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Chapter 1

Kernel-Based Nonlinear
Signal Processing

1.1 Chapter Summary

In this chapter we discuss kernel-based nonlinear signal processing. Sec-
tions 1.3 and 1.4 present a brief introduction to the theory of reproducing
kernel Hilbert spaces (RKHS) and their application to nonparametric mod-
eling of nonlinear functions. We give special emphasis to nonlinear function
estimation and regression, and illustrate their relevance on several nonlinear
signal processing applications. In Section 1.5 we explore online kernel-based
function approximation. We focus on finite order modeling, sparsification
techniques and their application to online learning. In Section 1.6 we discuss
kernel-based online system identification, with emphasis on the popular ker-
nel least mean squares algorithm (KLMS) and its properties. In Section 1.7
we present an introduction to Gaussian processes as applied to nonlinear
regression, and we describe its application to spectral unmixing of hyper-
spectral images.

1



2CHAPTER 1. KERNEL-BASED NONLINEAR SIGNAL PROCESSING

1.2 Introduction

An effective way to extend the scope of linear models to nonlinear processing
is to map the input data ui into a high-dimensional space using a nonlinear
function ϕp¨q, and apply linear modeling techniques to the transformed data
ϕpuiq. However, this strategy may fail when the image of ϕp¨q lies in a
very high, or even infinite, dimensional space. More recently, kernel-based
methods have been proposed for applications in classification and regression
problems. These methods exploit the central idea of this research area,
known as the kernel trick, to evaluate inner products in the high dimensional
space without the knowledge of the function ϕp¨q. Well-known examples
can be found in [1,2]. This chapter discusses the application of kernel-based
methods to solve nonlinear function estimation and regression problems.

1.3 Reproducing Kernel Hilbert Spaces (RKHS)

This section briefly reviews the main definitions and properties related to
reproducing kernel Hilbert spaces [3] and Mercer kernels [4].

Let H denote a Hilbert space of real-valued functions ψp¨q on a compact
U Ă IR`, and let x¨ , ¨yH be the inner product in H. Suppose that the
evaluation functional Lu defined by Lurψs fi ψpuq is linear with respect to
ψp¨q and bounded, for all u in U . By virtue of the Riesz representation
theorem, there exists a unique positive definite function ui ÞÑ κpui,ujq
in H, denoted by κp¨,ujq and called representer of evaluation at uj , that
satisfies [3]

ψpujq “ xψp¨q, κp¨,ujqyH, @ψ P H (1.1)

for every fixed uj P U . A proof of this may be found in [3]. Replacing ψp¨q
by κp¨,uiq in (1.1) yields

κpuj ,uiq “ xκp¨,uiq, κp¨,ujqyH (1.2)

for all ui, uj P U . Equation (1.2) is the origin of the now generic term
reproducing kernel to refer to κp¨ , ¨q, which is also known as Mercer kernel.
Note that H can be restricted to the span of tκp¨,uq : u P Uu because,
according to (1.1), nothing outside this set affects ψp¨q evaluated at any
point of U . Denoting by ϕp¨q the map that assigns to each input u the
kernel function κp¨,uq, (1.2) implies that κpui,ujq “ xϕpuiq,ϕpujqyH. The



1.4. NONLINEAR REGRESSION IN AN RKHS 3

kernel then evaluates the inner product of any pair of elements of U mapped
to H without any explicit knowledge of either ϕp¨q or H. This key idea is
known as the kernel trick. The kernel trick has been widely used to transform
linear algorithms expressed only in terms of inner products into nonlinear
ones. Examples are the nonlinear extensions to the principal component
analysis [5] and the Fisher discriminant analysis [6,7]. Recent work has also
been focused on kernel-based online prediction of time series [8–12].

Classic examples of kernels are the radially Gaussian kernel κpui,ujq “
exp

`

´}ui ´ uj}
2{2β20

˘

, with β0 ě 0 the kernel bandwidth, and the Laplacian
kernel κpui,ujq “ expp´}ui ´ uj}{β0q. Another example which deserves
attention in signal processing is the q-th degree polynomial kernel defined
as κpui,ujq “ pη0 ` u

t
i ujq

q, with η0 ě 0 and q P IN˚. The nonlinear
function ϕp¨q related to the latter transforms every observation ui into a
vector ϕpuiq, in which each component is proportional to a monomial of
the form pui,1q

k1pui,2q
k2 . . . pui,pq

kp for every set of exponents pk1, ..., kpq P
Np satisfying 0 ď

řp
r“1 kr ď q. For details, see [13, 14] and references

therein. The models of interest then correspond to q-th degree Volterra
series representations.

1.4 Nonlinear Regression in an RKHS

The regression problem is an example of learning in which we want to predict
the values of one or more continuous variables (outputs) as a function of a
set of inputs that are measured or preset. Problems in which a collection of
known input-output pairs is available for training the regression model are
known as supervised learning problems. The regression is nonlinear when
the function to be modeled is nonlinear.

A nonlinear regression problem with a scalar output variable is characterized
by the expression

di “ ψpuiq ` ηi, i “ 1, . . . , n (1.3)

where di is the i-th output, ui is the i-th input vector and ηi is the so-called
noise sample, which in general represents the part of di that can not be
modeled by ψp¨q. Noise ηi is frequently modeled as a sample of a white
Gaussian process.

