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ABSTRACT

Weakly supervised learning arises in many situations where the process of labeling the data is ex-
pensive. Multiple instance learning (MIL) provides an elegant framework to deal with this issue by
organizing instances into bags, without the need to label all the instances. In this paper, we investigate
the relevance of MIL for a computer-aided diagnosis system based on the analysis of histopatholog-
ical breast cancer images. The experiments are conducted on the BreaKHis public dataset of about
8,000 microscopic biopsy images of benign and malignant breast tumors. By providing an extensive
comparative analysis of MIL methods, it is shown that a recently proposed, non-parametric approach
exhibits particularly interesting results. The comparison between MIL and single instance (conven-
tional) classification reveals the relevance of the MIL paradigm.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Supervised learning is a subfield of machine learning where
a predictive function is inferred from a set of labeled training
examples, in order to map each input instance to its output la-
bel. In a conventional setting, the training dataset consists of
instances equipped with their corresponding labels. While in-
stances are relatively easy to obtain, the expensive data-labeling
process with human-based ground-truth descriptions remains
the major bottleneck to have large-scale datasets. This issue
gave rise to a novel paradigm in machine learning, with the
so-called weakly supervised learning, namely when having a
partially-labeled training dataset (Zhou, 2017).

Multiple Instance Learning (MIL) provides an elegant frame-
work to deal with weakly supervised learning. In comparison
with strong (i.e., fully-labeled) supervised learning where every
training instance assigned with a discrete or real-valued label,
the rationale of MIL paradigm is that instances are naturally
grouped in labeled bags, without the need that all the instances
of each bag have individual labels. In the binary classification
case, a bag is labeled positive if it has at least one positive in-
stance; on the other hand, a bag is labeled negative if all its in-
stances are negative (Foulds and Frank, 2010; Dietterich et al.,
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1997). With such training data grouped in labeled bags, MIL
algorithms seek to classify either unseen bags (i.e., bag-level
classification) or unseen instances (i.e., instance-level classifi-
cation).

While the multiple instance paradigm arose in many domains
prior to the 1990’s, MIL was first described explicitly and stud-
ied by Dietterich et al. in 1997 (Dietterich et al., 1997). The
original motivation in MIL is drug activity prediction, where
experts provide activity labels to bags of molecules, labeling
each individual molecule being costly and hard to set up. It
turns out that the MIL is central in many relevant applications
in various domains, such as in bioinformatics, text processing,
computer vision and image processing, to name a few. Indeed,
in many applications, ground-truth labeling is expensive in gen-
eral and instances can be often grouped in bags, each bag hav-
ing a set of partially-labeled instances. Of particular interest is
image-based pathology classification for medical decision mak-
ing, since it is relatively easy and part of the clinical protocol
to take many images of some organs or tissues (physiology)
under study; on the other hand, labeling each image is a time-
consuming process dominated by human effort. MIL has indeed
many applications in medical imaging, as shown in a recent re-
view (Quellec et al., 2017).

In this paper, we focus on the classification of histopatho-
logical breast cancer images. Histopathological images are
microscopic images of the tissue for disease examination.
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Histopathological images prevail as the gold standard for cancer
diagnosis, as well as many other diseases (Rubin et al., 2008).
Preliminary work have shown the interest of MIL histopatho-
logical image classification applications on small datasets, see
for example (Xu et al., 2014) for colon cancer and cytology.
This work focuses on breast tumors, one of the most common
types of cancer. In particular, we consider the recently estab-
lished and public BreaKHis database (Spanhol et al., 2016b),
which contains about 8,000 microscopic biopsy images of be-
nign and malignant breast tumors, originating from 82 patients.
While MIL is especially suitable for this application, no study
has yet leveraged multiple instance learning for large datasets,
with a comparative analysis of the state-of-the-art, as investi-
gated in this paper.

The relevance of MIL for this type of application and dataset
is naturally described in two different ways.

