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Abstract

In extreme learning machines (ELM), the hidden node parameters are randomly generated and the output

weights can be analytically computed. To overcome the bad feature extraction ability of the shallow archi-

tecture of ELM, the hierarchical ELM has been extensively studied as a deep architecture with multilayer

neural network. However, the commonly used mean square error (MSE) criterion is very sensitive to outliers

and impulsive noises, generally existing in real world data. In this paper, we investigate the correntropy to

improve the robustness of the multilayer ELM and provide sparser representation. The correntropy, as a

nonlinear measure of similarity, is robust to outliers and can approximate different norms (from `0 to `2).

A new full correntropy based multilayer extreme learning machine (FC-MELM) algorithm is proposed to

handle the classification of datasets which are corrupted by impulsive noises or outliers. The contributions

of this paper are three-folds: (1) The MSE based reconstruction loss is replaced by the correntropy based

loss function; In this way, the robustness of the ELM based multilayer algorithms is enhanced. (2) The

traditional `1-based sparsity penalty term is also replaced by a correntropy-based sparsity penalty term,

which can further improve the performance of the proposed algorithm with a sparser representation of the

data. The combination of (1) and (2) provides the correntropy-based ELM autoencoder. (3) The FC-MELM

is proposed by using the correntropy-based ELM autoencoder as a building block. It is notable that the

FC-MELM is trained in a forward manner, which means fine-tuning procedure is not required. Thus, the

FC-MELM has great advantage in learning efficiently when compared with traditional deep learning al-

gorithms. The good property of the proposed algorithm is confirmed by the experiments on well-known

benchmark datasets, including the MNIST datasets, the NYU Object Recognition Benchmark dataset, and

the Moore network traffic dataset. Finally, the proposed FC-MELM algorithm is applied to address Com-

puter Aided Cancer Diagnosis. Experiments conducted on the well-known Wisconsin Breast Cancer Data

(Diagnostic) dataset are presented and show that the proposed FC-MELM outperforms state-of-the-art

methods in solving computer aided cancer diagnosis problems.
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1. Introduction

Extreme learning machine (ELM) [1], as a fast and effective solution of single hidden layer feed-forward

networks (SLFNs), has been increasingly investigated in recent years. Because of its extremely fast training

speed, good generalization ability and the proved universal approximation/classification capability, ELM has

efficiently achieved excellent learning accuracy in many applied fields, such as face recognition [2, 3, 4], image

classification [5, 6, 7], text categorization [8, 9], nonlinear model identification [10] and time series prediction

[11]. Many variants of ELM have been proposed in recent years, such as the regularized ELM [12], the kernel-

based ELM [13], the ELM based on a regularized correntropy criterion [14] and the online sequential ELM

[15], to name a few. Although, the training speed of ELM is swift when compared with the traditional

gradient-based learning algorithms, it may need more hidden neurons due to the random determination of

the input weights and hidden biases. Thus, several researchers have been working to address and solve this

issue. In [16], Zhu et al. proposed an ELM based learning algorithm named evolutionary extreme learning

machine (E-ELM) that combines ELM and differential evolutionary (DE) algorithms. By making use of

a modified form of DE, E-ELM optimizes the input weights and hidden biases to avoid a swollen network

structure. All of these approaches are relying on ELM with its single hidden layer architecture. It is worth

noting that the concept of randomness in parameters of neural networks is not new, and goes back to the

beginning of the nineties, where Pao et al. [17] proposed a random vector version of the functional-link

(RVFL) net. Technically, the architecture of RVFL is different from ELM as it uses a direct link between

the input layer and the output layer.

Learning relevant features from original data to achieve better representations and using the represen-

tations for classification has been significantly common in modern machine learning. As the most popular

algorithms in machine learning, the deep learning algorithms [19, 20, 21] take advantage of multilayer models

to find the complex structure and learn the high level representations through multiple levels of abstraction.

It has been proven that deep learning algorithms outperform SLFNs in many applications [22, 23]. Unfor-

tunately, deep architectures in neural networks always spontaneously increase the training time, and often
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require appropriate hardware (e.g. GPU). For these reasons, efforts have been made to combine the ELM

and the deep architectures in order to simultaneously improve the performance and reduce the training

time. In [24], Kasun et al. proposed a multilayer learning architecture which uses ELM-based autoen-

coder to build the deep network. To further improve the classification performance of the multilayer ELM,

Jiexiong et al. [25] proposed a hierarchical ELM (H-ELM) algorithm. In H-ELM, the classifier is changed

into an original ELM which can keep the universal approximation capability by exploiting the advantage

of random projections. Moreover, an ELM sparse autoencoder is proposed. With this new sparse building

block, H-ELM can get a sparser and more compact representation of the original data and achieve a better

performance. However, the ELM-based multilayer algorithms is badly influenced by different kinds of noises,

especially impulsive noise and outliers, because of a major factor: the used loss function is the mean square

error (MSE), which is very sensitive to these noises. Moreover, the training is often simplified when dealing

combining ELM and deep architectures. Thus, the improvement of robustness of the ELM-based multilayer

algorithms should be further investigated.

The correntropy, a special case of the cross entropy in information theoretic learning [26], is a nonlinear

and local similarity measure which shows the similarity between two random variables in a neighborhood of

the joint space controlled by the bandwidth of the used kernel function. Compared with the MSE, one of

the great ability of correntropy criterion is its insusceptibility to outliers [27, 28]. Thus, the maximization

of the correntropy criterion (MCC) has been increasingly used to replace the minimization of the MSE in

handling the heavy-tailed impulsive noises and outliers [29]. In [30], Wang et al. proposed a local correntropy

based K-means clustering to address the real-world image segmentation problem which suffers from unknown

noise and intensity inhomogeneity. In [31], Chen et al. proved that the maximum correntropy estimation

is equivalent to a smoothed maximum a posteriori estimation. Generally, the correntropy uses a Gaussian

kernel as its kernel function, because the Gaussian kernel is smooth and strictly positive. When using the

Gaussian kernel, correntropy can induce a nonlinear metric called the correntropy induced metric (CIM)

which can approximate different norms, from `0 to `2. Seth et al. used in [32] the CIM as an approximation

of the `0-norm to find the sparsest vector for the compressed signal reconstruction. When used as an `0

approximator, the CIM needs fewer measurements to represent the same signals. Singh et al. proposed in

[33, 34] a correntropy-based cost function for training neural network classifier, denoted Closs. Essentially,

Closs is an MSE in some reproducing kernel Hilbert space (RKHS). Two major works have considered this

correntropy-based cost function function for stacked auto-encoders (SAE) in deep learning. In [35], Qi et al.

used the maximum correntropy criterion (MCC) to reduce the bad influence from outliers in deep learning.
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In [36], Chen et al. proposed a correntropy-based stacked auto-encoders (CSAE) which replaces the two

original terms in SAE with the Closs-based loss term for the fitness and the Closs-based sparsity penalty

term. CSAE shows an obvious improvement of the robustness when data contains outliers and impulsive

noise. The combination of the two correntropy-based terms for fitness and sparsity is designated by full

correntropy in the following.

Moreover, deep learning algorithms have been recently investigated in computer aided cancer detection

and diagnosis (CAD) to help doctors to achieve correct examination. With the progress of deep learning

algorithms in image recognition areas, convolutional neural networks (CNN) and other deep learning methods

have been recently investigated for medical imagery, in particular cancer tissue images. By utilizing deep

learning algorithms, some promising results on breast cancer image analysis are presented in [37, 38, 39, 40].

Similarly, CNN is used in [41, 42] to detect colon cancer by taking advantage of the good feature extraction

ability in deep neural networks. Deep learning algorithms are also applied to help detecting prostate cancer

and other cancers [44, 45]. Moreover, they fulfill their potential in skin cancer diagnosis with photographs,

which is a difficult problem in the past. In [43], the Google’s Inception v3 architecture is used for dealing

with a dataset of skin photographic images, yielding excellent results.