Sometimes the mathematical form of ψp¨q is known or can be reasonably



4CHAPTER 1. KERNEL-BASED NONLINEAR SIGNAL PROCESSING

inferred from practical or theoretical considerations, except for some param-
eters. In these cases, the objective is to estimate the unknown parameter
values as precisely as possible [15–17]. However, in several practical prob-
lems the underlying process is complex and not well understood. In such
cases, one possible approach is to use a family of functions that is flexible
enough to approximate a sufficiently large variety of functional forms. The
objective is then to estimate the parameters of the family of functions. Ex-
amples of popular families of functions are polynomial models and kernel
expansions in RKHS. Another approach that has recently gained popular-
ity in the signal processing community is to avoid the choice of specific
functional models and imagine that the output samples are samples from
a multivariate Gaussian distribution. The sequence of samples is modeled
as a Gaussian process characterized by a covariance function in RKHS [18].
This chapter reviews recent solutions to the nonlinear regression problem in
the RKHS.

To solve the nonlinear regression problem in the RKHS, let κ : UˆU Ñ IR be
a kernel, and let H be the RKHS associated with it. The problem is to deter-
mine a function ψp¨q of H that minimizes a cost function

řn
i“1 Lpdi, ψpuiqq,

where Lpdi, ψpuiqq is an appropriate loss. Considering the least-squares ap-
proach for instance, the cost function is the sum of n squared errors between
samples di of the desired response and the corresponding model output sam-
ples ψpuiq “ xψp¨q, κp¨,uiqyH, namely,

min
ψPH

n
ÿ

i“1

|di ´ ψpuiq|
2. (1.4)

While the solution to this problem is not unique, one often considers a
regularized cost function

min
ψPH

n
ÿ

i“1

|di ´ ψpuiq|
2 ` ε }ψp¨q}2H (1.5)

where a regularization term is introduced in order to impose the uniqueness
and smoothness of the solution. The tradeoff between training errors and
smoothness of the solution is controlled by the tunable non-negative pa-
rameter ε. Taking the functional derivative of the above cost function with
respect to ψp¨q [19] and nullifying it, leads to

´

n
ÿ

i“1

pdi ´ ψpuiqqκp¨,uiq ` ε ψp¨q “ 0
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where we have used the linearity with respect to ψp¨q in ψpuiq “

xψp¨q, κp¨,uiqyH, as well as the fact that ψp¨q is the derivative of the quadratic
form 1

2}ψp¨q}
2
H. Therefore, the function ψp¨q of H minimizing (1.4) can be

written as a kernel expansion in terms of available data, namely

ψp¨q “
n
ÿ

i“j

αj κp¨,ujq. (1.6)

By injecting this expression in the problem (1.4), we obtain the optimization
problem minα }d´Kα}

2 ` εαJKα, where K is the Gram matrix whose
pi, jq-th entry is κpui,ujq and d is the vector of desired output values whose
i-th entry is di. By taking the derivative of this cost function with respect
to α and nullifying it, we get the nˆn linear system of equations pKJK `

εKqα “KJd.

It is worth noting that the regularization term given in (1.5) is often dropped
in adaptive learning. In this case, the uniqueness and regularity of the
solution of (1.4) are controlled by other principles, such as the minimal
disturbance principle (see Section 1.6).

1.5 Online Kernel-Based Function Approximation

1.5.1 Introduction

Online solution of the nonlinear regression problem formulated in the RHKS
raises the question of how to process an increasing amount of observations
and update the model (1.6) as new data is collected. Because the order of
the model (1.6) is equal to the number n of available data ui, this approach
cannot be considered for online applications. Hence, one needs to look for
sparse solutions. One way to obtain a sparse solution is to consider fixed-size
models of the form

ψp¨q “
m
ÿ

j“1

αj κp¨,uωj q (1.7)

where the uω1 , . . . ,uωm form an m-element subset of the available input
vectors.

Online applications, however, impose time-varying input signals. Hence, it
is convenient to adapt the notation of (1.7) by denoting the input vector
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at time n by un, and by defining ωj , j “ 1, . . . ,m to form a subset of
Jn “ t1, 2, . . . , nu corresponding to the time indexes of the m ă n input
vectors chosen to build the m-th order model. Under this notation, (1.7)
becomes

ψnp¨q “
m
ÿ

j“1

αj,n κp¨,uωj q. (1.8)

Once the fixed-order model (1.8) is adopted, the next problem is to choose
an adequate set of m input vectors uωj to build the model. The m kernel
functions κp¨,uωj q form the dictionary D, and the selection of the elements
to compose D must follow some sparsification strategy. In the following we
briefly review existing sparsification rules that can be used to this end.

Sparsification Rules

Discarding a kernel function from the model expansion (1.8) may degrade its
performance. Sparsification rules aim at identifying kernel functions whose
removal is expected to have negligible effect on the quality of the model. An
extensive literature addressing this issue in batch and online modes exists,
see, e.g., [20] and references therein. In particular, much attention has been
recently focused on least-squares support vector machines since they suffer
from the loss of sparsity due to the use of a quadratic loss function [21]. In
batch mode, this problem was addressed using pruning [22, 23] and fixed-
size approaches [21, 24, 25]. Truncation and approximation processes were
considered for online scenarios [20].

