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Correntropy Maximization via
ADMM: Application to Robust
Hyperspectral Unmixing

Fei Zhu, Abderrahim Halimi, Member, IEEE, Paul Honeine, Member, IEEE,
Badong Chen, Senior Member, IEEE, and Nanning Zheng, Fellow, IEEE

Abstract— In hyperspectral images, some spectral bands suffer
from low signal-to-noise ratio due to noisy acquisition and
atmospheric effects, thus requiring robust techniques for the
unmixing problem. This paper presents a robust supervised spec-
tral unmixing approach for hyperspectral images. The robustness
is achieved by writing the unmixing problem as the maximization
of the correntropy criterion subject to the most commonly
used constraints. Two unmixing problems are derived: the first
problem considers the fully constrained unmixing, with both the
nonnegativity and sum-to-one constraints, while the second one
deals with the nonnegativity and the sparsity promoting of the
abundances. The corresponding optimization problems are solved
using an alternating direction method of multipliers (ADMM)
approach. Experiments on synthetic and real hyperspectral
images validate the performance of the proposed algorithms
for different scenarios, demonstrating that the correntropy-based
unmixing with ADMM is particularly robust against highly noisy
outlier bands.

Index Terms— Alternating direction method of multipli-
ers (ADMM), correntropy, hyperspectral image, maximum
correntropy estimation, unmixing problem.

I. INTRODUCTION

PECTRAL unmixing is an essential issue in many

disciplines, including signal and image processing, with
a wide range of applications, such as classification, segmen-
tation, material identification, and target detection. Typically,
a hyperspectral image corresponds to a scene taken at many
continuous and narrowbands across a certain wavelength
range, namely, each pixel is a spectrum. Assuming that
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each spectrum is a mixture of several pure materials,
the unmixing problem consists in two tasks: 1) identifying
these pure materials (the so-called endmembers) and 2) esti-
mating their proportions (the so-called abundances) at each
pixel [1]. In practice, these two steps can be performed
either sequentially or simultaneously [2]. Well-known end-
member extraction algorithms include the pure-pixel-based
ones, e.g., the vertex component analysis (VCA) [3] and the
N-FINDR [4], as well as the minimum-volume-based ones,
e.g., the minimum simplex analysis [5] and the minimum vol-
ume constrained nonnegative matrix factorization (NMF) [6].
While the endmember extraction is relatively easy from geom-
etry, the abundance estimation remains an open problem.
Indeed, the abundances can be estimated using least-squares
methods, geometric approaches [2], or by tackling recently
raised issues such as nonlinearity [7], [8]. In this paper,
we consider the abundance estimation problem.

The linear mixture model (LMM) is the most investigated
over the past decades [6], [9], [10]. Its underlying premise
is that each pixel/spectrum is a linear combination of the
endmembers. To be physically interpretable, two constraints
are often enforced in the estimation problem: the abundance
nonnegativity constraint (ANC) and the abundance sum-to-
one constraint (ASC) for each pixel [11]. Considering both
constraints, the fully constrained least-squares (FCLS) method
was presented in [9]. A more recently proposed unmixing algo-
rithm is the so-called sparse unmixing by variable splitting and
augmented Lagrangian (SUnSAL) [12]. It addresses the same
optimization problem by taking advantage of the alternating
direction method of multipliers (ADMM) [13]. A constrained
version of SUnSAL was also proposed to solve the constrained
sparse regression problem, where the ASC constraint is relaxed
and the {1-norm regularizer is added.

All these unmixing algorithms hugely suffer from noisy
data and outliers within bands. Indeed, in real hyperspectral
images for remote sensing, a considerable proportion
(about 20%) of the spectral bands are noisy with low signal-
to-noise ratio (SNR), due to the atmospheric effect such
as water absorption [14]. These bands need to be removed
prior to applying any existing unmixing method; otherwise,
the unmixing quality drastically decreases. Such sensitivity to
outliers is due to the investigated {>-norm as a cost function
in the FCLS and SUnSAL algorithms, as well as all unmixing
algorithms that explore least-squares solutions. It is worth
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noting that nonlinear unmixing algorithms also suffer from this
drawback, including the kernel-based FCLS (KFCLS) [15],
nonlinear fluctuation methods [7], and postnonlinear
methods [16].

Information theoretic learning provides an elegant alter-
native to the conventional minimization of the £;-norm in
least-squares problems, by considering the maximization of
the so-called correntropy [17], [18]. Due to its stability and
robustness to noise and outliers, the correntropy maximization
is based on theoretical foundations and has been successfully
applied to a wide class of applications, including cancer clus-
tering [19], face recognition [20], and recently hyperspectral
unmixing [21], to name a few. In these works, the resulting
problem is optimized by the half-quadratic technique [22],
either in a supervised manner [20] or as an unsupervised
NMF [19], [21].