In complement to medical imagery, some statistic data from patients are also used in CAD to aid

practitioners in early detection of cancers. With the rapid development of deep learning algorithms, some

great results based on deep learning methods are also presented in early CAD researches. In [46], the

authors utilized the good feature extraction ability of deep-belief network (DBN) to deal with CAD for early

detection of breast cancer. When compared with C4.5 decision tree method, supervised fuzzy clustering and

some neural network based methods, DBN shows the best performance. Deep learning methods are also

employed in gene expression analysis for cancer detection. While it is difficult to identify the subtype of a

cancer, this information is of great influence in the selection of the specific treatment. In [47], Rasool et

al. applied unsupervised feature learning to handle the unlabeled data to enlarge the dataset and use deep

learning methods to accurately classify the cancer. Muxuan et al. proposed a DBN based multi-platform to

cluster multi-platform observation data form cancer patients and to distinguish the subtypes of the cancer

[48]. statistic data and genetic information from patients can provide effective information for early cancer

prediction and detection. But compared with medical image based CAD, these areas still need further

investigation.

In this paper, we propose a full correntropy-based multilayer extreme learning machine (FC-MELM).

To this end, we replace firstly the MSE-based loss function in the conventional ELM autoencoder by the
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correntropy-based loss function. Secondly, the sparsity penalty term in ELM autoencoder is also changed

into a correntropy-based sparsity penalty term. These two correntropy-based terms are combined to form

the full correntropy-based ELM autoencoder. Thirdly, the full correntropy-based ELM autoencoder is

investigated to build the FC-MELM. These ingredients guarantee that FC-MELM is robust to impulsive

noise and outliers. In order to corroborate these theoretical assumptions, the good performance of the

proposed algorithm is confirmed by extensive experimental results on well-known benchmarks collected from

totally different fields, including the MNIST dataset [53], the NYU Object Recognition Benchmark (NORB)

dataset [54] and the Moore network traffic dataset (Moore). Then, the proposed FC-MELM is applied to

classify Wisconsin Breast Cancer Data (Diagnostic) as a CAD application for early cancer detection. Hence,

FC-MELM is proved to be an algorithm that can be employed in many areas to achieve relevant results.

In addition, by using ELM-based building block, the FC-MELM is also faster than other traditional deep

learning algorithms. Therefore, FC-MELM is suitable for solving time-sensitive problems as well.

The rest of the paper is organized as follows. In the next section, the related works are concisely

introduced. And the new model FC-MELM is presented in section 3. In section 4, experiments are carried

out to show the improvements of performance of the proposed FC-MELM. Section 5 provide experiment

results for Computer Aided Cancer Diagnosis. Finally, section 6 concludes this paper.

2. Related Works

To help understand the FC-MELM, a brief review of the original ELM, its universal classification capa-

bility, the H-ELM and the correntropy is given in this section.

2.1. Classical ELM

Generally, ELM is a rapid solution of SLFNs by analytically determining the output layer weights.

Following the presentation in [49], for a SLFN with a hidden layer of L nodes, when given N distinct

samples {xj , tj}Nj=1 where xj ∈ Rd is an input sample and tj ∈ Rc is the corresponding target, the output

vector is defined as follows

f(xj) =

L∑
i=1

βi h(xj , wi, bi), for all j = 1, 2, ..., N, (1)

where h(·) is the activation function, wi , bi and βi denote the hidden layer weight, bias and output weight

for the i-th unit, respectively. This is the “generalized” SLFNs with any type of hidden node h(xj , wi, bi).

Specially, we use in this paper the additive hidden, namely

f(xj) =

L∑
i=1

βi h(wi · xj + bi), for all j = 1, 2, ..., N, (2)
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where wi · xj denotes the inner product between the hidden layer weight wi and the input xj . In ELM, the

values of the weights wi and biases bi are randomly determined without tuning procedure. By regrouping

the tunable parameters, which are the output weights between the hidden layer with L nodes and the output

layer, namely β = (β1, . . . , βL)T , the above N expressions can be written in matrix form as

F = Hβ, (3)

where H is the hidden layer output matrix, with

H =


h(w1 · x1 + b1) . . . h(wL · x1 + bL)

...
. . .

...

h(w1 · xN + b1) . . . h(wL · xN + bL)

 . (4)

Thus, by minimizing the fitness error in the squared error sense, the matrix of the weights between the

hidden layer and the output layer can be achieved, namely

min
β
||Hβ − T ||2, (5)

where || · || denotes the Frobenius norm and T = (T1, . . . , TL)T is the matrix of targets. The optimal solution

to (5) is given by

β∗ = H†T, (6)

where H† denotes the Moore-Penrose generalized inverse, defined by the following expression when HTH is

nonsingular:

H† = (HTH)−1HT . (7)

Obviously, a disadvantage of (5) is that the least square solution is sensitive to noise, especially to outliers

and impulsive noise. It turns out that such types of noise are common in the real world datasets.

2.2. Universal Classification Capability of ELM

In this section, the sufficient and necessary conditions for universal classification of ELM are presented.

1) Universal approximation: In [50], it is proved that ELM can approximate any continuous target function

by using an extensive type of feature mapping h(x). For any target continuous function f(x), there exists

a series of βi’s such that

lim
L→+∞

||fL(x)− f(x)|| = lim
L→+∞

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

βihi(x)− f(x)

∣∣∣∣∣
∣∣∣∣∣ = 0. (8)
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With this universal approximation capability, there is no necessity for fine-tuning. The optimization

constraints of ELM are also gentler than others. These advantages will increase the generalization ability

and also reduce the computational complexity. Additionally, it is known that a learning algorithm can’t

approximate all continuous target function by using a feature mapping which doesn’t meet the universal

approximation condition. Therefore, the universal approximation condition is the sufficient and necessary

condition for the common used feature mappings.

2) Classification: It is shown in [51], and earlier and more generally in [52], that the classification capability

of the “generalized” SLFNs with the hidden-layer mapping h(x) satisfies the condition (8), by proving

a theorem as follows: Given a feature mapping h(x), if h(x)β is dense in C(Rd) or in C(M), where M

is a compact set of Rd, then a “generalized” SLFN with such a hidden-layer mapping h(x) can separate

arbitrary disjoint regions of any shapes in Rd or M . In the theorem, a closed set is defined as a region.

It can be seen from this theorem that if the number of hidden nodes L in a classifier is sufficient, the

output of this classifier h(x)β can be close to the labels.

2.3. Variants of ELM

To improve the stability and performance of the original ELM, the regularized ELM was proposed in

[12], with the solution changed to

β∗ =
(
HTH + λI

)−1
HTT, (9)

where λ is a tunable regularization parameter and I is the identity matrix of appropriate size. This formu-

lation allows to overcome the case when HTH is singular. It is worth noting that the solution in (7) can be

achieved by solving the minimization problem:

min
β
||Hβ − T ||2 + λ||β||2, (10)

where ||β||2 =
∑L
i=1 β

2
i denotes the regularization term with a `2-norm.

An autoencoder extracts features through encoding the original inputs, while approximate outputs are

generated from the decoding process by minimizing the reconstruction errors. Thus, the autoencoder aims

to learn a function h{W,b}(x) ≈ x, where W being the hidden weights and b the bias. The ELM sparse

autoencoder proposed in [25] combines the ELM and a sparsity constraint. It has been proved that ELM

has the universal approximation capability which helps us free from the fine-tuning procedure. Moreover,

an `1-norm regularization is added to learn sparser features of the inputs. The ELM sparse autoencoder

considers the optimization problem

Oβ = arg min
β

||Hβ −X||2 + λ||β||1, (11)
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Figure 1: (a) The function value of Closs for different values of the kernel bandwidth σ as the error e increasing; (b) The

derivative of Closs for different values of the kernel bandwidth σ, as well as the derivative of the MSE (in continuous-black).

where X is the input data. The ELM sparse autoencoder is learned by adopting a fast iterative shrinkage-

thresholding algorithms (FISTA) [56]. It is noted that H is randomly initialized and does not need to be

optimized.