The first possibility is to divide each image into subimages
or patches and to consider the image as a bag, while patches are
the instances. In the field of natural scene images, this is related
to region-based image categorization, where each instance en-
codes color, textural or spatial features related to that specific
region (Herrera et al., 2016). In our binary setting, the image
would be labeled “positive” (pathological) if it has at least one
malignant patch; conversely, an image would be labeled benign
if it does not have any portion labeled malignant. This multiple
instance formalism is natural, since only a subset of the patches
are labeled by experts, making it possible that entire images
might be healthy whereas the patient is diagnosed with a tumor.
This is not the case in the conventional strategy used so far, in
a single instance classification setting with instances inheriting
the label of their image.

Second, the patient is considered as a bag, with the instances
being its associated hundred of images or pieces of images,
called patches. This makes full sense as: the diagnostic (i.e.,
the label) is established only at the patient level. Furthermore,
a patient diagnosed with a malignant tumor can still have some
of its images described as tumor-free, i.e., healthy, as just said;
and a healthy patient has inevitably all of his images healthy.
This hypothesis matches the MIL assumption. In natural scene
image classification, this approach is related to facial recogni-
tion for example, several images of the same person taken from
different angles (Herrera et al., 2016). Note that only the MIL
paradigm can apprehend this type of situations.

We propose to tackle the problems of histopathological im-
age classification and patient diagnosis through the benchmark
of several MIL methods, as a first contribution. We consider the
state-of-the-art of MIL methods. In particular we investigate the
seminal Axis-Parallel Rectangle algorithm (APR) (Dietterich
et al., 1997), and algorithms based on diversity density (DD)
(Maron and Lozano-Pérez, 1998; Zhang and Goldman, 2001),
k-NN (Citation-kNN) (Wang and Zucker, 2000) and Support
Vector Machines (SVM) (Andrews et al., 2002), as well as a
recently-proposed non-parametric algorithm (Venkatesan et al.,
2015) and a deep learning approach revisiting Convolutional
Neural Networks (CNN) for MIL (MILCNN) (Sun et al., 2016).
As a second contribution we will study how MIL results com-
pare to a single instance classification results, which is the only

framework implemented on this data until now. Of course in
this case we suppose that instances inherit labels from the bags.
We will examine if it is preferable to cast this problem into a
single instance one, or if MIL does indeed bring an added value,
both at the image and patient levels (Alpaydin et al., 2015).

The remainder of this paper is organized as follows. Sec-
tion 2 presents the MIL and provides a survey of MIL methods.
Section 3 describes the BreaKHis dataset and the conducted ex-
periments with the obtained results. Section 4 concludes the
paper.

2. MIL methods: a brief overview

Under the standard MIL assumption, positive bags contain
at least one positive instance, while negative bags contain only
negative instances. We denote by LB the label of a bag B, de-
fined as a set of instances, each one described by its feature
vector: B = {b1, b2, ..., bN}. We denote by lk the label of each
instance bk. We can now define the label of a bag, following the
standard MIL assumption:

LB =

+1 if ∃lk : lk = +1;
−1 if ∀lk : lk = −1.

(1)

There are other – more relaxed – assumptions, such as a bag is
labeled positive when it contains a sufficient number of positive
instances; since they are out of the scope of this paper, we refer
the reader to (Foulds and Frank, 2010) for further reading.

MIL methods are usually divided into two groups, depending
on how they exploit the information in the data (Amores, 2013).
The first group consists of methods that consider the discrimi-
nant information at the instance level. Learning algorithms fo-
cus not at the larger scale of a bag, but at the local scale of
instances. An advantage of these methods is that they can per-
form instance classification task when needed. However, they
require that instances have a precise label, a requirement not all
MIL problems meet. The instance level methods include APR,
DD, SVM based approaches. The second group consists of the
methods that consider the discriminative information to be in
the bag level. These methods usually are more accurate, since
they can model distribution and relations between classes (Car-
bonneau et al., 2016). An example of such methods is Citation-
kNN (Wang and Zucker, 2000). For a review on MIL methods,
we refer the reader to (Herrera et al., 2016; Amores, 2013; Car-
bonneau et al., 2016).

In remainder of this section, we briefly describe the well-
established MIL methods that have been implemented and ap-
plied to the BreaKHis dataset.