In this paper, we consider the hyperspectral unmixing prob-
lem by defining an appropriate correntropy-based criterion,
thus taking advantage of its robustness to large outliers,
as opposed to the conventional £>-norm criteria. By including
constraints commonly used for physical interpretation, we pro-
pose to solve the resulting constrained optimization problems
with ADMM algorithms. Indeed, the ADMM approach splits a
hard problem into a sequence of small and handful ones [13].
Its relevance to solve nonconvex problems was studied
in [13, Sec. 9]. We show that ADMM provides a rel-
evant framework for incorporating different constraints
raised in the unmixing problem. We present the so-called
correntropy-based unmixing by variable splitting and aug-
mented Lagrangian (CUSAL), and study in particular
two algorithms: CUSAL-FC to solve the fully constrained
(ANC and ASC) correntropy based unmixing problem, and the
CUSAL-SP to solve the sparsity-promoting correntropy-based
unmixing problem. In the presence of highly noisy bands,
the proposed ADMM method is more robust than classical
half-quadratic methods for solving correntropy maximiza-
tion [19], [21], by alleviating to some degree the parameter
estimation problem in the latter (see Section IV-C for more
details).

The rest of this paper is organized as follows. We first
provide a succinct survey on the classical unmixing problems
in Section II. In Section III, we propose the correntropy-
based unmixing problems subject to the aforementioned con-
straints, and study the robustness. The resulting optimization
problems are solved by the ADMM algorithms described in
Section IV. Experiments on synthetic and real hyperspectral
images are presented in Sections V and VI, respectively.
Finally, Section VII provides some conclusions and future
works.

II. CLASSICAL UNMIXING PROBLEMS

The LMM assumes that each spectrum can be expressed
as a linear combination of a set of pure material spectra,
termed endmembers [1]. Consider a hyperspectral image and
let Y € RE*T denote the matrix of the T pixels/spectra of L
spectral bands. Let y,, be its fth column and y,, its /th row,
representing the /th band of all pixels. For notation simplicity,
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we denote y, = y,, fort = 1,...,T. The LMM can be

written as
R
J’zZZxrt m, +n, =Mx; +n; (1)
r=1

where M = [m; --- mg] € RE*R is the matrix composed
by the R endmembers with m, = [my, --- mrAY, x; =
[x1; --- xre]" is the abundance vector associated with the rth
pixel, and n; € RE is the additive noise. In matrix form for
all pixels, we have Y = M X + N, where X =[x --- x7] €
RR*T and N is the noise matrix.

In the following, the endmembers are assumed known,
either from ground-truth information or by using any
endmember extraction technique. The spectral unmixing prob-
lem consists in estimating the abundances for each pixel, often
by solving the least-squares optimization problem

min ||y, — M3 @)

foreacht = 1,..., T, where || - |2 denotes the conventional
{>-norm. The solution to this conventional least-squares prob-
lem is given by the pseudoinverse of the (tall) endmember
matrix, with x, = (M "M)"'M" y;. The least-squares opti-
mization problems (2), for all t =1, ..., T, are often written
in a single optimization problem using the following matrix
formulation:

min [|¥ — MX |7 3)
where || - ||% denotes the Frobenius norm. Its solution is
Xis=M ' M)y"'MTy. 4)

Finally, this optimization problem can also be tackled by
considering all the image pixels at each spectral band, which
yields the following least-squares optimization problem:

L
: 2
nygymfanmb

where ();« denotes the /th row of its argument. While all
these problem formulations have a closed-form solution, they
suffer from two major drawbacks. The first one is that several
constraints need to be imposed in order to have a physical
meaning of the results. The second drawback is its sensitivity
to noise and outliers, due to the use of the ¢>-norm as a
fitness measure. These two drawbacks are detailed in the
following.

To be physically interpretable, the abundances should
be nonnegative (ANC) and satisfy the sum-to-one con-
straint (ASC). Considering both constraints, the FCLS problem
is formulated as, foreacht =1,..., T

min ||y, — Mx;|3, st x;=0and17x, =1
Xt

where 1 € RE*! denotes the column vector of ones and > 0
is the nonnegativity applied element-wise. In matrix form

min [[¥ — MX |}

s.t.Xannlex,zl, fort=1,...,T.
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Since there is no closed-form solution when dealing with
the nonnegativity constraint, several iterative techniques have
been proposed, such as the active set scheme with the
Lawson and Hanson’s algorithm [23], the multiplicative itera-
tive strategies [24], and the FCLS technique [9]. More recently,
the ADMM was applied with success for hyperspectral unmix-
ing problem, with the SUnSAL algorithm [12].

Recent work in hyperspectral unmixing has advocated the
sparsity of the abundance vectors [12], [25], [26]. In this case,
each spectrum is fitted by a sparse linear mixture of endmem-
bers, namely, only the abundances with respect to a small
number of endmembers are nonzero. To this end, the sparsity-
promoting regularization with the ¢j-norm is included in
the cost function, yielding the following constrained sparse
regression problem [12], foreach t =1,...,T:

: 2
min [y, — Mx; |l + 2lxll,  s.t.x, =0
t

where the parameter A balances the fitness of the least-squares
solution and the sparsity level. It is worth noting that the ASC
is relaxed when the £1-norm is included. This problem is often
considered using the following matrix formulation:
T
min |Y — MX||%+ 2 lxdh, st X >0.

t=1

A. Sensitivity to Outliers

All the aforementioned algorithms rely on solving a (con-
strained) least-squares optimization problem, thus inheriting
the drawbacks of using the £>-norm as the fitness measure.
A major drawback is its sensitivity to outliers, where outliers
are some spectral bands that largely deviate from the rest of
the bands. Indeed, considering all the image pixels, the least-
squares optimization problems take the form

L
m’}n; 192 = (M X013 5)

subject to any of the aforementioned constraints. From this
formulation, it is easy to see how the squared £>-norm gives
more weight to large residuals, namely, to outliers in which
predicted values (M X)), are far from actual observations yy,.
Moreover, it is common for hyperspectral images to present up
to 20% of unusable spectral bands due to low SNR essentially
from atmospheric effects, such as water absorption. In the
following section, we overcome this difficulty by considering
the correntropy maximization principle from the information
theoretic learning, which yields an optimization problem that
is robust to outliers.