In [25], the ELM sparse autoencoder is used as the building block to construct a hierarchical ELM (H-

ELM). In the same spirit as Built in a hierarchical manner, H-ELM is different from classic deep learning

architectures which are greedily layer-wisely trained. The H-ELM training process has two separate phases:

1) unsupervised hierarchical feature extraction and 2) supervised feature classification. In the first phase, the

ELM sparse autoencoder is employed to extract high level features from the input data. Secondly, an original

ELM-based regression is carried out for final classification. Additionally, thanks to the `1 regularization,

H-ELM can further reduce the number of hidden nodes and accelerate the training process.

2.4. Correntropy

The correntropy is a generalized correlation function in information theoretic learning. It is defined for

two random variables S and T as

C(S, T ) = E[κ(S, T )], (12)

where E is the expectation and κ(·, ·) is an arbitrary kernel function satisfying Mercer’s theorem. Often

used in the literature, the Gaussian kernel is defined for any two samples si and ti as

κσ(si, ti) = exp

(
− e2

2σ2

)
, (13)
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where σ is the tunable bandwidth of the kernel and e = si − ti. Then, sample estimator of the correntropy

is given by

Ĉ(S, T ) =
1

N

N∑
i=1

κσ(si, ti). (14)

From the perspective of functional analysis, the kernel bandwidth determines the inner product, i.e., the

metric of similarity in RKHS. On one hand, if the kernel bandwidth is too large, then all the data would look

similar in the RKHS (with inner products all close to 1). On the other hand, if the kernel bandwidth is too

small, then all the data would look different (with inner products all close to 0). In essence, the correntropy

is a second-order statistic of the mapped data into the feature space.

In [27], the probabilistic meanings of correntropy is presented as follows.

Property: Assume i.i.d. data {(si, ti)}Ni=1 are drawn from the joint probability density function (pdf)

fS,T(s, t), and f̂S,T;σ(s, t) its Parzen estimate with kernel size σ. The correntropy estimate with kernel size

σ′ =
√

2σ is the integral of f̂S,T;σ(s, t) along the line s = t

V̂√2σ(S,T) =

∫ ∞
−∞

f̂S,T;σ(s, t) |s=t=u du. (15)

Then, based on the conditions of the Parzen method, as σ gets close to zero and the Nσ to infinity, f̂S,T ;σ(s, t)

approaches the true pdf fS,T (s, t), we have

lim
σ→0

V (S, T ) = lim
σ→0

∫ ∫
s,t

κσ(s− t)fS,T (s, t)dsdt

=

∫ ∫
s,t

δ(s− t)fS,T (s, t)dsdt

=

∫ +∞

s=−∞
fS,T (s, s)ds.

(16)

In practice, we can only achieve an estimation of the correntropy with a finite number of samples. The

kernel size is set with a lower bound, that if the value of kernel size is too small, the estimation is unmeaning

at all. If σ is the kernel size of correntropy, then the bandwidth of its rectangle approximation is
√
π/2σ.

We can also assume that the joint pdf is smooth in this bandwidth. Therefore, another interpretation of the

correntropy is

Vσ(S, T ) ≈ P (|T − S| <
√
π/2σ)/

√
π/2σ. (17)

In classification tasks, the goal is minimizing the loss function between the classifier output variable S

and the target label T . Hence, the correntropy-based loss function is defined as follows:

Closs(S, T ) = γ
(
1− E(κσ(S, T ))

)
, (18)
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Figure 2: The architecture of FC-MELM. The full correntropy-based ELM autoencoder is used as the building block to form

the FC-MELM. (1) β1 is the output weight vector between hidden layer 1 and hidden layer 2. (2) The new input x2 is achieved

by g(x1 · β1T ). (3) x2 is the input data of hidden layer 2 and used to train the second hidden layer to achieve the newer

representation. (4) Once the features are learned, the output of last hidden layer is used to train an original ELM and calculate

the output weight βo.

where γ =
(
1− exp(− 1

2σ2 )
)−1

. Similarly, the empirical loss function Ĉloss can be easily achieved as

Ĉloss(S, T ) = γ

(
1− 1

N

N∑
i=1

κσ(si, ti)

)
. (19)

This loss function should be compared to the conventional MSE, namely 1
N

∑N
i=1 e

2
i with ei = si − ti.

In Figure 1, the curves and the derivative curves of Closs are presented. In Figure 1(b), the derivative

curves of MSE is also expressed to show the advantage of Closs. Clearly, when the error e increases, the

derivative of MSE will increase linearly. On the contrary, the derivative curves of Closs decrease fast and

get close to zero, which means the Closs can lighten the bad influence from the outliers or impulsive noises,

making it a robust alternative to MSE.
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3. Description of the full correntropy-based multilayer ELM

This section describes the proposed full correntropy-based multilayer ELM (FC-MELM). To this end, it

architecture is firstly presented. Secondly, the main building block is described, namely the full correntropy-

based ELM autoencoder. Finally, the building of the FC-MELM is described in detail.

3.1. Architecture of FC-MELM

FC-MELM is built in a multilayer manner, in the same spirit as the H-ELM. It is composed of two parts.

The first part is a multilayer feature extractor representing a process of unsupervised learning. Each layer

is based on the full correntropy-based ELM autoencoder. In the second part, an original ELM operates

at the output of the first part and acts as a classifier to obtain the final classification results. The target

is getting a new representation through training the full correntropy-based ELM autoencoder. The deep

network is fully connected with n hidden layers and β = (β1, . . . , βn)T is the output weight to be learned

from the training procedure. Each layer is trained layer-wisely to cut down the training cost. The detailed

architecture and learning process are presented in Figure 2. As is shown in Figure 2(1), β1 is learned by

considering a corresponding full correntropy-based ELM autoencoder with the target output being the input,

namely T = X. In Figure 2(2), the new input x2 is achieved by g(x1 · (β1)T ). Then, in Figure 2(3), x2 is

used as input to the next hidden layer and the new output weight β2 is learned from the new representation

of input X. In Figure 2(4), the learning process of the FC-MELM from the training set X is illustrated.

Identically, the βi+1 is the (i + 1)-th layer output weight. At the end, an ELM-based classifier is learned

from the output of n-th hidden layer.

The output matrix of each hidden layer can be denoted as

Hi = g (Hi−1 · βi) , (20)

where Hi is the output matrix of the i-th hidden layer, βi represents the output weights, and g(·) is the

activation function such as the sigmoid function. The hidden layers are layer-wisely trained. Different from

the traditional deep learning algorithms, when the feature extraction of the previous hidden layer is done,

the weights or parameters of the current hidden layer is fixed without any fine-tuning in the FC-MELM.

Thus, the FC-MELM maintains a fast training speed, as opposed to other deep architecture algorithms.

3.2. Full correntropy-based ELM autoencoder

In this section, we describe the main building block of the FC-MELM, which is the full correntropy-based

ELM autoencoder.
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3.2.1. Correntropy-based reconstruction loss term

In order to improve the robustness of original ELM autoencoder, we consider a correntropy-based re-

construction loss term to utilize the insensitiveness of the correntropy of the outliers and impulsive noises.