2.1. Axis-parallel hyper rectangle (APR)

The MIL paradigm was first introduced in the seminal work
of Dietterich et al. (1997), motivated mainly by an applica-
tion in biochemistry. The goal is to predict whether a molecule
will be binding to a given receptor or not. Each molecule,
which can be considered as a bag, can take many different spa-
tial conformations, namely the instances. The methodology to
solve the MIL problem is to design an hyper rectangle (called
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axis-parallel hyper rectangle (APR)) in the feature space aimed
at containing at least one positive instance from each positive
bag while excluding all the instances from negative bags. A
molecule is classified as positive (resp. negative) if one (resp.
none) of its instances belongs inside the APR.

2.2. Diverse Density (DD) and its variants

Diverse diversity (Maron and Lozano-Pérez, 1998) is closely
related to the idea of the APR. The DD defines a function over
the feature space, such that it is high at points that are both
close to instances from positive bags, and far away from in-
stances which are in negative bags. The DD algorithm attempts
to find the local maxima of this function (called the positive
instance targets or prototypes) by maximizing diverse density
(i.e. conditional likelihood) over the instance space, using gra-
dient ascent with multiple starting points. The DD approach has
given rise to many variants, the most known is the Expectation-
Maximization method (EM-DD) (Zhang and Goldman, 2001).
In this variant, the DD measure is maximized iteratively with
the EM algorithm.

2.3. Citation-kNN

The Citation-kNN, an adaptation of k-nearest neighbors (k-
NN) algorithm, is the first non-parametric approach (Wang and
Zucker, 2000). The principle is to first apply the k-NN algo-
rithm to bags, where the distance between bags is measured
with the minimum Hausdorff distance. The latter is defined as
the shortest distance between any two instances from each bag,
namely

Dist(A, B) = min
ai∈A

min
b j∈B
||ai − b j||

for any two bags A and B, where ai and b j are instances from
each bag. This distance is used by a k-NN to classify a new bag,
in the same sense as the regular k-NN approach. The citation-
kNN method adds a final step that makes the process more ro-
bust: in addition to the nearest bags, the bags that count as their
neighbors (called citers) are also considered.

2.4. mi-SVM and MI-SVM

Two alternative generalizations of the maximum margin idea
used in SVM classification have been proposed in (Andrews
et al., 2002). On one hand, the mi-SVM is based on the
instance-level paradigm. Since the instance labels are not
known, they are treated as hidden variables subject to con-
straints defined by their bag labels. The mi-SVM method at-
tempts to recover the instance labels and, at the same time, to
find the optimal discriminant function. On the other hand, the
bag-level paradigm is adopted by the so-called MI-SVM. Its
goal is to maximize the bag margin, defined between the pos-
itive instances of the positive bags, and the negative instances
of the negative bags. In this setting, the bag is not represented
by all its instance, but only by the “extreme” ones, in the same
sense as support vectors in conventional SVM. Moreover, mi-
SVM and MI-SVM inherit also the kernel trick, thus allowing
to use linear, polynomial and RBF kernels.

2.5. Non-parametric MIL

This recent technique is designed as a modified version of the
k-NN classifier (Venkatesan et al., 2015). The non-parametric
MIL approach employs a new formulation based on distances
to k-nearest neighbors. The idea is to parse the MIL feature
space with a Parzen window technique, using different sized re-
gions. Conversely to the majority vote used in k-NN, the vote
contributions are the kernelized distances in the feature space.
Non-parametric MIL has shown enhanced robustness to label-
ing noise on various datasets.

2.6. MILCNN

Deep learning networks have been overwhelming machine
learning, pattern recognition and computer vision fields for a
few years. MIL is no exception to this rule (Hoffman et al.,
2016; Pathak et al., 2014; Kraus et al., 2016; Sun et al., 2016;
Zhou et al., 2017; Wang et al., 2018). In (Sun et al., 2016),
a Multiple Instance Learning Convolutional Neural Networks
(MILCNN) is proposed. This framework was initially proposed
for the data augmentation problem: in object detection, labels
are not always preserved when the images are split for data aug-
mentation. The proposed method considers data augmentation
generated images as a bag, by combining a convolutional neural
network (CNN) with a specific MIL loss function derived with
respect to the bag.