ITI. CORRENTROPY-BASED UNMIXING PROBLEMS
In this section, we examine the correntropy and
write the unmixing problems as correntropy maximization
ones. Algorithms for solving these problems are derived
in Section IV.

A. Correntropy
The correntropy, studied in [17] and [18], is a nonlinear
local similarity measure. For two random variables, ) and its
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TABLE I
COMMONLY USED SHIFT-INVARIANT KERNELS

Kernel K(u, v)
Gaussian exp(% flu —ol[|?)
Laplacian exp(% llw —vll)
Inverse multiquadratic e

estimation ) using some model/algorithm, it is defined by
E[x(Y, Y)] ©)

where IE[-] is the expectation operator, and x(-,:) is a
shift-invariant kernel satisfying the Mercer theorem [27].
In practice, while the joint distribution function of ) and Y
is unavailable, the sample estimator of correntropy is adopted
instead. Employing a finite number of data {(y,,, ¥;,)} 1L=1 ,itis
estimated by

L

1 ~

I E K (¥ses Yiu) @)
I=1

up to a normalization factor. Expressions of the most
commonly-used shift-invariant Mercer kernels are presented
in Table 1. In the following, we restrict the presentation to
the Gaussian kernel, since it is the mostly used one for cor-
rentropy [17], [20], [28]. It is worth noting that the proposed
algorithms can be easily extended to other kernels. Replacing
the expression of Gaussian kernel in (7) leads to the following
expression for the correntropy:

L
% > exp (2—12 1yp — ?I*H%) ®)
1=1 g
where o denotes the bandwidth of the Gaussian kernel.
The maximization of the correntropy, given by
1L
__ mmax z Z ’C(yl*» ./y\l*)
YissesYLx =1
is termed the maximum correntropy criterion [17]. It is note-
worthy that well-known second-order statistics, such as the
mean square error (MSE), depends heavily on the Gaussian
and linear assumptions [17]. However, in the presence of non-
Gaussian noise and in particular large outliers, i.e., observa-
tions greatly deviated from the data bulk, the effectiveness of
the MSE-based algorithms will significantly deteriorate [29].
By contrast, the maximization of the correntropy criterion is
appropriate for non-Gaussian signal processing, and is robust
in particular against large outliers, as shown next.

B. Underlying Robustness of the Correntropy Criterion

In this section, we study the sensitivity to outliers of the
correntropy maximization principle, by showing the robustness
of the underlying mechanism. To this end, we examine the
behavior of the correntropy in terms of the residual error
defined by ¢, = ||y — Yill2. Thus, the correntropy (8)

becomes
1 & -1,
z Z_E 1 eXp (20—261 ) .
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Fig. 1. Illustration of the second-order objective function (612, in red solid
line) and the negative correntropy objective function [1 —exp((—1/ (20‘2))612),
in dashed lines for several values of o], in terms of the residual error (¢;).

Compared with second-order statistics, e.g., MSE, the corren-
tropy is more robust with respect to the outliers, as shown
in Fig. 1 illustrating the second-order and the correntropy
objective functions in terms of the residual error. As the resid-
ual error increases, the second-order function keeps increasing
dramatically. On the contrary, the correntropy is sensitive only
within a region of small residual errors, this region being
controlled by the kernel bandwidth. For large magnitudes of
residual error, the correntropy falls to zero. Consequently,
the correntropy criterion is robust to large outliers.

C. Correntropy-Based Unmixing Problems

The correntropy-based unmixing problem consists in esti-
mating the unknown abundance matrix X, by minimizing the
objective function C (the negative of correntropy), given by

L ~1
C(X) == exp (mnm - (MX)z*n%) ©)
=1

where the Gaussian kernel was considered, or equivalently

L T R 2
—1
C(X)=-— g exp 752 E <y1t— E xrtmlr> . (10)
=1 t=1 r=1

Considering both the ANC and ASC constraints, the fully
constrained correntropy unmixing problem becomes

min C(X)

st. X>0and1'x, =1, fort=1,...,T. (11)

To promote the sparsity of the abundances, the objective
function (9), (10) can be augmented by the ¢;-norm penalty
on the abundance matrix X, leading to the following problem:

T
minC(X) + 4 llxel, st X >0,

t=1

12)

IV. ADMM FOR SOLVING THE CORRENTROPY-BASED
UNMIXING PROBLEMS

We first briefly review the ADMM, following the expres-
sions in [13, Ch. 3]. Consider an optimization problem of the
form

min (x) + g(x)
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where the functions f and g are closed, proper, and convex.
The ADMM solves the equivalent constrained problem

Tizn f(x)+gk) st. Ax + Bz=c (13)

such as having the particular constraint x = z for instance.
While this formulation may seem trivial, the optimization
problem can now be tackled using the augmented Lagrangian
method where the objective function is separable in x and z.
By alternating on each variable separately, the ADMM repeats
a direct update of the dual variable. In its scaled form,
the ADMM algorithm is summarized in Algorithm 1. Assum-
ing that the (unaugmented, namely, p = 0 in Algorithm 1)
Lagrangian associated with problem (13) has a saddle point,
the ADMM iterates, as given in Algorithm 1, satisfy the
following: 1) the objective function convergence; 2) the primal
residual convergence, i.e., ||Xx+1 — Zk+1ll2 — 0; and 3) the
dual residual convergence, i.e., p|lzk+1 — zZkll2 = O (see [13]
for more details).