Here, we maximize the correntropy between the target and network output variables instead of using cost

function in (9). Therefore, we can get the correntropy reconstruction loss from the ELM sparse autoencoder

as follows

Oβ = arg min
β

E(κσ(Hβ,X))− λ||β||1. (21)

Compared with the existing ELM autoencoder which simply uses MSE as the reconstruction loss function,

the use of the correntropy reconstruction loss for ELM autoencoder is more robust to non-Gaussian noise.

By decreasing the bad influence from outliers or impulsive noises, it would have a better performance, as

shown in experiments.

3.2.2. Correntropy-based sparsity penalty term

As aforementioned, Closs can approximate norms from `0 to `2. For one-dimensional samples, Closs(X,0)

can approximate the `0 norm as ||X||0, with

‖X‖0 ≈ Closs(X,0), (22)

where Closs is defined in (18) and empirically in (19), with σ → 0. Generally, minimizing an `0 norm is a way

to find the sparsest representation of the original data. Unfortunately, `0 norm minimization is an NP-hard

problem. Instead, the `1 norm minimization is usually utilized, as with sparse autoencoders. Here, we replace

the `1 norm minimization by a Closs-based `0 norm approximator, which can be arbitrarily close to the `0

norm as σ → 0. By minimizing the Closs-based `0 norm approximator, one may need less measurements

to represent same data when compared with `1 norm minimization, and a sparser representation can be

obtained as well.

Hence, we replace in the sparse autoencoder the traditional sparsity penalty term by a correntropy-based

sparsity penalty term. Then, the `1-based penalty term ||β||1 in ELM sparse autoencoder is changed to

||β||0 ≈ Closs(β,0), (23)

where Closs is defined in (18) and empirically in (19), with σ → 0. Using correntropy-based sparsity penalty

term to train the ELM autoencoder, we may get a sparser representation of the original data. Because the

sparsest representation reflects the most essential features of the data which may not be sensitive to outliers,

the sparser representation is helpful to increase the robustness and performance of the full correntropy-based

ELM autoencoder.
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Algorithm 1 Unsupervised training procedure of FC-MELM using FISTA

Input: Input matrix X = (sj,i)N×d, target matrix T = (tj,k)N×c

Output: The optimal weight matrix β = (βp,q)L×Nl

Initialization: Number of hidden layers Nl, number of hidden layer units Ln, maximum number of iterations I,

kernel bandwidth of hidden layers σn

1: Randomly initialize the weight vectors connecting the input and hidden layers W ,

2: for ζ = 1, 2, . . . , I do

3: Compute the Lipschitz constant ϕ of the gradient of smooth convex function 5p(·)

4: for m = 1, 2, . . . , I do

5: Compute βm = sϕ(ym), where

sϕ = argmax
β

ϕ

2

∥∥∥β − (
βm−1 −

1

ϕ
5 p(βm−1)

)∥∥∥2

− q(β). (24)

6: Update tm+1 =
1+
√

1+4t2m
2

.

7: Update ym+1 = βm +
tm−1

tm+1
(βm − βm−1) .

8: end for

9: end for

10: return result

3.2.3. Building the FC-MELM

To further improve the robustness, we use correntropy-based reconstruction loss and correntropy-based

sparsity penalty term together to build a full correntropy-based ELM autoencoder. And this newly proposed

full correntropy-based ELM autoencoder is employed as the building block to construct the FC-MELM. The

cost function of the full correntropy-based ELM autoencoder is defined as follows

Oβ = arg max
β

E(κ(Hβ −X))− Closs(β,0), (25)

where Closs(β,0) is the correntropy-based sparsity penalty term. To solve this optimization problem, the

fast iterative shrinkage-thresholding algorithms (FISTA) [56] can also be used to obtain the optimal solution.

By using FISTA, one can get a minimization of a smooth convex function with a complexity of O(1/m2),

where m represents the iteration times. The FISTA implementation of FC-MELM is shown in Algorithm 1.

Through the Algorithm 1, the resultant bases β, as the weights of the proposed FC-MELM feature extractor,

are achieved. The learned features of the original data is saved in β. By using β, the inner product of the

inputs and the learned features would reflect the compact representations of the original data. By building

FC-MELM with the full correntropy-based ELM autoencoder, sparser high level feature representations can
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be achieved by layer-wise comparison.

Moreover, in [32], it is proved that the Closs-based `0 norm approximator has a better performance in data

recovery and other applications. Its good ability is reflected on reducing the number of measurements (neural

nodes). Therefore, the full correntropy-based ELM autoencoder can further cut down the computational

complexity of the FC-MELM.

4. Experimental Results

This section presents the performance of the proposed FC-MELM and state-of-the-art methods. To

this end the classification accuracies are studied over well-known benchmark datasets, such as handwritten

datasets MNIST and USPS, NYU Object Recognition Benchmark dataset (NORB), Moore network traffic

dataset (Moore). In all the experimentations below, the hardware and software conditions are listed as

follows: a desktop computer equipped with an Intel-i7 6700 4.0G CPU, 16G DDR4 RAM, running MATLAB

R2016b on Microsoft Windows 10.

4.1. Datasets

In order to reflect the convictive robustness of the proposed FC-MLEM, a mix-Gaussian noise is deployed

in MNIST and Moore datasets as an observation noise to corrupt the original training samples. The mix-

Gaussian noise randomly generates outliers with abrupt large values and thus models strong impulsive noises.

It is generated as follows:

G(x) = (1−A) g(0, v21) +Ag(0, v22), (26)

where g(0, v2i ) denotes the zero-mean Gaussian distribution with variance v2i and A is the mixture coefficient

that controls the noise level.

In order to more generally demonstrate the better robustness of proposed FC-MELM, we also introduce

another non-Gaussian noise which is the α-stable noise. As the α-stable distribution has no closed-form

expression for the probability density function, its characteristic function is used to describe it:

ϕ (x) = exp {jµx− γ|x|α [1 + jβsign (x)w (x, α)]} , (27)

where

w (x, α) =

 tan
(
πα
2

)
for α 6= 1

2
π log |x| for α = 1

(28)
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where −∞ < µ < +∞ is the location parameter; γ > 0 is the dispersion parameter, which relates to the

distributions spread around the center; −1 < β < 1 is the symmetry parameter, when β = 0, the distribution

is symmetric about µ and it is called a symmetry α-stable distribution (SαS); 0 < α ≤ 2 is the characteristic

exponent parameter, which determines the heaviness of the tails. In this paper, we assume α = 1.2, β = 0

and µ = 0, then the characteristic function boils down to

ϕ (x) = e−γ|x|
α

. (29)

The parameter γ controls the level of α-Stable noise. With the value of γ increasing, the noise becomes

more severe.

Several binary and multi-class benchmarks are investigated in this paper to analyse the performance

of the FC-MELM and compare it to the state of the art. The considered benchmark datasets have been

commonly used in the literature. In the following, we give a succinct presentation.

The benchmark dataset MNIST is one of the most famous handwritten benchmark datasets. It contains

60,000 samples from the training set and 10,000 samples from the test set. The dataset is classified into ten

classes of handwritten images, from digit 0 to digit 9. The size of the gray scaled images is 28x28 and is

normalized to [0, 1]. A mix-Gaussian noise for various levels is added into training set of the MNIST dataset

in order to study the robustness of the investigated methods.

The NYU Object Recognition Benchmark (NORB) dataset is also an image dataset, but much more

complicated than the MNIST. It includes 50 different 3D toy objects and these object images are classified

into five generic classes. The viewpoints and lighting conditions of the images are also different. In the

conducted experiment, we use the same settings as Huang et al. had used in [25], as follows. In training,

there are 24,300 stereo images with 25 objects. Similarly, there are 2,430 stereo images in the test set.

Specially, test set has the remaining images of 25 objects.