3. Experiments and results

3.1. Description of the BreaKHis dataset

BreaKHis is a publicly available dataset of microscopic
biopsy images of benign and malignant breast tumors (Span-
hol et al., 2016b). The images were collected through a clinical
study in 2014, to which all patients referred to the P&D Lab-
oratory, Brazil, with a clinical indication of breast cancer were
invited to participate. The institutional review board approved
the study and all patients provided their written informed con-
sent. All the data were anonymized. Samples were generated
from the breast tissue biopsy slides, stained with hematoxylin
and eosin (HE). The samples were collected by surgical open
biopsy (SOB), prepared for histological study and labeled by
pathologists of the P&D Lab. The diagnosis of each case were
produced by experienced pathologists and confirmed by com-
plementary exams such as immunohistochemistry analysis.

Images were acquired in RGB color space, with a resolution
of 752×582 using magnifying factors of 40×, 100×, 200× and
400×. Fig. 1 shows these 4 magnifying factors on a single im-
age. This image is acquired from a single slide of breast tissue
containing a malignant tumor (breast cancer). The highlighted
rectangle (manually added for illustrative purposes only) is the
area of interest selected by pathologist to be detailed in the next
higher magnification. To date, the database is composed of
7,909 images divided into benign and malignant tumors. Ta-
ble 1 summarizes the image distribution. For more information
about the dataset, we refer to (Spanhol et al., 2016b).
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(a) (b)

(c) (d)

Fig. 1: A slide of breast malignant tumor seen in different magnification factors
of the same image: (a) 40×, (b)100×, (c) 200×, and (d) 400×

Table 1: Image distribution by magnification factor and class

Magnification Benign Malignant Total

40× 625 1,370 1,995
100× 644 1,437 2,081
200× 623 1,390 2,013
400× 588 1,232 1,820

Total 2,480 5,429 7,909

# Patients 24 58 82

3.2. Experimental protocol

Following the standard labeling convention in use in med-
ical studies, the label “positive” (resp. “negative”) refers to
malignant (resp. benign) images. The BreaKHis dataset has
been randomly divided into a training set (70%) and a testing
set (30%), in which patients used to build the training set are
not used for the testing set. We used this division and the pre-
defined 5-fold cross-validation consistently with the protocol
described in (Spanhol et al., 2016a). We computed the av-
erage rate over runs. Note that the folds are publicly avail-
able and allow for a fair comparison of methods. To handle
the image high resolution (752×582) and to augment data for
training, images were divided into 64×64 patches. Thousand
patches were randomly extracted from each input image for
training. Each patch is described with a 162-long feature vector
of Parameter-Free Threshold Adjacency Statistics (PFTAS) fea-
tures (Hamilton et al., 2007; Coelho et al., 2010). There features
have shown particularly relevant for this dataset, when assessed
against many other such as local binary patterns (LBP), com-
pleted LBP, local phase quantization, gray-level co-occurrence
matrices, as well as computer vision features such as ORB (ori-
ented FAST and rotated BRIEF) (Spanhol et al., 2016b).

Twelve MIL methods were evaluated on the BreaKHis
dataset, as described in the Section 2: APR, DD and EM-DD,
citation-kNN, mi-SVM and MI-SVM, both with linear, poly-
nomial and RBF kernels, non-parametric MIL, and MILCNN.
For all methods except the non-parametric and the MILCNN,
we used the implementation of the J. Yang’s MIL Library1 with
MATLAB 2017a. The non-parametric MIL algorithm was ob-
tained from the author’s website2. For the implementation of
MILCNN in Python, Keras and Theano were used (Chollet,
2015). The hyper-parameters for each method were optimized
using grid search for the BreaKHis dataset as shown in Ap-
pendix A.

In the following, we first show the benchmark of MIL meth-
ods, and then assess the best MIL method against single in-
stance classification frameworks.

3.3. Results

MIL benchmark on BreaKHis dataset
We provide results for two differents settings, as aforemen-

tioned. In the first setting, each patient is considered as a bag,
which is labeled with its diagnosis. This is possible with our
dataset, since several hundreds of images are available for each
patient, as shown in Table 1. In the second setting, we consider
each image as a bag; in this case, the instances are the patches.