The most informative sparsification criteria use approximate linear depen-
dence conditions to evaluate whether the contribution of a candidate ker-
nel function can be distributed over the elements of D by adjusting their
multipliers. In [26], determination of the kernel function which is best ap-
proximated by the others is carried out by an eigendecomposition of the
Gram matrix. This process is not appropriate for online applications, as its
complexity at each time step is cubic in the size m of D. In [10], the kernel
function κp¨,unq is inserted at time step n into D if the following condition
is satisfied

min
γ

›

›

›
κp¨,unq ´

ÿ

ωjPJn´1

γj κp¨,uωj q

›

›

›

2

H
ě ν (1.9)
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where κ is a unit-norm kernel1, that is, κpuk,ukq “ 1 for all uk. The thresh-
old ν determines the level of sparsity of the model. Note that condition (1.9)
ensures the linear independence of the elements of the dictionary. A similar
criterion is used in [8, 9], but in a different form. After updating the model
parameters, a complementary pruning process is executed in [9] to limit the
increase in the model order. It estimates the error induced in ψp¨q at time n
by the removal of each kernel and discards those kernels found to have the
smallest contribution. A major criticism that can be made of rule (1.9) is
that it leads to elaborate and costly operations with quadratic complexity in
the cardinality m of D. In [8,9], the model reduction step is computationally
more expensive than the parameter update step, the latter being a stochastic
gradient descent with linear complexity in m. In [10], the authors focus their
study on a parameter update step of the RLS type with quadratic complex-
ity in m. To reduce the overall computational effort, the parameter update
and the model reduction steps share intermediate calculation results. This
excludes very useful and popular online regression techniques. In [27, 28] a
coherence-based sparsification rule has been proposed which requires much
less computational complexity than the rules discussed so far. According to
this rule, kernel κp¨,unq is inserted into the dictionary if

max
ωj

|κpun,uωj q| ď ε0 (1.10)

with ε0 a parameter determining the dictionary coherence. It was shown
in [28] that the dictionary dimension determined under rule (1.10) is always
finite.

The next section presents a set of kernel-based adaptive algorithms and
discusses their application to online time-series prediction

1.5.2 Algorithms for Online Time-Series Prediction

Consider the m-th order model at time step n, as given in (1.8), namely

ψnp¨q “
m
ÿ

j“1

αj,n κp¨,uωj q

where the m kernel functions κp¨,uωj q form a ε0-coherent dictionary, ob-
tained for instance by the coherence criterion (1.10). By injecting the above

1Replace κp¨,ukq with κp¨,ukq{
a

κpuk,ukq in (1.9) if κp¨,ukq is not unit-norm.
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model in the problem (1.4), we get the optimization problem minαn }d ´
Hαn}

2, where H is the nˆm matrix whose pi, jq-th entry is κpui,uωj q. By
taking the derivative of this cost function with respect to αn and nullifying
it, we get the optimal solution

αn “
`

HJH
˘´1

HJd

assuming HJH nonsingular and where αn “ rα1,n, . . . , αm,ns
J. In the

following, we provide adaptive techniques to estimate αn from its previous
estimate, αn´1.

We describe in details the Kernel Affine Projection (KAP) algorithm, and
then we present several variants. Under the minimal disturbance princi-
ple, the estimate is determined at each time step by projecting the previ-
ous estimate, subject to solving an underdetermined least-squares problem.
The latter is defined only on the p most recent inputs and outputs at each
time step n, respectively tun,un´1, . . . ,un´p`1u and tdn, dn´1, . . . , dn´p`1u.
In the following, Hn denotes the p ˆ m matrix whose pi, jq-th entry is
κpun´i`1,uωj q, namely,

Hn “ rhn hn´1 . . . hn´p`1s
J

where

hn´i`1 “ rκpun´i`1,uω1q . . . κpun´i`1,uωmqs
J , i “ 1, . . . , p

and dn is the column vector whose i-th entry is dn´i`1 for any i “ 1, . . . , p.

The affine projection problem is defined at time step n with the following
constrained optimization problem:

min
α

}α´αn´1}
2 subject to dn “Hnα. (1.11)

In other words, αn is obtained by projecting αn´1 onto the intersection of
the p manifolds defined, for i “ 1, 2, . . . , p, by

 

α : hJn´i`1α´ dn´i`1 “ 0
(

, i “ 1, . . . , p.

At time step n, upon arrival of a new sample un, one of the following al-
ternatives holds. If κp¨,unq violates the coherence-based condition (1.10),
the dictionary remains unaltered. On the other hand, if the condition (1.10)
is satisfied, κp¨,unq is inserted into the dictionary where it is denoted by
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κp¨,uωm`1q. The matrix Hn is augmented by appending to Hn´1 the col-
umn vector rκpun,uωm`1q κpun´1,uωm`1q . . . κpun´p`1,uωm`1qs

J. One
more entry is also added to the vector αn. The corresponding updating
rules, depending on the coherence-based sparsification rule, are detailed in
the following.

First case: max
j“1,...,m

|κpun,uωj q| ą ε0

In this case, κp¨,unq is not appended to the dictionary, since it can be
reasonably well represented by the kernel functions already in the dictionary.
The solution to the constrained optimization problem (1.11) is determined
by minimizing the Lagrangian function

}α´αn´1}
2 ` λJpdn ´Hnαq (1.12)

where λ denotes the vector of Lagrange multipliers. Differentiating this
expression with respect to α, setting it to zero and solving for α “ αn, and
making dn ´Hnαn “ 0 to determine λ, we get the following equations:

2 pαn ´αn´1q “H
J
n λ and λ “ 2 pHnH

J
n q
´1pdn ´Hnαn´1q. (1.13)

In order to ensure the nonsingularity of the matrix to be inverted in (1.13),
one may use the regularized version, with pHnH

J
n ` ε Iq. Solving (1.13) for

αn, we obtain the following recursive update rule:

αn “ αn´1 ` ηH
J
n pHnH

J
n ` ε Iq´1pdn ´Hnαn´1q (1.14)

where we have introduced the step-size control parameter η. This update
rule requires inverting the usually small pˆ p matrix pHnH

J
n ` εIq.