Algorithm 1 ADMM Algorithm [13]

Input: functions f and g, matrices A and B, vector c,
parameter p

1: Initialize k = 0, x¢, zo, and ug

2: repeat

3 Xk = argming f(x) + 5| Ax + Bzi — ¢ + uil3;

4 ziy1 = argming g(2) + 51| Axis1 + Bz — ¢ + ui |}

50 upy =ug + Axge1 + Bzio — ¢

6 k=k+1;

7: until stopping criterion

A. Correntropy-Based Unmixing With Full Constraints

In the following, we apply the ADMM algorithm to solve
the correntropy-based unmixing problem in the fully con-
strained case, presented in (11). The main steps are summa-
rized in Algorithm 2. Rewrite the variables to be optimized
in a vector x € RRT*! which is stacked by the columns of
the matrix X, namely, x = [x]— x}—]T. Also rewrite the

following vectors in RRT*!: 7z = [le z;]—r and u =
[u] - ur]", where, forr =1,...,T, z = [z1; -+~ zrd]'

and u; = [uy; -+ urd'. By following the formulation of the
ADMM in Algorithm 1, we set:

T

) =C@)+ ) yyTx)
t=1

8(2) = 1prr(2)

A=—-I, B=Iande=0 (14)

where I is the identity matrix, 0 € RRT<! is the zero vector,
and 15(u) is the indicator function of the set S defined by

1) = 0 ifues
S " ] oo otherwise.

In this case, the subproblem of the x-update (in line 3
of Algorithm 1) addresses a nonconvex problem without any
closed-form solution. To overcome this difficulty, we apply an
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inexact ADMM variant in lines 3-5 of Algorithm 2, which
solves the subproblem iteratively using the gradient descent
method, instead of solving it exactly and explicitly.

Before that, we eliminate the T equality constraints, i.e., the
sum-to-one constraints, by replacing xg; with

R—1
XRt = 1-— Z Xrt
r=1
fort =1,...,T. Let ¥ € RE-DTx1 pe the reduced vector
of (R — 1) unknowns to be estimated, stacked by
X(Rfl)t]T

X =[x1; ---

fort = 1,...,T. By this means, the objective function in (14)
is transformed from (10) into the reduced form

L 1 T
fi@® == exp (m ) 61@)2)
=1 t=1

- R—1
where €/(x;) = yi — mir — >, (mp — mir)xp;, for [ =

15)

1,..., L. The gradient of (15) with respect to ¥ is stacked as
T
T T
Sh_ | 2L et
ox 0xXq oxXr

where (8f1/0%,) = [(8f1/0%1:) -+ (8f1/(@X(r—1))]", with
the entries given by

ofhE 1 & 1 &
J;;_(:) == ;(mm — myr) exp (m Sz:; éz(Ys)2> €(x;)

forall r = 1,...,(R—1) and + = 1,...,T. Similarly,
the function (p/2)||x — zx — uk||% is expressed with respect
to X as

2
R-1

1= xpt — ZRek — URek
1 p=1

P(x) =

N[
™~

t

+

SIS

R—1

2
Z(xpt — Zptk — upt,k)
p=1

with the entries in its gradient % given by

09 (¥) -
ot =p X+ pz_:l Xpt — 1+ ZRek — Zitk + URGE — Urtk

(16)

foralr=1,...,R—1landt=1,...,T.

The solution of the z-update in line 4 Algorithm 1 becomes
the projection of x;4+1 — ui onto the first orthant, as shown in
line 7 of Algorithm 2.

B. Sparsity-Promoting Unmixing Algorithm

In order to apply the ADMM algorithm, we express the
constrained optimization problem (12) as follows:

f(x) =C(x)
8(z) = igrr(z) + Azl

A=-I, B=Iandc=0. (17)
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Algorithm 2 Correntropy-Based Unmixing With Full Con-
straints (CUSAL-FC)

1: Initialize k =0, p > 0, > 0, ¢ > 0; x9, 20, and uog;

2: repeat

3: repeat

4 Xkl = Xpt1 — fi(agﬁl + a_%%);
5:  until convergence

6: reform xyy1 using Xi41;
70 Zgg1 = max(0, xgp1 — ug);
8 U1 = Uk — (X1 — Zk+1);
9 k=k+1;

10: until stopping criterion

By analogy with the previous case, the x-update in line 3
of Algorithm 1 is solved iteratively with the gradient descent
method and is given in lines 3-5 of Algorithm 3. The gradient
of (17) with respect to x is stacked by (6f/dx;), where