As expected (see Table 2 and Fig. 2 and 3), DD-based ap-
proaches and APR yield the poorest results which leads us to
think that positive instances are not clustered in a single area of
the feature space. For SVM-based approaches, MI-SVM leads
to enhanced results, which shows that a bag level paradigm is
better suited to the data. At last, best classification rates are
reported with the non-parametric MIL approach.

MIL vs single instance learning
For these experiments, we collected results obtained from

single instance classification setting, using state-of-the-art clas-
sifiers such as 1-NN, quadratic discriminant analysis (QDA),
random forest, and SVM. Hyperparameters of these classifiers
were tuned using grid search and only the best results were re-
tained. These classifiers take as input the PFTAS feature vec-
tor describing each image. For the CNN approach, we used
AlexNet (Krizhevsky et al., 2012). Decisions are taken on each
patch and are fused together using the Max Fusion Rule.

Unsurprisingly, the CNN performs better than other machine
learning models trained with hand-crafted textual descriptors
(in accordance with (Han et al., 2017); however, their results
are not comparable since they do not use the same folds), see
Fig. 4 and Fig. 5. We observe that the non-parametric MIL
brings interesting improvements for all magnification factors
(except the 400×) at patient level. This suggests that instances,
namely patches, provide only partial, complementary informa-
tion for the image or the patient level (Alpaydin et al., 2015),
and that a bag-based analysis is fully valuable for the analysis
of histopathology images.

1CMU MIL toolbox: http://www.cs.cmu.edu/~juny/MILL/
2 https://github.com/ragavvenkatesan/np-mil

http://www.cs.cmu.edu/~juny/MILL/
https://github.com/ragavvenkatesan/np-mil
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Table 2: Accuracy rate at respective levels. Best results columnwise are in bold.

Patient as bag Image as bag

40× 100× 200× 400× 40× 100× 200× 400×

Iterated-discrim APR (Dietterich et al., 1997) 73.8 ± 3.8 66.5 ± 4.1 84.2 ± 4.9 68.0 ± 5.6 70.4 ± 2.4 65.1 ± 5.0 81.3 ± 5.5 67.3 ± 4.9

DD (Maron and Lozano-Pérez, 1998) 70.5 ± 6.1 64.5 ± 4.3 68.3 ± 3.6 71.2 ± 3.3 71.2 ± 5.9 66.1 ± 5.4 66.7 ± 2.9 70.8 ± 3.8
EM-DD (Zhang and Goldman, 2001) 78.3 ± 5.6 80.6 ± 5.2 77.1 ± 6.3 78.7 ± 5.7 73.1 ± 5.4 76.4 ± 4.8 78.2 ± 5.2 76.2 ± 5.6

Citation-kNN (Wang and Zucker, 2000) 73.7 ± 4.6 72.8 ± 5.4 75.7 ± 3.1 77.2 ± 3.6 73.1 ± 4.3 73.0 ± 5.7 71.3 ± 3.5 78.7 ± 3.1

mi-SVM Linear (Andrews et al., 2002) 79.5 ± 4.3 83.4 ± 4.6 83.6 ± 4.7 81.0 ± 5.2 72.6 ± 4.4 80.6 ± 3.7 80.1 ± 4.9 78.2 ± 5.3
mi-SVM poly (Andrews et al., 2002) 75.2 ± 6.1 79.8 ± 4.8 76.5 ± 3.9 68.5 ± 5.1 75.6 ± 5.7 78.7 ± 4.0 75.2 ± 5.6 69.2 ± 4.8
mi-SVM RBF (Andrews et al., 2002) 77.8 ± 1.6 75.4 ± 1.5 73.8 ± 2.3 72.9 ± 3.4 77.9 ± 2.2 77.3 ± 2.1 74.6 ± 2.9 71.4 ± 3.9
MI-SVM Linear (Andrews et al., 2002) 85.6 ± 5.6 82.1 ± 5.9 84.6 ± 4.8 80.9 ± 4.9 79.5 ± 4.1 78.2 ± 4.4 80.8 ± 4.7 78.9 ± 5.1
MI-SVM poly (Andrews et al., 2002) 84.8 ± 2.7 82.5 ± 4.6 83.9 ± 4.2 81.3 ± 4.2 86.2 ± 2.8 82.8 ± 4.8 81.7 ± 4.4 82.7 ± 3.8
MI-SVM RBF (Andrews et al., 2002) 79.0 ± 2.1 71.9 ± 2.9 76.2 ± 1.9 73.0 ± 3.5 78.3 ± 3.2 72.2 ± 3.0 76.8 ± 1.6 71.9 ± 2.4