In order to study the performance on large and complex datasets, we consider the Moore dataset from

the University of Cambridge. This network traffic dataset contains 377,526 net flow samples which are

classified into 12 classes, where each sample has 249 features. The number of samples in each class is shown

in Table 1. Obviously, the numbers of different classes are not averaging at all. Unfortunately, this will lead

to an error result that even if only the class of “WWW” is properly learned and classified, the accuracy is

still very high. To avoid this issue, we extract some samples to build a relative average dataset and name

Moore-a. There are 1500 samples for each class in training set of Moore-a. Particularly, the quantity of

samples in three classes (multimedia, interactive and games) is too little to separately build a “class”. Thus,

they will be treated as zero-day traffic flows (they are “unknown” classes and would be mislabeled to a
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Table 1: Statistic Information of Moore dataset.

Network Flow Class Applications Number of Samples Percentage

GAMES Microsoft Direct Play 8 0.0021%

P2P eDonkey, BitTorrent 2094 0.5547%

MAIL IMAP, POP,SMTP 28567 7.5669%

WWW Web browsers 328092 86.9058%

INTERACTIVE SSH,TELNET 110 0.0291%

MULTIMEDIA Windows Media

Player,iTunes

576 0.1526%

FTP-DATA FTP, wget 5797 1.5355%

SERVICES X11, DNS, IDENT, LDAP 2099 0.5560%

ATTACK Port scans,worms,viruses 1793 0.4750%

FTP-PASV Skype 2688 0.7120%

DATABASE MySQL, dbase,Oracle 2648 0.7014%

FTP-CONTROL MSN Messenger 3054 0.8090%

“known” class) and used as a kind of noise in subsequent experiments of the classification of network traffic

data corrupted by mislabeled samples. Then, there are 13500 samples for training and 9000 samples for test

in total. The number of different classes in Moore-a is shown in Table 2.

4.2. Algorithm Settings

All the parameters of related methods are randomly initialized and trained layer-wisely (i.e., the hidden

layers are trained one by one and output from the previous layer is used as the input of the current layer).

And all the experiment results are obtained by averaging the values over 50 trials to avoid uncertainty of

the random initialization and the noise generation. In addition, sigmoid activation function is employed in

all the algorithms.

In simulations over classic benchmark datasets, MNIST and NORB, the experimental network structures

are set based on the results in [25]. Each dataset corresponds with different network architecture. The FC-

MELM and H-ELM have the same network architecture. The ML-ELM has the same network architecture

in hidden layers with the former two algorithms, but its classifier is different. For easy comparison, the

number of hidden nodes is kept the same in ELM-based algorithms. The selection procedure of the kernel

bandwidth for FC-MELM is presented later. Moreover, the structures and parameters of other learning

algorithms are set experimentally.

In simulations over Moore-a dataset, the structures and parameters are also experimentally set. The
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Table 2: Statistic Information of Moore-a dataset

Network Flow Class Training Data Test Data

GAMES 0 0

P2P 1500 594

MAIL 1500 1500

WWW 1500 1500

INTERACTIVE 0 0

MULTIMEDIA 0 0

FTP-DATA 1500 624

SERVICES 1500 599

ATTACK 1500 293

FTP-PASV 1500 1188

DATABASE 1500 1148

FTP-CONTROL 1500 1554

hidden layers of ML-ELM, H-ELM and FC-MELM have the same number of layers and nodes. Specifically,

the structure of FC-MELM is set to 700-700-12000 for the MNIST, 3000-3000-15000 for the NORB, and

248-100-100-3000 for the Moore-a dataset.

4.3. Performance Analysis over Classic Benchmark Datasets

To evaluate the performance of FC-MELM, nine classification benchmark datasets are selected to carry

out the experiments. All the experiments are carried out with a ten-fold cross-validation. The classification

performance of FC-MELM and other methods are compared in Table 3. Obviously, an improvement has

been made in the FC-MELM in comparison with the H-ELM and other methods in most of the benchmark

datasets. The results prove that FC-MELM is a more robust algorithm that achieves better performance.

4.4. Performance of FC-MELM over the MNIST Dataset

4.4.1. Classification Results of MNIST Dataset

In this section, the classification accuracies of FC-MELM, H-ELM and ML-ELM over the MNIST dataset

under different levels of mix-Gaussian noises are compared.

Particularly, in order to better evaluate the relevance of proposed new terms, the MSE-based reconstruc-

tion loss and the original sparsity penalty term in H-ELM are separately replaced by the correntropy-based

reconstruction loss term and correntropy-based sparsity penalty term. Then, comparison of the classification
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Table 3: Classification Accuracies over Classic Benchmark Datasets

Dataset SAE CSAE ML-

ELM

H-ELM FC-

MELM

DNN SVM ELM RBF

USPS 91.13 ±

4.47

91.10 ±

3.95

95.94 ±

0.01

96.35 ±

0.17

96.41 ±

0.13

91.73 ±

1.64

94.20 ±

0.64

93.21 ±

0.62

95.67 ±

0.21

Wine 90.28 ±

2.15

91.16 ±

3.92

98.11 ±

2.00

100 ±

0.0

100 ±

0.0

96.42 ±

4.20

95.01 ±

4.40

96.11 ±

2.58

100 ±

0.0

Iris 93.02 ±

5.67

93.67 ±

4.33

94.67 ±

4.22

100 ±

0.0

100 ±

0.0

95.67 ±

7.01

98.70 ±

1.60

93.61 ±

3.94

99.10 ±

1.3

Diabetes 75.1 ±

5.47

75.23 ±

3.99

69.92 ±

8.22

79.54 ±

4.25

82.23 ±

5.43

73.38 ±

4.13

73.16 ±

5.99

68.92 ±

4.03

82.03 ±

9.33

Liver 50.29 ±

6.83

57.68 ±

4.53

71.30 ±

8.22

71.16 ±

4.39

72.46 ±

4.49

66.67 ±

6.4

71.05 ±

4.60

70.51 ±

5.46

81.76 ±

6.33

DNA 95.35 ±

6.90

96.26 ±

4.36

93.50 ±

2.53

95.89 ±

2.33

96.14 ±

1.34

94.28 ±

1.50

95.07 ±

0.70

92.18 ±

1.96

95.85 ±

0.32

Australian 66.81 ±

4.01

68.84 ±

3.93

80.58 ±

4.93

84.66 ±

3.68

85.01 ±

3.73

66.12 ±

5.36

82.13 ±

3.80

82.34 ±

4.52

82.02 ±

5.60

Letter 80.13 ±

1.29

84.64 ±

1.76

87.84 ±

0.73

90.45 ±

0.68

92.87 ±

0.70

86.84 ±

0.98

92.04 ±

0.38

87.62 ±

0.68

85.88 ±

3.38

Vowel 91.30 ±

3.87

94.40 ±

2.94

92.42 ±

3.08

92.56 ±

2.40

92.98 ±

2.56

92.59 ±

2.89

87.43 ±

3.69

92.38 ±

3.32

95.78 ±

3.42

accuracies of the H-ELM with the correntropy reconstruction loss term and the H-ELM with the correntropy

sparsity penalty term, under mix-Gaussian noises are presented.