9 1 & 1
o _ = Zez(xz) exp <20—2 Z(el(xs))2> m],
=1 s=1

axt -

fort = 1,...,T, where ¢(x;) = yi — Zlexnmlr. The
z-update in line 4 Algorithm 1 involves solving

Zhtl = argrlganﬁT(Z) + (4/p)lzllh + %IIZ — Xk — ukl3

(18)
In [13], the ADMM has been applied to solve various
{1-norm problems, including the well-known LASSO [30].
The only difference between (18) and the z-update in LASSO
is that in the latter, no nonnegativity term i rr (z) is enforced.
In this case, the z-update in LASSO is the element-wise soft
thresholding operation

Zk+1 = Sayp(Xp1 — uk)
where the soft thresholding operator [13] is defined by

c—b ifr>>b
Sp() =40 if Il <&
C+0b it <—b.
Following [12], it is straightforward to project the result onto

the nonnegative orthant in order to include the nonnegativity
constraint, thus yielding:

Zk+1 = max(0, Sy, (xpq1 — uy))

where the maximum function is element-wise. All these results
lead to the correntropy-based unmixing algorithm with sparsity
promoting, as summarized in Algorithm 3.

C. On the Bandwidth Determination and Convergence
We apply a threefold stopping criterion
Algorithms 2 and 3, according to [12] and [13].
1) The primal and dual residuals are small enough, namely,

lxk+1 — 2Zk+1ll2 < €1 and pllziky1 — zkll2 < €2, where
€] = €2 = /RT x 1073 as in [12].

for
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Algorithm 3 Correntropy-Based Unmixing With Sparsity

Promoting (CUSAL-SP)

1: Initialize k =0, p > 0,6 > 0, > 0, 1 > 0; x¢, 20, and
uo;

2: repeat

3:  repeat

4 Xjt1 = Xk41 — 'I(

5:  until convergence

6:  Zk+1 = max(0, S/, (k1 — Uk));

7.

8

9

af
OXj+1

+ p(Xp1 — 2k — up));

U1l = U — (X1 — Zkt1)3
: k=k+1,
: until stopping criterion

2) The primal residual starts to increase, i.e., ||Xkx41 —
Tkt ll2 > ek — zill2.

3) The maximum iteration number is attained.
The bandwidth ¢ in the Gaussian kernel should be well
tuned. Note that a small value for this parameter punishes
harder the outlier bands, thus increasing the robustness of the
algorithm to outliers [20]. Note that, in this paper, the ADMM
is applied to address a nonconvex objective function, and thus
no convergence is guaranteed theoretically, according to [13].
Considering these issues, we propose to fix the bandwidth
empirically as summarized in Algorithm 4 and described next.

Algorithm 4 Tuning the Bandwidth Parameter o
1: Initialize ¢ = oo using (19); p = 1;
2: Do CUSAL with Algorithm 2 or 3;
3: if stopping criterion 1) or 3) is satisfied then

4. if condition HV:M% < 2 is satisfied, then
N 1 Ls/lF

5: c* = o (optimal value)

6: else

7 increase ¢ = 1.20, and go to line 2

8: end if

9: else

—_

0: if ¢ > 10000¢ (due to the overestimated op) then
11: p=p+1;

12: decrease 0 = g/ p, and go to line 2
13:  else

14: increase ¢ = 1.2, and go to line 2
15:  end if

16: end if

Following [20] and [21], we first initialize the bandwidth
parameter as a function of the reconstruction error, given by

0
o4 = Y - MXys|% (19)

where the parameter 6 is chosen as & = (RT/2) in this
paper and Xpgs is the least-squares solution (4). In the case
of a result too apart from that of least-squares solution,
the parameter is augmented by ¢ = 1.20, until that the
condition ((|JY — MX||r)/(|]Y — MX1s|F)) < 2 is satisfied.
The algorithm divergence occurs if the stopping criterion 2) is
satisfied, namely, the primal residual increases over iterations.
In this case, either the parameter is too large due to an
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overestimated initialization or it is too small. Accordingly,
we either decrease it by ¢ = op/p or increase it by ¢ = 1.20,
until that the ADMM converges.

The nonconvexity of the problem requires a loop for tuning
outside the ADMM. This leads to an algorithm more time
consuming than the half-quadratic methods that transform the
original problem to a reweighted NMF [19], [20]. However, for
half-quadratic with the expectation conditional maximization
method (see details in [19]), although the parameter is updated
over iterations, it is around the initialization value that is
estimated from a formula similar to (19). When dealing with
high noise levels, this value is often not small enough to
account for the influence brought by outliers. The parameter
tuning step in ADMM alleviates the parameter estimation
problem to some degree. This phenomenon is observed in the
experiments in the next sections.

Although the convergence is not proved theoretically,
we will provide evidence in the experiments that the proposed
ADMM algorithm converges to stationary points and that the
results have robustness with respect to the initializations.

V. EXPERIMENTS WITH SYNTHETIC DATA

In this section, the performance of the proposed fully con-
strained (CUSAL-FC) and sparsity-promoting (CUSAL-SP)
algorithms is evaluated on synthetic data. A comparative study
is performed considering six state-of-the-art methods proposed
for linear and nonlinear unmixing models.

1) FCLS [9]: The FCLS is developed for the linear model.
Enforcing both ANC and ASC constraints, this tech-
nique yields the optimal abundance matrix in the least-
squares sense.