Second case: max
j“1,...,m

|κpun,uωj q| ď ε0

In this case, the kernel function κp¨,unq is included in the dictionary since it
cannot be efficiently represented by the elements already in the dictionary.
Hence, it is denoted by κp¨,uωm`1q. The model order m in (1.7) is increased
by one, and Hn is updated to a p ˆ pm ` 1q matrix. To accommodate the
new entry αm`1 in αn, the optimization problem (1.11) is rewritten as

min
α

}α1,...,m ´αn´1}
2 ` α2

m`1 subject to dn “Hnα (1.15)

where α1,...,m denotes the first m entries of the vector α and Hn has been
increased by one column as described before. Note that the pm`1q-th entry
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of α, namely αm`1, acts as a regularizing term in the objective function. By
following the same steps as in the derivation of (1.14), we get the following
update rule

αn “

„

αn´1
0



` ηHJ
n pHnH

J
n ` εIq

´1

ˆ

dn ´Hn

„

αn´1
0

˙

. (1.16)

Next, we investigate the instantaneous approximations for the gradient vec-
tors, in order to derive the KNLMS and the KLMS algorithms.

Instantaneous approximations — The KNLMS algorithm

By considering an instantaneous approximation with p “ 1, the affine pro-
jection algorithm described above leads to the kernel normalized least mean
square (KNLMS) algorithm. At each time step n, the algorithm described
above enforces a null a posteriori error, namely dn “ h

J
nαn, where hn is the

column vector whose i-th entry is κpun,uωiq. The update rules (1.14) and
(1.16) reduce to

1. If max
j
|κpun,uωj q| ą ε0: Let hn “ rκpun,uω1q . . . κpun,uωmqs

J, then

αn “ αn´1 `
η

ε` }hn}2
pdn ´ h

J
nαn´1qhn. (1.17)

2. If max
j
|κpun,uωj q| ď ε0: Let hn “ rκpun,uω1q . . . κpun,uωm`1qs

J, then

αn “

„

αn´1
0



`
η

ε` }hn}2

ˆ

dn ´ h
J
n

„

αn´1
0

˙

hn. (1.18)

Instantaneous approximations — The KLMS algorithm

One of the easiest ways to derive an adaptive rule is to consider the stochas-
tic gradient of (1.4), which leads to the so-called kernel least mean square
(KLMS) algorithm. Since the a priori error at time step n is dn “ h

J
nαn´1,

we get the same steps as in the KNLMS algorithm without the step size
normalization, and the update rules (1.17) and (1.18) become, respectively,

αn “ αn´1 ` η pdn ´ h
J
nαn´1qhn
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and

αn “

„

αn´1
0



` η

ˆ

dn ´ h
J
n

„

αn´1
0

˙

hn.

1.5.3 Example 1

Consider the “Henon map” defined by the nonlinear system

$

’

&

’

%

dn “ 1´ γ1 d
2
n´1 ` γ2 dn´2;

d0 “ ´0.3;

d1 “ 0.

For γ1 “ 1.4 and γ2 “ 0.3, the corresponding time-series has a chaotic
behavior. The investigated model takes the form dn “ ψpdn´1, dn´2q. The
length of the time series was 2000 samples. We considered the Gaussian
kernel, and the value of its bandwidth was set to β0 “ 0.35. The choice of
the threshold ε0 “ 0.6 led to a dictionary with 52 entries. The relevance
of the proposed online kernel-based function approximation is illustrated
in Fig. 1.1. Figure 1.1(a) shows the evolution of the pairs pdn, dn´1q with
n corresponding to the actual Henon map, and those predicted using the
kernel-based nonlinear model with coefficients αn adapted using the KAP
algorithm with η “ 1. Figure 1.1(b) shows the evolution of the quadratic
error.

1.6 Online Nonlinear System Identification

The adaptive algorithms presented above can be employed in any application
requiring the estimation of parameters associated with a time series. One
particularly important application is nonlinear system identification. The
block diagram of a kernel-based adaptive system identification problem is
shown in Fig. 1.2. Here, U is a compact subspace of R`, κ : U ˆ U Ñ R is a
reproducing kernel, pH, x¨,¨yHq is the induced RKHS with its inner product
and zn is a zero-mean additive noise uncorrelated with any other signal.

It is well known that a nonlinear adaptive filtering problem with input signal
in U can be solved using a linear adaptive filter [29]. The linear adaptive
filter input is a nonlinear mapping of U to an Hilbert space H possessing
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(b) Evolution of the quadratic error.

Figure 1.1: Illustration of the Henon map in two-dimensions pdn, dn´1q,
and the evolution of the quadratic error. Elements of the dictionary are
illustrated by red stars.

a reproducing kernel. As discussed in Section 1.5.1, the order of the linear
adaptive filter can be finite if a proper input sparsification rule is employed
[28], even if the dimensionality of the transformed input in H is infinite as
in the case of a Gaussian kernel.

A proper design of an adaptive algorithm to solve the nonlinear system
identification problem depicted in Fig. 1.2, however, requires a good under-
standing of the algorithm properties in such an application. However, very
few analyses related to the behavior of kernel-based adaptive algorithms
are available in the literature. A statistical analysis of the behavior of the
KLMS adaptive algorithm using a fixed order dictionary D and a Gaussian
kernel for system identification has been presented in [30]. Other aspects
of the KLMS behavior have been studied in [30–33]. In the analysis, the
environment is assumed stationary, meaning that ψpunq is stationary for un
stationary. This assumption is satisfied by several nonlinear systems used to
model practical situations, such as memoryless, Wiener and Hammerstein
systems. System inputs are assumed to be zero-mean, independent and iden-
tically distributed Gaussian p`ˆ1q vectors un so that Etun´i u

J
n´ju “ 0 for

i ‰ j. The components of the input vector un can, however, be correlated.
Let Ruu “ Etun u

J
n u denote their autocorrelation matrix.
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Figure 1.2: Kernel-based adaptive system identification.