In Table 4, the classification accuracy results of FC-MELM and other methods are shown, for different

levels of the mix-Gaussian noise. It shows that when the data is clean, H-ELM can achieve the highest

classification accuracy. But the classification accuracies gap between FC-MELM and H-ELM are lower than

0.1 %. When compared with H-ELM, under different levels of noise, the two correntropy-based methods

show obviously higher classification accuracies. After combined the correntropy-based reconstruction loss

and the correntropy-based sparsity penalty term, the proposed FC-MELM shows the highest classification

accuracy, no matter what degree of mix-Gaussian noise is added. The classification accuracies of FC-MELM

are almost 45% higher than H-ELM at most. Thus, the FC-MELM shows a more robust performance

than H-ELM, when the noise becomes severer. Additionally, the ML-ELM has a better robustness than

H-ELM. Meanwhile, the classification accuracies of FC-MELM are higher than ML-ELM all the time, and

FC-MELM exceeds ML-ELM 6.34% at most. The classification accuracy curves of these algorithms are
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Table 4: Classification accuracies over the MNIST dataset under different noise levels

FC-MELM H-ELM with the corren-

tropy reconstruction loss

H-ELM with the corren-

tropy sparsity penalty term

H-ELM ML-ELM

A=0 98.89 ± 0.0004 98.73 ± 0.0003 98.65 ± 0.0004 98.98 ± 0.0004 98.43 ± 0.0003

A=0.01 98.09 ± 0.0003 97.95 ± 0.0006 97.99 ± 0.0005 97.94 ± 0.0008 97.89 ± 0.0005

A=0.02 94.91 ± 0.26 94.41 ± 0.30 93.35 ± 0.25 79.30 ± 0.90 92.13 ± 0.001

A=0.03 94.49 ± 0.33 92.84 ± 0.39 87.30 ± 0.44 61.19 ± 1.39 88.60 ± 0.002

A=0.04 93.28 ± 0.67 90.04 ± 0.75 88.98 ± 0.56 51.12 ± 1.11 86.98 ± 0.004

A=0.05 92.63 ± 0.71 88.65 ± 0.78 88.10 ± 0.86 47.91 ± 1.17 86.29 ± 0.002

Figure 3: Comparison of classification accuracies of FC-MELM and other methods under different levels of the mix-Gaussian

noise as given in (26). The accuracies of original H-ELM and ML-ELM decrease more rapidly than FC-MELM.

shown in Figure 3. Clearly, the curve of FC-MELM has the slowest decrease as the degree of noise increases.

Therefore, the FC-MELM has a better robustness to the mix-Gaussian noise.
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Figure 4: Influence of the bandwidth parameter σ
(L1)
(1)

of the correntropy reconstruction loss based H-ELM

4.4.2. Influence of the Bandwidth Parameter σ

The bandwidth parameter σ not only controls the shape of Closs function to approximate the different

norms (from `0 to `2), but also influences the robustness to outliers. Therefore, the selection of the bandwidth

parameter σ is very important for both correntropy-based reconstruction loss term and the correntropy-based

sparsity penalty term.

Firstly, we demonstrate the influence of the bandwidth parameter σ
(L1)
(1) in the correntropy reconstruction

loss based H-ELM. The performance of the H-ELM with the correntropy reconstruction loss depends on the

value of σ
(L1)
(1) . The accuracies of classification with different values of the bandwidth parameter are shown in

Figure 4, for several noise levels. While the classification accuracy can be low for important noise and small

values of σ
(L1)
(1) , it tends to become high and stable when σ

(L1)
(1) increases. It is easy to explain that when

σ
(L1)
(1) becomes too large, the Closs will be approximately equivalent to MSE. H-ELM with the correntropy

reconstruction loss gets the highest accuracy with different values of σ
(L1)
(1) under different levels of noises.

Secondly, the bandwidth parameter (denoted σ
(L1)
(2) in the following) of the correntropy-based sparsity

penalty term is also examined and appropriately selected. The correntropy-based sparsity penalty term

can obviously improve the robustness of H-ELM, but the effectiveness of the correntropy-based sparsity

penalty term can be affected by the value of its bandwidth parameter too. Different from the bandwidth

parameter selection in the correntropy reconstruction loss based H-ELM, the bandwidth parameter σ
(L1)
(2) of

the correntropy-based sparsity penalty term should be assigned a much smaller value, as explained in details

in Section 2. The performance with different values of σ
(L1)
(2) are shown in Figure 5.

Finally, the appropriately selected values of σ and σ2 are used in the FC-MELM to accomplish the
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Figure 5: The influence of the bandwidth parameter σ
(L1)
(2)

of the correntropy sparsity penalty term based H-ELM, for several

noise levels

Table 5: Bandwidth parameters of FC-MELM over the MNIST dataset under different noise levels

σ
(L1)
(1)

σ
(L1)
(2)

σ
(L2)
(1)

σ
(L2)
(2)

A=0 0.9 0.006 1.2 0.003

A=0.01 1.4 0.004 1.1 0.004

A=0.02 16.8 0.002 3.6 0.006

A=0.03 15.1 0.002 3.3 0.003

A=0.04 12.7 0.007 2.4 0.006

A=0.05 11.9 0.008 2.9 0.010

classification experiments.

In Table 5, the selected values of σ
(L1)
(1) and σ

(L1)
(2) for the first hidden layer and second hidden layer are

demonstrated. σ
(L1)
(1) is the bandwidth parameter of the correntropy reconstruction loss term in hidden layer

1. σ
(L1)
(2) is the bandwidth parameters of correntropy sparsity penalty term in hidden layer 1. We can see that

in different hidden layers, the most suitable bandwidth parameters are different. Thus, one should carefully

choose the appropriate bandwidth parameter values for each hidden layer to achieve the best results.

4.5. Performance of FC-MELM over the NORB Dataset

In this section, the NORB dataset, which is much more complicated than MNIST, is investigated in order

to further study the performance of proposed FC-MELM. Particularly, we use the α-stable noise to corrupt

the original dataset of NORB. The classification results of ML-ELM, the original H-ELM and the H-ELM
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Table 6: Classification accuracies over the NORB dataset under different noise levels

FC-MELM H-ELM with the corren-

tropy reconstruction loss

H-ELM with the corren-

tropy sparsity penalty term

H-ELM ML-ELM

Original

dataset

91.87 ± 0.13 89.20 ± 0.25 88.79 ± 0.19 88.34 ± 0.31 88.97 ± 0.07

γ=0.001 89.09 ± 0.58 88.37 ± 0.81 87.51 ± 0.64 84.52 ± 0.73 88.05 ± 0.31

γ=0.002 88.05 ± 1.16 86.98 ± 1.46 85.88 ± 0.97 79.62 ± 0.90 86.88 ± 0.68

γ=0.003 87.10 ± 0.97 84.31 ± 1.27 82.63 ± 0.84 74.89 ± 1.39 83.79 ± 1.01

γ=0.004 86.02 ± 0.89 80.69 ± 0.99 79.49 ± 1.20 68.33 ± 1.11 80.11 ± 0.96

γ=0.005 84.87 ± 1.03 77.17 ± 1.14 76.13 ± 1.22 62.72 ± 1.17 76.43 ± 0.93

with two correntropy based terms under different levels of α-stable noise are carried out for comparison.

Table 6 shows the classification results. Obviously, classification accuracies of H-ELM deteriorates fast

as the noise level increases. From these results, ML-ELM is more robust than H-ELM. The H-ELM with

the correntropy reconstruction loss and the H-ELM with correntropy based sparsity penalty term achieve

similar results. Finally, the proposed FC-MELM achieves the highest accuracies again under all levels of

noises. Moreover, FC-MELM still obtains the highest classification accuracy on the original NORB dataset.

In Figure 6, the accuracy of FC-MELM and other algorithms are shown for different noise levels. Clearly,

the proposed FC-MELM maintains the highest accuracies when the noise level increases, since its curve has

the slowest decrease. These experiments illustrate that FC-MELM can commendably classify the NORB

dataset.

Finally, the selected bandwidth parameters are given in Table 7. One can achieve the better performance

with selected bandwidth parameters.