Non-parametric (Venkatesan et al., 2015) 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1

MILCNN (Sun et al., 2016) 86.9 ± 5.4 85.7 ± 4.8 85.9 ± 3.9 83.4 ± 5.3 86.1 ± 4.2 83.8 ± 3.1 80.2 ± 2.6 80.6 ± 4.6
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Fig. 2: Accuracy results of MIL benchmark with patient as bag (left part of Table 2)

4. Conclusions and future work

Multiple instance learning provides a classification frame-
work that is particularly adapted to computer-aided diagnosis
based on histopathological image analysis. In the case of the
BreaKHis dataset, several hundreds of images are available per
patient. The patient can thus be considered as a bag, which is
labeled with its diagnosis.

Our MIL benchmark shows that the recently proposed non-
parametric MIL is particularly efficient for the tasks of patient
and image classification. Patient classification rates can reach
up to 92.1% for the 40× magnification factor, a level never
reached by conventional classification frameworks, which en-
hances the fact that instances are complementary and can be
fruitfully considered in a MIL framework. MIL can thus lever-
age digital histopathological image classification and analysis
to improve computer-aided diagnosis.

As future work, we are currently engaged in experimenting
other deep learning frameworks. With the acceleration of pro-
posals in this area, no doubt that a more efficient networks will
be proposed in the near future. We also want to investigate MIL
for histopathological image segmentation. MIL can indeed be
an adequate framework to find location of malignant region po-
sition in histopathological images (Pathak et al., 2014; Xu et al.,
2014; Kraus et al., 2016). Since manual labeling is too long,
MIL can help in pixel labeling and clustering and can serve as
a feedback to the pathologist. The image is considered as a bag
and the pixels as instances.

Appendix A. Method hyper-parameterization

For non-parametric MIL (Venkatesan et al., 2015):

• Averaged accuracy over 100 runs
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Fig. 3: Accuracy results of MIL benchmark with image as bag (right part of Table 2)

Table 3: Comparison of MIL (non-parametric) vs single instance classification (SIL). Best results columnwise are in bold.

Patient as bag (MIL) or level (SIL) Image as bag (MIL) or level (SIL)

40× 100× 200× 400× 40× 100× 200× 400×

MIL Non-parametric 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1

SIL

CNN 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0
1-NN 80.9 ± 2.0 80.7 ± 2.4 81.5 ± 2.7 79.4 ± 3.9 79.1 ± 2.1 77.8 ± 3.0 79.6 ± 1.9 77.6 ± 4.0
QDA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9 82.8 ± 3.6 80.7 ± 4.9 83.3 ± 3.0 80.5 ± 5.6
RF 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8 80.2 ± 1.9 80.4 ± 3.8 82.4 ± 2.3 80.0 ± 4.5
SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8 79.9 ± 3.7 77.1 ± 5.5 84.2 ± 1.6 81.2 ± 3.6

• Range of k for grid search: 50 (1-50) using elbow method
• No. of Tsteps: 3000
• Distance Method: Euclidean

For APR (Dietterich et al., 1997):

• Kernel Width: 0.999
• Outside Probability: 0.023
• GridNum: 25000

For DD (Maron and Lozano-Pérez, 1998):

• Scaling: 1
• Aggregate: average
• Threshold: 0.5
• No. of runs: 100

For EM-DD (Zhang and Goldman, 2001):

• Scaling: 1
• Aggregate: average
• Threshold: 0.5
• No. of runs: 500
• Iteration Tolerance: 0.08

For Citation-kNN (Wang and Zucker, 2000):