For a dictionary of size m, let κω,n be the vector of kernels at time n ą m,2

that is,

κω,n “ rκpun,uω1q, . . . , κpun,uωmqs
J (1.19)

where uωi is the i-th element of the dictionary, with uωi ‰ un for i “
1, . . . ,m. Here we consider that the vectors uωi , i “ 1, . . . ,m may change
at each iteration following some dictionary updating schedule. The only
limitation imposed in the following analysis is that uωi,n ‰ uωj ,n for i ‰ j
so that the dictionary vectors which are arguments of different entries of
κω,n are statistically independent. Note that this framework does not allow
the user to pre-tune the dictionary to improve performance. In [34] we
proposed a theoretical analysis of the KLMS algorithm with Gaussian kernel
that considers the dictionary as part of the filter parameters to be set.

To keep the notation simple, however, we will not show explicitly the de-
pendence of ωi on n and represent uωi,n as uωi for all i.

From Fig. 1.2 and model (1.8), the estimated system output is

d̂pnq “ αJn κω,n. (1.20)

2If the dictionary size m is adapted online, we assume that n is sufficiently large so
that the size m does not increase anymore.
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The corresponding estimation error is defined as

en “ dn ´ d̂n. (1.21)

Squaring both sides of (1.21) and taking the expected value leads to the
MSE

Jmse,n “ Ete2nu “ Etd2nu ´ 2pJκdαn `α
J
n Rκκαn (1.22)

where Rκκ “ Etκω,n κ
J
ω,nu is the correlation matrix of the kernelized input,

and pκd “ Etdn κω,nu is the cross-correlation vector between κω,n and dn.
It is shown in [30] that Rκκ is positive definite. Thus, the optimum weight
vector is given by

αopt “ R
´1
κκ pκd. (1.23)

The optimal estimation error is

e0,n “ dn ´ κ
J
ω,nαopt (1.24)

and the corresponding minimum MSE is

Jmin “ Etd2nu ´ p
J
κdR

´1
κκ pκd. (1.25)

These are the well-known expressions of the Wiener solution and minimum
MSE, where the input signal vector has been replaced by the kernelized
input vector. Determining the optimum αopt requires the determination of
the covariance matrix Rκκ, given the statistical properties of un and the
reproducing kernel.

To evaluate Rκκ, we note that its entries are given by

rRκκsij “

#

Etκ2pun,uωiqu, i “ j

Etκpun,uωiqκpun,uωj qu, i ‰ j
(1.26)

with 1 ď i, j ď m. Note that Rκκ remains time-invariant even if the
dictionary is updated at each iteration, as un is stationary and uωi and uωj

are statistically independent for i ‰ j. Also, we assume in the following the
use of the Gaussian kernel κpui,ujq “ exp

`

´}ui ´ uj}
2{2β20

˘

.

Let us introduce the following notations

}un ´ uωi}
2 “ yJ2 Q2 y2

}un ´ uωi}
2 ` }un ´ uωj}

2 “ yJ3 Q3 y3, i ‰ j
(1.27)
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where } ¨ } is the `2 norm and

y2 “
`

uJnu
J
ωi

˘J

y3 “
´

uJnu
J
ωi
uJωj

¯J (1.28)

and

Q2 “

ˆ

I ´I
´I I

˙

Q3 “

¨

˝

2I ´I ´I
´I I O
´I O I

˛

‚ (1.29)

where I is the p`ˆ `q identity matrix and O is the p`ˆ `q null matrix. From
[35, p. 100], we know that the moment generating function of a quadratic
form ξ “ yJQy, where y is a zero-mean Gaussian vector with covariance
matrix Ry, is given by

ψξpsq “ Etesξu “ dettI ´ 2 sQRyu
´1{2. (1.30)

Making s “ ´1{p2β20q in (1.30), we find that the pi, jq-th element of Rκκ is
given by

rRκκsij “

#

rmd “ det
 

I2 ` 2Q2R2{β
2
0

(´1{2
, i “ j

rod “ det
 

I3 `Q3R3{β
2
0

(´1{2
, i ‰ j

(1.31)

with 1 ď i, j ď M . The main diagonal entries rRκκsii are all equal to rmd

and the off-diagonal entries rRκκsij are all equal to rod because uωi and
uωj are i.i.d. In (1.31), Rq is the pq` ˆ q`q correlation matrix of vector yq,
Iq is the pq`ˆ q`q identity matrix, and dett¨u denotes the determinant of a
matrix. Finally, note that matrix Rq is block-diagonal with Ruu along its
diagonal.

The analysis in [30] uses the following statistical assumptions for feasibility:

A1: κω,nκ
J
ω,n is statistically independent of vn. This assumption

is justified in detail in [36] and has been successfully employed
in several adaptive filter analyses. It is called here for further
reference “modified independence assumption” (MIA). This as-
sumption has been shown in [36] to be less restrictive than the
classical independence assumption [37].
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A2: The finite-order model provides a close enough approximation to
the infinite-order model with minimum MSE, so that Ere0,ns «
0.

A3: e0,n and κω,n κ
J
ω,n are uncorrelated. This assumption is also

supported by the arguments supporting the MIA (A1) [36].

