − 1)2

+ 8 cos (1.2(k − 1)) + q(k − 1),

(48)

9
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y(k) =
x(k)2

20
+ r(k). (49)

First, we consider the case in which the noises are all Gaussian, that is,

q(k − 1) ∼ N(0, 1)
r(k) ∼ N(0, 1)

Table 1 lists the MSEs of x, defined in (47), and the average fixed-point iteration numbers. In
the simulation, the parameters are set as K = 500,M = 100. Since all the noises are Gaussian, the
UKF achieves the smallest MSE among all the filters. In this example, we should choose a larger
kernel bandwidth in MCUF to have a good performance. One can also observe that the average
iteration numbers of the MCUF are relatively small especially when the kernel bandwidth is large.

Table 1. MSEs of x and Average Iteration Numbers in Gaussian Noises.

Filter MSE of x Average iteration number

UKF 68.9766 —
MCUF

(
σ = 2.0, ε = 10−6

)
108.9796 5.0624

MCUF
(
σ = 3.0, ε = 10−6

)
94.5856 4.5431

MCUF
(
σ = 5.0, ε = 10−6

)
83.7554 3.7323

MCUF
(
σ = 8.0, ε = 10−6

)
86.1612 3.0431

MCUF
(
σ = 10, ε = 10−6

)
85.4109 2.7919

Second, we consider the case in which the process noise is still Gaussian but the measurement
noise is a heavy-tailed (impulsive) non-Gaussian noise, with a mixed-Gaussian distribution, that
is,

q(k − 1) ∼ N(0, 1)
r(k) ∼ 0.8N(0, 1) + 0.2N(0, 400)

Table 2 illustrates the corresponding MSEs of x and average iteration numbers. As one can see,
in impulsive noises, when kernel bandwidth is too small or too large, the performance of MCUF will
be not good. However, with a proper kernel bandwidth (say σ = 2.0), the MCUF can outperform
all the filters, achieving the smallest MSE. In addition, it is evident that the larger the kernel
bandwidth, the faster the convergence speed. In general, the fixed-point algorithm in MCUF will
converge to the optimal solution in only few iterations.

Table 2. MSEs of x and Average Iteration Numbers in Gaussian Process

Noise and Non-Gaussian Measurement Noise.

Filter MSE of x Average iteration number

UKF 84.3496 —
MCUF

(
σ = 1.0, ε = 10−6

)
70.5870 3.5413

MCUF
(
σ = 2.0, ε = 10−6

)
68.9714 3.0352

MCUF
(
σ = 3.0, ε = 10−6

)
69.3548 2.7056

MCUF
(
σ = 5.0, ε = 10−6

)
69.4932 2.3391

MCUF
(
σ = 10, ε = 10−6

)
70.4666 2.0286

We also investigate the influence of the threshold ε on the performance. The MSEs of x and
average iteration numbers with different ε (The kernel bandwidth is set at σ = 2.0) are given in
Table 3. Usually, a smaller ε results in a slightly lower MSE but a larger iteration number for
convergence. Without mentioned otherwise, we choose ε = 10−6 in this work.

10
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Table 3. MSEs of x and Average Iteration Numbers with Different ε.

Filter MSE of x Average iteration number

MCUF
(
σ = 2.0, ε = 10−1

)
69.7465 1.1142

MCUF
(
σ = 2.0, ε = 10−2

)
69.5853 1.3777

MCUF
(
σ = 2.0, ε = 10−4

)
69.0197 2.1753

MCUF
(
σ = 2.0, ε = 10−6

)
68.8073 3.0282

MCUF
(
σ = 2.0, ε = 10−8

)
68.8148 3.8770

Further, we consider the situation where the process and measurement noises are all non-Gaussian
with mixed-Gaussian distributions:

q(k − 1) ∼ 0.8N(0, 0.1) + 0.2N(0, 10)
r(k) ∼ 0.8N(0, 1) + 0.2N(0, 400)

With the same parameters setting as before, the results are presented in Table 4. As expected,
with a proper kernel bandwidth the MCUF can achieve the best performance.

Table 4. MSEs of x and Average Iteration Numbers in Non-Gaussian

Process Noise and Measurement Noise.

Filter MSE of x Average iteration number

UKF 84.8735 —
MCUF

(
σ = 1.0, ε = 10−6

)
71.7599 3.6104

MCUF
(
σ = 2.0, ε = 10−6

)
69.4382 3.1142

MCUF
(
σ = 3.0, ε = 10−6

)
69.8497 2.7765

MCUF
(
σ = 5.0, ε = 10−6

)
69.8505 2.3879

MCUF
(
σ = 10, ε = 10−6

)
70.0356 2.0599

4.2. Example 2

In this example, we consider a practical model (Simon, 2006). and the performance of EKF
(Anderson & Moore, 1979), Huber-EKF (HEKF) (El-Hawary & Jing, 1995), UKF (Julier et al.,
2000) and HUKF (X. Wang et al., 2010) are also presented for comparison purpose. The goal is
to estimate the position, velocity and ballistic coefficient of a vertically falling body at a very high
altitude. The measurements are taken by a radar system each 0.1s. By rectangle integral in the
discrete time with sampling period ∆T , we obtain the following model:

x1(k1) = x1(k1 − 1) + ∆Tx2(k1 − 1) + q1(k1 − 1)

x2(k1) = x2(k1 − 1) + ∆Tρ0 exp (−x1(k1 − 1)/a)