2) SUnSAL [12]: This method is based on the ADMM.
Several variants are developed by including different
constraints, with the fully constrained SUnSAL-FCLS
and the sparsity-promoting SUnSAL-SP.

3) The Bayesian Algorithm for Generalized Bilinear
Model (BayGBM) [31], [32]: This method estimates the
abundances with the generalized bilinear model (GBM),
which adds second-order interactions between endmem-
bers to the linear model, yielding the model

R—-1 R

yr=Mx; + Z Z VijaXieXj(m; O mj) + ny
i=1 j=itl

where 0 < y;;; < 1 controls the interactions between
endmembers m; and m;, and © is the element-wise
product. The BayGBM considers both ANC and ASC.

4) KFCLS [15]: This method generalizes FCLS, by replac-
ing the inner product with a kernel function. In the
following, the Gaussian kernel is applied for simulation.

5) NMF With a Maximum Correntropy Criterion
(NMF-MCC) [19]: This NMF-based method maximizes
the correntropy between the input matrix and the product
of the two matrices to estimate in an unsupervised
manner. The resulting optimization problem is solved
using the half-quadratic technique and the expectation
conditional maximization method.
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Fig. 2. (Left) R =3 and (right) 6 USGS signatures chosen for simulation.

TABLE II
COMPARISON OF RMSE (x 10_2) WITH DIFFERENT SNR, FOR R =3

SNR = 10 | SNR = 20 | SNR = 30 | SNR = 40 | SNR = 50
FCLS 108 | @38 | @120 @041 ® 0.12
SUnSAL-FCLS 1017 | @38 | @120 | @041 ® 0.12
BayGBM 10.23 388 | @120 0.42 0.16
KFCLS 12.64 443 1.42 0.55 ® 0.13
NME-MCC 13.73 553 195 | @038 0.15
£1-CENMF ® 991 442 1.28 0.42 0.15
CUSAL-FC D792 ®303 ] OLs5| @04 ® 0.12
6) Correntropy-Based NMF  Promoted by {1-Norm
(€1-CENMF) [21]: This method improves the

NMF-MCC by including the £{-norm of the second
unknown matrix to the objective function, for the sake
of a sparse representation. Similar to the NMF-MCC,
the half-quadratic strategy is applied to solve the
optimization problem.

7) For fair comparison, the supervised cases of NMF-MCC
and ¢;-CENMF are considered in the experiments,
by setting the endmember matrices as the actual ones.

A. Performance of CUSAL-FC (Fully Constrained Algorithm)

We first compare the fully constrained CUSAL-FC, pre-
sented in Section IV-A, with the state-of-the-art methods. Two
sets of experiments are performed, mainly considering the
influence of the noise level and the number of endmembers.

Each image, of 50 x 50 pixels, is generated using the linear
mixing model (1). The Gaussian noise is added as in [21]
where the noise levels, represented by SNR, vary across the
bands to simulate the cases of real hyperspectral images. The
R € {3, 6} endmembers, as shown in Fig. 2, are drawn from
the USGS digital spectral library [33]. These endmembers are
defined over L = 244 continuous bands with the wavelength
ranging from 0.2 to 3.0 um. The abundance vectors x; are
uniformly generated using a Dirichlet distribution as in [33]
and [34].

The unmixing performance is evaluated using the abundance
root MSE (RMSE) [31], [35], defined by

T
1 ~
RMSE = RT ;_1 e, — X112

where X; is the estimated abundance vector.

In the first set of experiments, the SNRs of bands are
generated using the normal distribution SNR ~ N(SNR, €?),
with SNR € {10,20,30,40,50} and ¢ = 5 according
to [21]. Tables II and III illustrate the average of RMSE
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TABLE III
COMPARISON OF RMSE (x 10*2) WITH DIFFERENT SNR, FOR R = 6

SNR =10 | SNR = 20 | SNR = 30 | SNR = 40 | SNR = 50
FCLS ® 9.04 5.14 2.05 ® 0.70 ® 0.24
SUnSAL-FCLS | (@ 9.04 5.14 2.05 @ 0.70 ® 0.24
BayGBM 9.05 5.14 2.04 ® 0.70 ® 0.24
KFCLS 9.53 6.06 2.20 0.76 ® 0.25
NME-MCC 9.49 5.28 2.08 ® 0.74 0.33
£,-CENMF 9.45 ® 5.06 ® 1.98 ® 0.74 0.32
CUSAL-FC o 7.87 @ 4.63 ® 2.02 @ 0.70 ® 0.24

TABLE IV

COMPARISON OF RMSE (x 10*2) WITH SNR| =30
AND DIFFERENT SNRj, FOR R = 3

SNR; =5 | SNR; = 10 | SNR; = 15
FCLS 7.66 4.86 2.99
SUnSAL-FCLS 7.66 4.85 2.99
BayGBM 7.70 4.90 3.00
KFCLS 10.45 5.85 445
NME-MCC 7.50 4.82 291
¢,-CENMF @ 5.33 @ 3.08 @ 217
CUSAL-FC ® 175 @ 1.66 ® 173

over 10 Monte Carlo realizations, respectively, for R = 3

and R = 6. It is easy to see that, when the average noise
level is relatively high with SNR = 10 and 20, the proposed
CUSAL-FC algorithm outperforms all the comparing methods
in terms of RMSE, for different numbers of endmembers.
When the average noise level is relatively low, namely,
SNR = 40 and 50, the proposed CUSAL-FC is able to provide
comparable results as the least squares approaches, e.g., FCLS
and SUnSAL-FCLS. It is also shown that the performance of
the proposed algorithm improves when increasing the SNR.