The following are the main results of the analysis presented in [30]. The
reader is directed to [30] for more details. Defining the weight error vector
vn “ αn ´αopt leads to the KLMS weight-error vector update equation

vn`1 “ vn ` η en κω,n (1.32)

and the estimation error can be written as

en “ dn ´ κ
J
ω,nvn ´ κ

J
ω,nαopt. (1.33)

The analysis in [30] shows that the mean behavior of the adaptive weights
is given by

Etvn`1u “ pI ´ ηRκκqEtvnu. (1.34)

For the analysis of the MSE behavior, we note that using (1.33) and the
MIA (A1), the second-order moments of the weights are related to the
MSE through [37]

Jmspnq “ Jmin ` tracetRκκCv,nu (1.35)

where Cv,n “ Etvn v
J
n u is the autocorrelation matrix of vn and Jmin “

Ete20,nu is the minimum MSE. The study of the MSE behavior (1.35) re-
quires a model for Cv,n. This model is highly affected by the transformation
imposed on the input signal un by the kernel. An analytical model for the
behavior of Cv,n is derived in [30] and is given by

Cv,n`1 « Cv,n ´ η pRκκCv,n `Cv,nRκκq ` η
2 T n ` η

2Rκκ Jmin (1.36a)

with

T n “ Etκn κ
J
n vn v

J
n κn κ

J
n u. (1.36b)

The moments in (1.36b) are evaluated in [30], yielding the following recursive
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expressions for the entries of the autocorrelation matrix Cv,n:

rCv,n`1sii “p1´ 2ηrmd ` η
2µ1q rCv,nsii ` η

2µ3

M
ÿ

`“1
`‰i

rCv,ns``

` p2η2µ2 ´ 2ηrodq
M
ÿ

`“1
`‰i

rCv,nsi` ` η
2µ4

M
ÿ

`“1
`‰i

M
ÿ

p“1
p‰ti,`u

rCv,ns`p

` η2 rmd Jmin

(1.37)

and, for j ‰ i,

rCv,n`1sij “p1´ 2ηrmd ` 2η2µ3q rCv,nsij ` η
2µ4

m
ÿ

`“1
`‰ti,ju

rCv,ns``

` pη2µ2 ´ ηrodqprCv,nsii ` rCv,nsjjq

` p2η2µ4 ´ ηrodq
m
ÿ

`“1
`‰ti,ju

prCv,nsi` ` rCv,nsj`q

` η2µ5

m
ÿ

`“1
`‰ti,ju

m
ÿ

p“1
p‰ti,j,`u

rCv,ns`p ` η
2 rod Jmin

(1.38)

where rmd “ rRκκsii and rod “ rRκκsij with j ‰ i, as defined in

(1.31), µ1 “
“

dettI2 ` 4Q2R2{β
2
0u
‰´1{2

, µ2 “ rdettI3 ` Q31R3{β
2
0us

´1{2,

µ3 “ rdettI3 ` 2Q3R3{β
2
0us

´1{2, µ4 “ rdettI4 ` Q4R4{β
2
0us

´1{2 and
µ5 “ rdettI5 `Q5R5{β

2
0us

´1{2 with Q2 and Q3 defined in (1.29) and

Q31 “

¨

˝

4I ´3I ´I
´3I 3I O
´I O I

˛

‚. (1.39a)

Q4 “

¨

˚

˚

˝

4I ´2I ´I ´I
´2I 2I O O
´I O I O
´I O O I

˛

‹

‹

‚

. (1.39b)

Q5 “

¨

˚

˚

˚

˚

˝

4I ´I ´I ´I ´I
´I I O O O
´I O I O O
´I O O I O
´I O O O I

˛

‹

‹

‹

‹

‚

. (1.39c)
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The interest reader is referred to [30] for stability and steady-state analyses
of the KLMS algorithm. In the following we illustrate the accuracy of the
analytical model through a simulation example.

1.6.1 Example 2

Consider the problem studied in [38,39], for which

$

&

%

yn “
yn´1

1` y2n´1
` u3n´1

dn “ yn ` zn

(1.40)

where the output signal yn was corrupted by a zero-mean white Gaussian
noise zn with variance σ2z “ 10´4. The input sequence upnq is zero-mean
i.i.d. Gaussian with standard deviation σu “ 0.15.

The proposed method was tested with a maximum MSE Jmax “ ´21.5 dB,
a coherence level ε0 “ 10´5 and a set of kernel bandwidths β0 P t0.0075,
0.01, 0.025, 0.05u3. For each value of β0, 500 dictionary dimensions mi,
i “ 1, . . . , 500, were determined using 500 realizations of the input process.
The length of each realization was 500 samples. Each mi was determined
as the minimum dictionary length required to achieve the coherence level
ε0. The value mpβ0q was determined as the average of all mi, rounded to
the nearest integer. The values of Jminpβ0q were calculated from (1.25) for
each pair pβ0,Mq. To this end, second-order moments pκd and Etd2nu were
estimated by averaging over 500 runs.

The step size value for each values of β0 was chosen as η “ ηmax{10 with
ηmax determined using the stability analysis in [30]. Table 1.1 shows the
values of β0 and η used in the simulations. For each simulation, the order
m of the dictionary remained fixed. It was initialized for each realization by
generating input vectors in U and filling the m positions with vectors that
satisfy the desired coherence level. Thus, the initial dictionary is different
for each realization. During each realization, the dictionary elements were
updated at each iteration n so that the least recently added element is
replaced with un´1.

Figures 1.3 illustrates the accuracy of the analytical model for the four

3These values of β0 are samples within a range of values experimentally verified to be
adequate for the application.
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Table 1.1: Summary of simulation results for Example 1.
β0 m η Jmin Jmsep8q Jexp8q nε

[dB] [dB] [dB]

0.0075 17 0.143 -22.19 -22.04 -36.85 1271

0.01 13 0.152 -21.84 -21.69 -36.27 914

0.025 6 0.007 -21.53 -21.52 -49.15 7746

0.05 3 0.011 -21.52 -21.51 -47.00 2648

cases presented in Table 1.1. Figure 1.3 shows an excellent agreement be-
tween Monte Carlo simulations, averaged over 500 runs, and the theoretical
predictions made by using (1.35).