×x2(k1 − 1)2x3(k1 − 1)/2−∆Tg + q2(k1 − 1)

x3(k1) = x3(k1 − 1) + q3(k1 − 1)

(50)

y(k) =

√
b2 + (x1(k)−H)2 + r(k) (51)

where the sampling time is ∆T = 0.001s, that is k = 100k1, the constant ρ0 is ρ0 = 2, the constant
a that relates the air density with altitude is a = 20000, the acceleration of gravity is g = 32.2ft/s2,
the located altitude of radar is H = 100000ft, and the horizontal range between the body and the
radar is b = 100000ft.

The state vector x(k) =
[
x1(k) x2(k) x3(k)

]T
contains the position, velocity and bal-

listic coefficient. Similar to (Simon, 2006), we do not introduce any process noise in this
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model. The initial state is assumed to be x(0) =
[

300000 −20000 1/1000
]T

, and the

initial estimate is x̂(0|0) =
[

300000 −20000 0.0009
]T

with covariance matrix P(0|0) =
diag([1000000, 4000000, 1/1000000]).

First, we assume that the measurement noise is Gaussian, that is,

q1(k1) ∼ 0
q2(k1) ∼ 0
q3(k1) ∼ 0
r(k) ∼ N(0, 10000)

In the simulation, we consider the motion during the first 50s, and make 100 independent Monte
Carlo runs, that is, K = 500,M = 100. Fig. 1 ∼ Fig. 3 show the MSE1 (as defined in (45)) of x1,
x2 and x3 for different filters in Gaussian noise. The corresponding MSEs and average fixed-point
iteration numbers are summarized in Table 5 and Table 6. As one can see, in this case, since the
noise is Gaussian, the UKF performs the best. However, the proposed MCUF with large kernel
bandwidth can outperform the other two robust Kalman type filters, namely HEKF and HUKF.
One can also observe that the average iteration numbers of the MCUF are very small especially
when the kernel bandwidth is large.

Figure 1. MSE1 of x1 in Gaussian noise

Table 5. MSEs of x1, x2 and x3 in Gaussian Noise.

Filter MSE of x1 MSE of x2 MSE of x3

EKF 7.3254× 103 8.6071× 103 1.1317× 10−8

HEKF
(
ε = 10−6

)
7.9266× 103 8.9799× 103 1.1001× 10−8

UKF 7.2630× 103 8.5948× 103 1.1308× 10−8

HUKF
(
ε = 10−6

)
7.8343× 103 8.9969× 103 1.0983× 10−8

MCUF
(
σ = 2.0, ε = 10−6

)
8.3984× 103 9.4045× 103 1.0864× 10−8

MCUF
(
σ = 3.0, ε = 10−6

)
7.4680× 103 8.7892× 103 1.0865× 10−8

MCUF
(
σ = 5.0, ε = 10−6

)
7.2943× 103 8.6564× 103 1.1098× 10−8

MCUF
(
σ = 10, ε = 10−6

)
7.2674× 103 8.6298× 103 1.1246× 10−8

MCUF
(
σ = 20, ε = 10−6

)
7.2642× 103 8.6254× 103 1.1288× 10−8
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Figure 2. MSE1 of x2 in Gaussian noise

Figure 3. MSE1 of x3 in Gaussian noise

Table 6. Average Iteration Numbers for Every Time Step
in Gaussian Noise.

Filter Average iteration number

HEKF
(
ε = 10−6

)
1.2342

HUKF
(
ε = 10−6

)
1.2332

MCUF
(
σ = 2.0, ε = 10−6

)
1.7881

MCUF
(
σ = 3.0, ε = 10−6

)
1.5821

MCUF
(
σ = 5.0, ε = 10−6

)
1.3808

MCUF
(
σ = 10, ε = 10−6

)
1.1706

MCUF
(
σ = 20, ε = 10−6

)
1.0521
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Second, we consider the case in which the measurement noise is a heavy-tailed (impulsive) non-
Gaussian noise, with a mixed-Gaussian distribution, that is,

q1(k1) ∼ 0
q2(k1) ∼ 0
q3(k1) ∼ 0
r(k) ∼ 0.7N(0, 1000) + 0.3N(0, 100000)

Fig. 4 ∼ Fig. 6 demonstrate the MSE1 of x1, x2 and x3 for different filters in non-Gaussian
noise, and Table 7 and Table 8 summarize the corresponding MSEs and average iteration numbers
respectively. We can see clearly that the three robust Kalman type filters (HEKF, HUKF, MCUF)
are superior to their non-robust counterparts (EKF, UKF). When the kernel bandwidth is very
large, the MCUF achieves almost the same performance as that of UKF. In contrast, with a smaller
kernel bandwidth, the MCUF can outperform the UKF significantly. Especially, when σ = 2.0, the
MCUF exhibits the smallest MSE among all the algorithms. Again, the fixed-point algorithm in
MCUF will converge to the optimal solution in very few iterations.