The second set of experiments is conducted in order to
examine the performance of the proposed method in presence
of highly noisy bands, which is a common phenomenon for
real hyperspectral images. To this end, the data are similarly
generated as previously described, where two normal distri-
butions SNR ~ N (SNR7, €2) and SNR ~ AN (SNR3, €?) are
used, with ¢ = 5. While most bands have a common average
noisy level with SNR; = 30, there are 40 out of 224 bands
randomly chosen to be severely corrupted by high-level aver-
age noise with SNR, e {5, 10, 15}. Tables IV and V report
the average of RMSE over 10 Monte Carlo realizations,
respectively, for R = 3 and R = 6. We observe that the
proposed CUSAL-FC algorithm is the most effective among
all the comparing methods when the data contain highly noisy
bands, regardless of number of endmembers.

We investigate the convergence property of the proposed
ADMM algorithm with CUSAL-FC, and examine its robust-
ness with respect to the initialization. To this end, a toy
image of 50 x 50 pixels is generated using the linear mixing
model (1), where the Gaussian noise with SNR = 30 is
added. The R = 3 endmembers, as shown in Fig. 2 (left),
is considered while the abundance vectors x; are uniformly
generated using a Dirichlet distribution. The changes of the
objective function value and the primal and dual residuals
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Illustration of the convergence property of CUSAL-FC, by plotting the objective function value and the primal and dual residuals over the

first 50 iterations, using a fixed value of u = 0.01. (a) Objective function value. (b) Primal residual. (c) Dual residual.
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Fig. 4. Averaged SRE with respect to the sparsity level K, averaged over 10 Monte Carlo realizations. Comparison for various average noise level SNR. (a)

SNR = 10. (b) SNR = 20. (c) SNR = 30.

TABLE V

COMPARISON OF RMSE (x 10_2) WITH SNR| = 30
AND DIFFERENT SNRj, FOR R = 6

SNR; =5 | SNRy = 10 | SNRy = 15
FCLS 8.00 6.27 437
SUnSAL-FCLS 8.00 6.27 437
BayGBM 8.02 6.29 438
KFCLS 8.56 7.81 4.44
NMF-MCC 8.08 6.22 431
¢1-CENMF ® 1715 ® 5.21 ® 3.63
CUSAL-FC  3.98 ® 3.73 ® 3.35

over the first 50 iterations are given in Fig. 3. A rapid drop
of objective function and residuals for the first 20 iterations
is observed, signifying that the proposed ADMM  algo-
rithm converges to stationary points with modest accuracy.
We examine the robustness of CUSAL-FC with respect to the
initialization, and compare it with the half-quadratic approach
proposed for maximum correntropy criterion, namely,
NMEF-MCC [19]. The elements in X are identically initialized
for each method, using: 1) uniform distribution x, ~ 4(0, 1);
2) normal distribution xx ~ AN(0.5,0.1) combined with
rounding all the negative values up to zero; and 3) normal
distribution xx ~ N (0.5, 0.2) combined with rounding all the
negative values up to zero. Ten Monte Carlo realizations are
performed, leading to the averages and deviations of RMSE
given in Table VI. In contrast to NMF-MCC, these results
show that the proposed ADMM algorithm provides good
results even when considering different initializations.!

1t is not reasonable to directly compare the objective function values
of CUSAL-FC and NMF-MCC, since these two methods address distinct
optimization problems involving different values of parameter ¢ and different
constraints.

TABLE VI

AVERAGES AND DEVIATIONS OF RMSE (x 10_2) WITH
RESPECT TO DIFFERENT INITIALIZATIONS

CUSAL-FC

NMF-MCC

Ty ~ U0, 1)

1.16+2.5 x 10~ 2

1.2743.5 x 1072

T ~ N(0.5,0.1)

0.09+0.2 x 10~2

0.1140.1 x 10~2

T ~ N(0.5,0.2)

0.094:0.5 x 1072

470+4.0 x 10~2

T
SUnSAL-FCLS|
- @ - FCLS
BayGBM ”’
- @ - KFCLS .
NME-MCC .
- @ - ¢1-CENMF
- M - CUSAL-FC -

’
- .

[ el

. . .
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Fig. 5. Cuprite image: the averaged SAD using a different number of bands,
computed without the noisy bands 1—3, 105—115, 150—170, and 223 —224.