1.7 Bayesian Approaches to Kernel-Based Nonlin-
ear Regression

1.7.1 Gaussian Processes for Regression

The more classical solutions of the nonlinear regression problem (1.3) using
Bayesian techniques assume the knowledge of function ψp¨q except for a set of
parameters that can be included in a parameter vector θ. This includes the
cases in which the nonlinear function ψp¨q is actually known from physical
considerations and cases in which ψp¨q represents a family of functions that
can approximate a wide range of functional forms. In the former case, the
entries of θ tend to have physical interpretations. In the latter, they are
usually parameters of an expansion to be fitted to the unknown function
ψp¨q. Kernel-based classical Bayesian solutions use the form (1.7) for ψp¨q.
Then, using the fixed size model (1.6) in (1.3), the nonlinear regression
problem becomes

di “
m
ÿ

j“1

αj κpui,uωj q ` ηi, i “ 1, . . . ,m (1.41)

with θ “ rα1, α2, . . . , αm, σ
2
ηs
J, where ηi „ N p0, σ2ηq is assumed.

The solution of the problem includes defining a prior distribution ppθq
for the unknown parameters and determining the posterior distribution
ppθ|d1, . . . , dmq. Once the posterior distribution is determined, an estima-
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(a) β0 “ 0.0075 and m “ 17.
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(b) β0 “ 0.01 and m “ 13.
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(c) β0 “ 0.025 and m “ 6.
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(d) β0 “ 0.05 and m “ 3.

Figure 1.3: Theoretical model and Monte Carlo simulation of KLMS for dif-
ferent kernel bandwidths. Ragged curves (blue): simulation results averaged
over 500 runs. Continuous curves (red): Theory using (1.35).



1.7. BAYESIAN APPROACHES TOKERNEL-BASED NONLINEAR REGRESSION21

tion criterion such as the minimum mean-square (MSE) error or the maxi-
mum a posteriori (MAP) can be used to estimate θ. Such classical Bayesian
techniques are well documented and have given rise to popular estimators
such as the least absolute shrinkage and selection operator (LASSO) pro-
posed in [40] or the ridge regression [41]. The reader is referred, for instance,
to [42,43] for more details.

An alternative Bayesian approach that has gained popularity recently is to
assume that the sequence of samples di, i “ 1, . . . ,m is characterized by a
zero-mean Gaussian process (GP) with covariance function in an RKHS [18]
given by κpui,ujq. A common choice is the Gaussian kernel κpui,ujq “
exp

`

´}ui ´ uj}
2{2β20

˘

, where β0 is the kernel bandwidth.

Defining the matrix U “ ru1, . . . ,ums and d “ rd1, . . . , dms
J we define the

prior distribution for d as

d „ N
`

0,K ` σ2ηI
˘

(1.42)

with K the Gram matrix whose entries Kij “ κpui,ujq are the kernel
(covariance) functions [44] of the inputs ui and uj , and I is the m ˆ m
identity matrix.

Gaussian process regression aims at inferring the latent function distribution
of f˚ for a new (or test) input u˚. Using the marginalization property [18],
(1.42) can be obtained by integrating out f˚ in the following joint distribu-
tion of pd, f˚q

J

„

d
f˚



„ N
ˆ

0,

„

K ` σ2ηI κ˚
κJ˚ κ˚˚

˙

(1.43)

with κJ˚ “ rκpu˚,u1q, . . . , κpu˚,umqs and κ˚˚ “ κpu˚,u˚q. The predictive
distribution of f˚, or posterior of f˚, can be obtained by conditioning (1.43)
on the data as

f˚|d,U ,u˚ „ N
´

κJ˚
“

K ` σ2ηI
‰´1

d , κ˚˚ ´ κ
J
˚

“

K ` σ2ηI
‰´1

κ˚

¯

. (1.44)

Using the Gaussian kernel to model the Gaussian process, the function esti-
mation is done in an RKHS with universal approximating capability [29, p.
35] due to the smoothness and non-informativeness of this kernel.
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1.7.2 Spectral Unmixing of Hyperspectral Images

The problem of unmixing hyperspectral images has been receiving an in-
creasing interest in the recent years for various remote sensing applications
(see for instance review papers [45,46] and references therein). Spectral un-
mixing (SU) consists of identifying the spectral signatures of the pure mate-
rials (referred to as “endmembers”) contained in a hyperspectral image and
estimating the proportions of these materials (referred to as “abundances”)
in each pixel of the image. A classical model used for this unmixing pro-
cedure is the linear mixing model (LMM), which expresses a given pixel of
the image y P RL (acquired in L spectral bands) as a linear combination of
a given number R of endmembers mr:

y “
R
ÿ

r“1

armr ` n “Ma` n (1.45)

where ar is the abundance of the material mr in the pixel y, a “

pa1, ..., aRq
J, M “ rm1, ...,mRs is a matrix built with the different end-

members contained in the image and n P RL is an additive noise vector.
Under this model, the abundances are required to satisfy the so-called pos-
itivity and sum-to-one constraints

ar ě 0,
R
ÿ

r“1

ar “ 1 (1.46)

when the vectors mr for r “ 1, ..., R form set of all pure materials contained
in the image. The LMM (1.45) has shown interesting properties for the SU
of hyperspectral images. However, as explained in [46], this model has some
severe limitations when the image contains intimate mixtures or when the
light scattered by a given material reflects on other materials before reaching
the sensor (leading to multipath effects). In these cases, nonlinear mixing
models should be preferred to identify the endmembers contained in the
image and to estimate the abundances of the pure materials in each pixel of
the image. A generic model for nonlinear spectral unmixing can be written
as

y “ fpM ,aq ` n (1.47)

where f is a nonlinear function whose shape can be difficult to be known a
priori. In this context, Gaussian processes can be investigated to infer this
nonlinear function and thus to perform nonlinear unmixing of hyperspectral
images.
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To apply Gaussian processes to the SU problem, we first define si as the
transpose of the i-th row of matrixM . Hence, sJi contains the contributions
of all endmembers to the spectral component yi of y in the LMM, and
yi “ a

Jsi ` ni in (1.45).