4.6. Performance of FC-MELM over the Moore-a Network Traffic Dataset

In this section, a series simulation results are presented to demonstrate the classification ability of the

FC-MELM in network traffic classification problems. As the Internet development is accelerating, a better

network traffic classification is always needed to well manage the network. In the following experiments,

the FC-MELM is used to classify the Moore-a network traffic dataset. Particularly, two kinds of corruption

in the dataset are investigated, the mix-Gaussian noise and the mislabeled samples. For a comparative

analysis, the FC-MELM is compared with H-ELM and ML-ELM to study the robustness in the network

22



Figure 6: Comparison of classification accuracies of FC-MELM and other methods under different levels of α-stable noise as

given in (27). The accuracies of original H-ELM and ML-ELM decrease more rapidly than FC-MELM.

traffic classification problem.

4.6.1. Mix-Gaussian Noise Corrupted Dataset

In this part, the classification results of FC-MELM over mix-Gaussian noise corrupted Moore-a dataset

are shown. It should be pointed out that the realistic network traffic data is gathered and featured from

massive original network flow data. Thus, errors may occur in every step. Particularly, when some network

attacks are not recognized and cut off, they will lead to severe changes of the values of some network

parameters. Thus, we use mix-Gaussian noise to simulate this kind of noise.

The performances of the FC-MELM and other algorithms are compared in Table 8. Obviously, under

different noise levels, the classification accuracies of FC-MELM are always the highest. The ML-ELM is more

robust than the H-ELM and the H-ELM with the correntropy reconstruction loss. When the correntropy-

based sparsity penalty term is utilized, the FC-MELM still outperforms the the ML-ELM, 15.1% at most.

Moreover, the FC-MELM has the highest accuracy with the uncorrupted data, which means that the FC-

MELM is effective for network traffic classification as well. In Figure 7, the accuracy curves over Moore-a

dataset under different levels of mix-Gaussian noises is illustrated. The curve of FC-MELM has the slowest

decrease when the noise becomes severer. Therefore, it is distinct that the robust network traffic classification
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Table 7: Bandwidth parameters of FC-MELM over the NORB dataset under different noise levels

σ
(L1)
(1)

σ
(L1)
(2)

σ
(L2)
(1)

σ
(L2)
(2)

Original

dataset

3.1 0.09 2.6 0.08

γ=0.001 2.3 0.06 1.8 0.04

γ=0.002 2.6 0.04 1.3 0.05

γ=0.003 1.3 0.07 2.9 0.03

γ=0.004 1.3 0.02 0.9 0.02

γ=0.005 1.1 0.01 0.7 0.03

Table 8: Classification accuracies over the Moore-a dataset under different noise levels

FC-MELM H-ELM with the correntropy

reconstruction loss

H-ELM ML-ELM

A = 0 94.68 ± 0.0021 94.16 ± 0.0043 92.96 ± 0.0023 92.17 ± 0.0057

A = 0.05 81.66 ± 0.0077 66.62 ± 0.0126 65.26 ± 0.0067 70.45 ± 0.0110

A = 0.1 73.44 ± 0.0048 52.19 ± 0.0101 46.92 ± 0.0098 58.21 ± 0.0059

A = 0.15 71.76 ± 0.0064 49.38 ± 0.0124 47.74 ± 0.0109 57.14 ± 0.0061

A = 0.2 71.17 ± 0.0093 47.58 ± 0.0147 42.52 ± 0.0155 56.07 ± 0.0082

can be obtained by applying the proposed FC-MELM algorithm.

In Table 9, the selected bandwidth parameters are illustrated as well.

4.6.2. Mislabeled Samples Corrupted Dataset

Computer network develops swiftly in these days and the number of applications is explosively growing.

Statistically, one third of the total network traffic are generated by the new applications and named zero-day

traffic. Hence, the zero-day traffic cannot be ignored any more and needs precise recognition and classifica-

tion. However, the traditional network traffic classification methods are neither flexible nor robust. In such

traditional methods, the classes are already settled before training. As a result, the zero-day traffic will be

inevitably classified into wrong classes. These misclassified samples will in turn decrease the classification

accuracies of the known classes by mis-tuning the parameters in training procedure. Thus, improving the

robustness of the mislabeled samples is very crucial to the network traffic classification methods. However,

although the zero-day traffic is totally unknown for the classifier, it may be partially similar to the known
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Figure 7: Comparison of classification accuracies of FC-MELM and other methods over Moore-a dataset under different levels

of the mix-Gaussian noise.

Table 9: Bandwidth parameters of FC-MELM over the Moore-a dataset under different noise levels

σ
(L1)
(1)

σ
(L1)
(2)

σ
(L2)
(1)

σ
(L2)
(2)

A=0 3 0.005 1.5 0.006

A=0.05 14.7 0.072 2.3 0.083

A=0.1 8.3 0.098 2.9 0.075

A=0.15 15.0 0.090 3.5 0.096

A=0.2 8.7 0.100 2.9 0.089

traffic. Then, we may treat the different parts between zero-day traffic and known traffic as the outliers in

known traffic. Naturally, the proposed FC-MELM can be applied to deal with this classification issue by

reducing the bad influence from the zero-day traffic.

In the following, we consider the Moore-a dataset corrupted with mislabeled samples. To this end, the

samples from the classes ”games”, ”multimedia” and ”interactive” are considered as mislabeled. Table 10

shows the experimental results of the FC-MELM and other algorithms under different number of mislabeled

samples. We can find that the H-ELM and the ML-ELM have similar accuracies. The FC-MELM always

achieves the highest accuracies and outperforms H-ELM and ML-ELM, 22.36% at most. Figure 8 illustrates

the accuracy curves of FC-MELM, ML-ELM and H-ELM with different number of mislabeled samples.

Obviously, the accuracy curve of FC-MELM is always higher than the other methods. These experiments
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Table 10: Classification accuracies over the Moore-a dataset with mislabeled samples

Number of mis-

labeled samples

FC-MELM H-ELM with the corren-

tropy reconstruction loss

H-ELM ML-ELM

0 94.68 ± 0.0026 94.16 ± 0.0034 92.96 ± 0.0034 92.17 ± 0.0057

100 94.46 ± 0.0046 93.99 ± 0.0061 92.34 ± 0.0023 92.03 ± 0.0047

500 93.33 ± 0.0083 90.51 ± 0.0103 82.93 ± 0.0097 79.84 ± 0.0248

900 90.16 ± 0.0098 86.02 ± 0.0111 63.84 ± 0.0135 66.75 ± 0.0129

Figure 8: Comparison of classification accuracies of FC-MELM and other methods over Moore-a dataset with mislabeled

samples, for different numbers of mislabeled samples.

clearly demonstrate that FC-MELM is more effective in solving classification problems of the network traffic

data, includes mislabeled samples.

Finally, the selected bandwidth parameters of FC-MELM over the Moore-a dataset with mislabeled

samples are still presented Table 11.

4.7. Training Time Comparison of FC-MELM and H-ELM

ELM based multi-layer learning algorithms inherits the fast training speed as well. In [25], Huang et

al. proved that the training time of H-ELM is much less than other traditional deep learning algorithms.

The training time of H-ELM is only one tenth to one hundredth of the traditional deep learning algorithms.
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Table 11: Bandwidth parameters of FC-MELM over the Moore-a dataset with mislabeled samples

σ
(L1)
(1)

σ
(L1)
(2)

σ
(L2)
(1)

σ
(L2)
(2)

100 1.7 0.018 0.6 0.007

500 2.5 0.024 0.5 0.009

900 2.3 0.019 0.8 0.010

Table 12: Training Time Comparison of FC-MELM and H-ELM

Datasets MNIST NORB Moore-a

FC-MELM 268s 498s 82s

H-ELM 91s 131s 28s

There is a tendency in deep learning area that the network structure becomes more complicated. Thus, it is

very valuable for the multi-layer ELM to achieve fast training speed. In this paper, the H-ELM is extended

with correntropy. Although it is proved that correntropy based methods have much better robustness of

non-Gaussian noises, these methods have higher computation complexity than the MSE based methods. In

order to verify the training speed of proposed FC-MELM, the training time of FC-MELM and H-ELM in

MNIST, NORB and Moore-a datasets are shown in Table 12. The training time is achieved by averaging

the time over ten trials. We only present the training time of the original datasets, because the training

time of the contaminated datasets is similar with that of original datasets. It is obvious that the training

time of FC-MELM is a few times longer than that of H-ELM. However, when compared with the traditional

deep learning algorithms, FC-MELM still has huge advantage on training time. Therefore, FC-MELM is an

efficient multi-layer learning algorithm as well.