Figure 4. MSE1 of x1 in non-Gaussian noise

Table 7. MSEs of x1, x2 and x3 in Non-Gaussian Noise.

Filter MSE of x1 MSE of x2 MSE of x3

EKF 2.9499× 104 2.2283× 104 1.5566× 10−8

HEKF
(
ε = 10−6

)
1.4068× 104 1.4079× 104 8.6645× 10−9

UKF 2.8772× 104 2.2331× 104 1.5497× 10−8

HUKF
(
ε = 10−6

)
1.3996× 104 1.4212× 104 8.6247× 10−9

MCUF
(
σ = 2.0, ε = 10−6

)
1.1457× 104 1.2990× 104 7.3965× 10−9

MCUF
(
σ = 3.0, ε = 10−6

)
1.7612× 104 1.5970× 104 1.0199× 10−8

MCUF
(
σ = 5.0, ε = 10−6

)
2.3818× 104 1.9475× 104 1.3083× 10−8

MCUF
(
σ = 10, ε = 10−6

)
2.7448× 104 2.1572× 104 1.4826× 10−8

MCUF
(
σ = 20, ε = 10−6

)
2.8428× 104 2.2147× 104 1.5323× 10−8
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Figure 5. MSE1 of x2 in non-Gaussian noise

Figure 6. MSE1 of x3 in non-Gaussian noise

Table 8. Average Iteration Numbers for Every Time Step
in Non-Gaussian Noise.

Filter Average iteration number

HEKF
(
ε = 10−6

)
1.2280

HUKF
(
ε = 10−6

)
1.2300

MCUF
(
σ = 2.0, ε = 10−6

)
1.4809

MCUF
(
σ = 3.0, ε = 10−6

)
1.3815

MCUF
(
σ = 5.0, ε = 10−6

)
1.2771

MCUF
(
σ = 10, ε = 10−6

)
1.1713

MCUF
(
σ = 20, ε = 10−6

)
1.0917
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5. Conclusion

In this work, we propose a novel nonlinear Kalman type filter, namely the maximum correntropy
unscented filter (MCUF), by using the unscented transformation (UT) to get the prior estimates
of the state and covariance matrix and applying a statistical linearization regression model based
on the maximum correntropy criterion (MCC) to obtain the posterior estimates (solved by a fixed-
point iteration) of the state and covariance. Simulation results demonstrate that with a proper
kernel bandwidth, the MCUF can achieve better performance than some existing algorithms in-
cluding EKF, HEKF, UKF and HUKF particularly when the underlying system is disturbed by
some impulsive noises.
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Appendix A. Derivation of (33)

W (k) = S−1 (k)

[
I

H (k)

]
=

[
S−1
p (k|k − 1) 0

0 S−1
r (k)

] [
I

H (k)

]
=

[
S−1
p (k|k − 1)

S−1
r (k) H (k)

] (A1)

C (k) =

[
Cx (k) 0

0 Cy (k)

]
(A2)
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D (k) = S−1 (k)

[
x̂ (k|k − 1)

y (k)−h (k, x̂(k|k − 1)) + H(k)x̂(k|k − 1)

]
=

[
S−1
p (k|k − 1) x̂ (k|k − 1)

S−1
r (y(k)− h (k, x̂(k|k − 1)) + H(k)x̂(k|k − 1))

] (A3)

By (A1) and (A2), we have (
WT (k) C (k) W (k)

)−1

=
[(

S−1
p

)T
CxS

−1
p + HT

(
Sr
−1
)T

CyS
−1
r H

]−1 (A4)

where we denote Sp (k|k − 1) by Sp, Sr (k) by Sr, Cx (k) by Cx and Cy (k) by Cy for simplicity.
Using the matrix inversion lemma with the identification:(

S−1
p

)T
CxS

−1
p → A, HT → B,

H→ C,
(
S−1
r

)T
CyS

−1
r → D.

We arrive at (
WT (k) C (k) W (k)

)−1

=
(
SpC

−1
x STp − SpC

−1
x STp HT (SrC

−1
y STr + HSpC

−1
x STp HT )

−1
HSpC

−1
x STp

) (A5)

Furthermore, by (A1) ∼ (A3), we derive

WT (k)C(k)D(k)

=
(
S−1
p

)T
CxS

−1
p x̂(k|k − 1)

+ HT
(
S−1
r

)T
CyS

−1
r (y(k)− h (k, x̂(k|k − 1)) + H(k)x̂(k|k − 1))

(A6)

Combining (32), (A5) and (A6), we have (33).
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