• Bag Distance Type: minimum
• Instance Distance Type: Euclidean
• Reference nodes considered: 5
• CiterRank: 11

For mi-SVM (Andrews et al., 2002):

• Kernel: Linear, poly, RBF
• KernelParam - NA/degree/gamma: (NA), 4, 0.32
• CostFactor: 1/0.96/1
• NegativeWeight: 1/1/1
• Threshold: 0.5/0.55/0.5

For MI-SVM (Andrews et al., 2002):

• Kernel: Linear, poly, RBF
• KernelParam - NA/degree/gamma: (NA), 5, 0.17
• CostFactor: 1/1/1
• NegativeWeight: 1/1/1
• Threshold: 0.5/0.5/0.5

For MILCNN (Sun et al., 2016), the structure is the same as
that of the MILCNN for CIFAR10/CIFAR100.
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Fig. 4: Accuracy results: MIL vs SIL at patient level (left part from Table 3)
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Maron, O., Lozano-Pérez, T., 1998. A framework for multiple-instance learn-
ing, in: Proceedings of the 1997 Conference on Advances in Neural Infor-
mation Processing Systems 10, pp. 570–576.

Pathak, D., Shelhamer, E., Long, J., Darrell, T., 2014. Fully convolutional
multi-class multiple instance learning. CoRR abs/1412.7144.

Quellec, G., Cazuguel, G., Cochener, B., Lamard, M., 2017. Multiple-instance
learning for medical image and video analysis. IEEE reviews in biomedical
engineering 10, 213–234.

Rubin, R., Strayer, D., Rubin, E., McDonald, J., 2008. Rubin’s Pathology: Clin-
icopathologic Foundations of Medicine. Lippincott Williams & Wilkins.

Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L., 2016a. Breast cancer
histopathological image classification using convolutional neural networks,
in: 2016 International Joint Conference on Neural Networks (IJCNN), pp.
2560–2567.

Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L., 2016b. A dataset for
breast cancer histopathological image classification. IEEE Transactions on
Biomedical Engineering 63, 1455–1462.

Sun, M., Han, T.X., Liu, M.C., Khodayari-Rostamabad, A., 2016. Multiple
instance learning convolutional neural networks for object recognition, in:
International Conference on Pattern Recognition (ICPR), pp. 3270–3275.

Venkatesan, R., Chandakkar, P.S., Li, B., 2015. Simpler non-parametric meth-
ods provide as good or better results to multiple-instance learning, in: 2015
IEEE International Conference on Computer Vision (ICCV), pp. 2605–
2613. doi:10.1109/ICCV.2015.299.

Wang, J., Zucker, J.D., 2000. Solving the multiple-instance problem: A lazy
learning approach, in: Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pp. 1119–1126.

Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W., 2018. Revisiting multiple instance
neural networks. Pattern Recognition 74, 15 – 24.

Xu, Y., Zhu, J.Y., Eric, I., Chang, C., Lai, M., Tu, Z., 2014. Weakly super-
vised histopathology cancer image segmentation and classification. Medical
image analysis 18, 591–604.

Zhang, Q., Goldman, S.A., 2001. Em-dd: An improved multiple-instance learn-
ing technique, in: In Advances in Neural Information Processing Systems,
MIT Press. pp. 1073–1080.

Zhou, L., Zhao, Y., Yang, J., Yu, Q., Xu, X., 2017. Deep multiple instance
learning for automatic detection of diabetic retinopathy in retinal images.
IET Image Processing .

Zhou, Z.H., 2017. A brief introduction to weakly supervised learning. National
Science Review 00, 1 – 10. doi:10.1093/nsr/nwx106.

http://dx.doi.org/10.1109/ICCV.2015.299
http://dx.doi.org/10.1093/nsr/nwx106

	Introduction
	MIL methods: a brief overview
	Axis-parallel hyper rectangle (APR)
	Diverse Density (DD) and its variants
	Citation-kNN
	mi-SVM and MI-SVM
	Non-parametric MIL
	MILCNN

	Experiments and results
	Description of the BreaKHis dataset
	Experimental protocol
	Results

	Conclusions and future work
	Method hyper-parameterization