5. Application in Computer Aided Cancer Diagnosis

Early diagnosis of cancer is the prerequisite to cure cancer and the best way to save lives. But too

many people missed the optimal cure time and their disease becomes chronic because of lacking reliable and

propagable technology in early diagnosis of cancer. In this section, we study the breast cancer diagnostic

problem. Recently, computer aided detection and diagnosis (CAD) systems are popular and achieve great

progress with the advent of deep learning. However, the requirements for real-time and high accuracy cannot

be satisfied at the same time so far. For instance, the recently proposed deep-belief network (DBN) in [46]
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for early detection of breast cancer is so complicated that one cannot flexibly adjust or retrain a DBN based

diagnosis system over a short span of time. Naturally, the factors related with occurrence of breast cancer or

other cancers are changing. With the studies advancing, some factors may be added to or deleted from the

dataset. Therefore, a fast training CAD method is required for large-scale data-mining of early detection of

cancers. Thus, by taking advantage of rapid training speed of proposed FC-MELM, we can build a flexible

CAD system which can be re-modulated or retrained in no time.

Meanwhile, in practice, cancer statistic data have a lot of sources. Different data may be collected in

different formats and methods. Therefore, the lack of standardization in data collecting and preprocessing

may cause many problems, such as outliers. These ubiquitous outliers may badly influence the diagnosis

results. Thus, with the development of CAD, it is necessary to keep improving the robustness of the classifiers

which are used in early cancer detection systems. FC-MELM has the ability of reducing the vicious influence

from outliers and maybe helpful to achieve better results.

In this section, we investigate the proposed FC-MELM to solve CAD problem over WBCD. The WBCD

dataset is a world famous breast cancer dataset. It is obtained from the University of Wisconsin Hospital,

Madison from Dr. William H. Wolberg and has been extensively applied to test the classification ability of

new proposed methods in cancer diagnostic. The dataset contains 569 instances with 30 attributes. There

are 357 instances for benign and 212 instances for malignant. Although this dataset is not too large, it has

sufficient representativeness to show the performance of classification algorithms in solving analogous cancer

diagnosis problems. To demonstrate the robustness of the studied methods, a mix-Gaussian noise is added

in the training set. The hidden layers of FC-MELM and other ELM based multi-layer models are all set to

30-100-100-3000 for the WBCD dataset.

Table 13 shows the classification accuracies of FC-MELM, H-ELM with the correntropy reconstruction

loss, H-ELM and ML-ELM, over WBCD under different levels of mix-Gaussian noises. It is clear that H-

ELM and ML-ELM are very sensitive to impulsive noise. The H-ELM with the correntropy reconstruction

loss can get much better accuracies. It goes without saying that FC-MELM always achieves the highest

accuracies no matter how the noise increases. Additionally, FC-MELM also gains a higher accuracy in

classifying the original dataset, without any added noise. In Figure 9, the accuracy of FC-MELM and

other algorithms are shown for different noise levels. It is easy to see that the proposed FC-MELM is the

least affected when the noise level increases, since its curve has the slowest decrease. These experiments

demonstrate that FC-MELM is suitable to deal with cancer computer-aided diagnosis. Thus, FC-MELM

can undoubtedly be used to handle this problem well and fast. In Table 14, the training time comparison of
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Table 13: Classification accuracies over the WBCD under different noise levels

FC-MELM H-ELM with the corren-

tropy reconstruction loss

H-ELM ML-ELM

A=0 96.46 ± 0.158 94.69 ± 0.103 92.04 ± 0.085 87.91 ± 0.0247

A=0.01 94.76 ± 0.328 92.92 ± 0.513 68.14 ± 0.757 60.18 ± 0.220

A=0.02 93.81 ± 0.339 88.50 ± 0.237 54.87 ± 0.631 53.25 ± 0.347

A=0.03 92.04 ± 0.328 84.07 ± 0.496 52.61 ± 0.323 51.39 ± 0.395

A=0.04 91.28 ± 0.435 83.19 ± 0.349 56.64 ± 0.450 52.21 ± 0.681

A=0.05 90.27 ± 0.457 81.42 ± 0.359 53.27 ± 0.467 47.79 ± 0.499

Figure 9: Comparison of classification accuracies of FC-MELM and other methods over WBCD dataset under different levels

of impulsive noises.

FC-MELM and H-ELM is presented. Clearly, training speed of FC-MELM is lower than H-ELM. However,

FC-MELM still has a short training time over WBCD dataset. We also present the selected bandwidth

parameter values of FC-MELM over the WBCD dataset under different noise levels in Table 15.

6. Conclusion and Future Work

In this article, we proposed a novel learning algorithm, called the full correntropy-based multilayer ELM

(FC-MELM), which takes advantage of both correntropy and H-ELM. To this end, the conventional MSE-
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Table 14: Training Time Comparison of FC-MELM and H-ELM over WBCD dataset

Datasets WBCD

FC-MELM 0.159s

H-ELM 0.058s

Table 15: Bandwidth parameters of FC-MELM over the WBCD dataset under different noise levels

σ
(L1)
(1)

σ
(L1)
(2)

σ
(L2)
(1)

σ
(L2)
(2)

A=0 0.1 0.009 0.4 0.006

A=0.01 0.6 0.007 0.5 0.008

A=0.02 0.6 0.021 0.7 0.011

A=0.03 0.4 0.010 0.1 0.013

A=0.04 0.5 0.017 0.8 0.015

A=0.05 0.5 0.009 0.4 0.007

based loss function was replaced by the Closs-based loss function in order to improve the robustness. In

addition, the conventional `1-based sparsity penalty term was replaced by a correntropy-based sparsity

penalty term. Using correntropy-based sparsity penalty term, a sparser representation of the original data

was obtained and further improvement of the robustness was achieved. By conducting simulations on some

benchmark datasets under different noises, as well as mislabeled samples, the robustness of the FC-MELM

was carefully investigated. Experimental results showed that FC-MELM generally possesses better feature

extraction ability than H-ELM and other deep learning methods under corrupted training datasets. These

results proved that the proposed algorithm markedly outperformed other algorithms in robustness of outliers

and impulsive noises, and also indicated that FC-MELM was much faster than neural network based deep

learning algorithms.

The proposed method has some weaknesses that need further investigation, as given in the following.

Since the FC-MELM is built in the same spirit as H-ELM, by constructing a multi-layered deep architecture,

it inherits some of the fragilities of such architecture. Of particular interest is its performances, which may

decay when dealing with increasingly bigger problem spaces and hence bigger parameter spaces. In our

extensive experiments, we found that FC-MELM and H-ELM may require important memory ressources,

which is not friendly in the era of Big Data analysis. Moreover, although the training speed of FC-MELM is

much faster than deep learning algorithms, it remains slower than the original H-ELM. All these weaknesses

of the proposed method will be addressed in future work, to reduce the bad influence of increasing parameter
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space, to remove the high-memory requirements, and to speed up the training phase. Our goal is to

implement the full correntropy-based ELM autoencoder algorithms for real-time applications with lower

requirements of hardware platform, such as early cancer diagnosis and on-site medical diagnosis.
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