B. Performance of CUSAL-SP (Sparsity-Promoting
Algorithm)

The performance of the proposed sparsity-promoting
CUSAL-SP, presented in IV-B, is compared with two sparsity-
promoting methods: SUnSAL-SP and ¢1-CENMF, on a series
of data with sparse abundance matrices. We study the influence
of: 1) the noise level over bands, namely, SNR and 2) the
sparsity level of the abundances. Each image, of 15 x 15 pixels,
is generated by the LMM. The endmember matrix is composed
by R 62 USGS signatures, where the angle between
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Fig. 6. Cuprite image. Estimated abundance maps using 187 clean bands.
(Left to right) Sphene, alunite, buddingtonite, kaolinite, chalcedony, and high-
way. (Top to bottom) SUnSAL-FCLS, FCLS, BayGBM, KFCLS, NMF-MCC,
¢1-CENMF, and CUSAL-FC.

any two different endmembers is larger than 10° [25]. The
K nonzero entries in each abundance vector x; are generated
by a Dirichlet distribution. The value of K (i.e., the indicator
of sparsity level) ranges from 2 to 15, while the average
level of noise SNR e {10, 20, 30}. A rough measure of the
sparsity level of the unknown abundance matrix from the input
spectra [36] takes the form

VT =yl /1yl
VT -1 ’

For all the algorithms, the sparsity-promoting parameter A is
adjusted using the set § x {107,5-1073,107%,5-1074, 1073}.

The unmixing performance with the sparsity-promoting
algorithms is evaluated using the signal-to-reconstruction
error (SRE), measured in decibels, according to [12] and [25].
It is defined by

1 L
S:ﬁ;

T 2
SRE:IOlogm( 2=t el )

Szt e —%el3

The results, averaged over 10 Monte Carlo realizations,
are illustrated in Fig. 4. Considering that the abun-
dance matrix under estimation is sparse at different levels,
we conclude the following: CUSAL-SP always outperforms
SUnSAL-SP. When dealing with high noise levels, namely,
SNR = 10 and 20, CUSAL-SP outperforms ¢1-CENMF in

Fig. 7.
187 clean bands. The same legend as Fig. 6.

Cuprite image. Estimated abundance maps using 205 bands, with

most cases (except for K = 12 and 15 with SNR = 20).
When the noise level is relatively low with SNR = 30,
the CUSAL-SP provides the best unmixing quality with the
highest SRE value for K < 7, while £{-CENMF leads to
the best unmixing quality, especially for K > 10. Still,
the proposed CUSAL-SP always outperforms SUnSAL-SP,
which is not the case of {;-CENMF.

VI. EXPERIMENTS WITH REAL DATA

This section presents the performance of the proposed
algorithms on a real hyperspectral image. We consider a
250 x 190 subimage taken from the Cuprite mining image,
acquired by the AVIRIS sensor when flying over Las Vegas,
Nevada, USA. The image has been widely investigated in the
literature [7], [25]. The raw data contain L = 224 bands,
covering a wavelength range 0.4-2.5 yum. Among, there are
37 relatively noisy ones with low SNR, namely, the bands 1-3,
105-115, 150-170, and 223-224. The geographic composition
of this area is estimated to include up to 14 minerals [3].
Neglecting the similar signatures, we consider 12 endmembers
as often investigated in the literature [7], [37]. The VCA
technique is first applied to extract these endmembers on the
clean image with L = 187 bands. Starting from L = 187
bands, the noisy bands, randomly chosen from the bands 1-3,
105-115, 150-170, and 223-224, are gradually included
to form a series of input data. Therefore, the experiments
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Fig. 8. Cuprite image. Estimated abundance maps using all the 224 bands,
with 187 clean bands. The same legend as Fig. 6.

TABLE VII

COMPUTATIONAL TIME (ms/pixel) ON UNMIXING
THE CUPRITE IMAGE USING 224 BANDS

SUnSAL-FCLS 0.89
FCLS 0.42
BayGBM 34.80
KFCLS 0.39
NME-MCC 3.14
£1-CENMF 5.54
CUSAL-FC 20.94

are conducted with L =
and 224 bands.

Since ground-truth abundances are unknown, the per-
formance is measured with the averaged spectral angle
distance (SAD) between the input spectra y, and the recon-
structed ones },, as illustrated in Fig. 5, where the SAD is
defined by

187,193,199, 205, 211, 217, 223,

( yt yt )
E arccos
||.Yt||||)’t||

The estimated abundance maps using 187, 205, and 224 bands
are given in Figs. 6-8, respectively. In the absence of noisy
bands (i.e., L = 187 bands), all the methods lead to
satisfactory abundance maps, with NMF-MCC providing the
smallest SAD. As the number of noisy bands increases, espe-
cially from L = 199 to L = 224, the unmixing performance
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of the state-of-the-art methods deteriorates drastically, while
the proposed CUSAL yields stable SAD. The obtained results
confirm the good behavior of the proposed CUSAL algorithms
and their robustness in the presence of corrupted spectral
bands. The MATLAB (R2010) average implementation times
per pixel in milliseconds are shown in Table VII, when
experiments are performed with all L = 224 bands. The
estimated time for CUSAL-FC includes the estimation of the
parameter o.

VII. CONCLUSION

This paper presented a supervised unmixing algorithm based
on the correntropy maximization principle. Two correntropy-
based unmixing problems were addressed, the first with the
nonnegativity and sum-to-one constraints and the second with
the nonnegativity constraint and a sparsity-promoting term.
The ADMM was investigated in order to solve the correntropy-
based unmixing problems. The robustness of the proposed
unmixing method was validated on synthetic and real hyper-
spectral images. Future works include the generalization of the
correntropy criterion to account for the multiple reflection phe-
nomenon [31], [38], [39], as well as incorporating nonlinear
models [40].
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