Using the joint distribution (1.43) with inputs ui “ si, it is straightfor-
ward to show that the posterior distribution (also referred to as predictive
distribution) of f˚ for a new input s˚ can be written as

f˚|y,M , s˚ „ N
´

κJ˚
“

K ` σ2nI
‰´1

y , κ˚˚ ´ κ
J
˚

“

K ` σ2nI
‰´1

κ˚

¯

(1.48)

where κJ˚ “ rκps˚, s1q, . . . , κps˚, sLqs and κ˚˚ “ κps˚, s˚q.

The extension to a multivariate predictive distribution with test data M˚ “

rs˚1, . . . , s˚Ls
J is straightforward and yields

f˚|y,M ,M˚ „ N
´

K˚

“

K ` σ2nI
‰´1

y ,

K˚˚ ´K˚

“

K ` σ2nI
‰´1

KJ
˚

¯ (1.49)

where rK˚sij “ κps˚i, sjq and rK˚˚sij “ κps˚i, s˚jq.

The predicted function f˚ can finally be estimated by computing the mean
of (1.49) following the MMSE principle. Then,

fMMSE
˚ “K˚

“

K ` σ2nI
‰´1

y. (1.50)

Assuming the choice of the Gaussian kernel κpsi, sjq “

exp
`

´}si ´ sj}
2{2β20

˘

, the practical evaluation of fMMSE
˚ requires the

values of the model parameters θ “ rβ0, σ
2
ns to be estimated. Following

a Bayesian approach, a prior has to be defined for θ and the posterior
ppθ|M ,yq has to be maximized with respect to θ. Using the type II
maximum likelihood approximation [18], another solution for estimating
θ is to maximize the marginal likelihood log ppy|M ,yq with respect to θ,
where

log ppy|M ,yq “ ´
1

2
yJ

“

K ` σ2nI
‰´1

y

´
1

2
log

ˇ

ˇK ` σ2nI
ˇ

ˇ´
L

2
logp2πq.

(1.51)
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1.7.3 Example 3

Consider a nonlinearly mixed hyperspectral image pixel generated using the
simplified generalized bilinear model (GBM) used in [47] with a new scaling
that permits the control of the degree of nonlinearity for each nonlinear pixel
generated. More precisely, the nonlinearly mixed pixels are generated using
the following model

y “ kMa` µ` n (1.52)

where 0 ď k ď 1, µ “ γ
řR´1
i“1

řR
j“i`1 aiajmi d mj is the nonlinear

term, γ is the parameter that governs the amount of nonlinear contri-
bution, d is the Hadamard product, and n is an additive white Gaus-
sian noise with variance σ2n. Given the parameters M , a, γ and σ2n,
this model generates samples with same energy and SNR as the LMM if

k “
”

´2E`µ `
b

4E2
`µ ´ 4E`pEµ ´ E`q

ı

{2E`, where E` “ }y`}
2 is the en-

ergy of a noiseless linear pixel (i.e., aJMJMa), E`µ “ y
J
` µ is the “cross-

energy” of the linear and nonlinear parts, and Eµ “ }µ}
2 is the energy of the

nonlinear contribution. The degree of nonlinearity of a pixel is then defined
as the ratio of the nonlinear portion to the total pixel energy

ηd “
2kE`µ ` Eµ

k2E` ` 2kE`µ ` Eµ
(1.53)

so that 0 ď ηd ď 1. For the simulations presented here, the endmember
matrix M was composed of R “ 3 materials (green grass, olive green paint
and galvanized steel metal) extracted from the spectral library of the soft-
ware ENVITM [48]. Each endmember mi, i “ 1, 2, 3, has L “ 826 bands.
The model parameters were a “ r0.3, 0.6, 0, 1sJ, k “ 0.3162 and γ “ 6.1464
so that ηd “ 0.9 and σ2n “ 4.074 ˆ 10´4 was chosen to produce an SNR of
25dB.

Figure 1.4 shows the actual values of a test observation vector y˚ (in blue)
and the estimations using both a least squares fitting assuming a linear
model (1.45) (in green) and a nonlinear Gaussian process based nonlinear
fitting (in magenta). These results clearly illustrate the better fitting prop-
erties of the Gaussian process model for nonlinear regression problems.
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Figure 1.4: Gaussian process based nonlinear function estimation. Actual
pixel: Blue ragged curve. Least squares prediction assuming a linear model:
Green curve. Gaussian process based nonlinear prediction: Magenta curve.

1.8 Conclusion

This chapter have presented a brief introduction to kernel-based nonlinear
signal processing. This is a vast area that encounters a multitude of ap-
plications, and constitutes a very active area of research. To introduce the
basic principles we concentrated on the nonlinear function estimation and
regression problems, as they appear in a significant amount of nonlinear
signal processing applications. After a brief introduction to reproducing
kernel Hilbert spaces we discussed online kernel-based function approxima-
tion and presented a set of recursive algorithms to solve this problem. We
then discussed online nonlinear system identification using the KLMS al-
gorithm with emphasis on a methodology to study the stochastic behavior
of the kernel-based adaptive estimator. Finally, we returned to the non-
linear function estimation problem, this time using a Bayesian approach
based on Gaussian processes, and discussed its application to the unmixing
of hyperspectral images. We presented illustrative examples for each of the
applications discussed. We hope that this brief introduction will provide
the reader with an appreciation of the potential of kernel-based methods for
solving nonlinear signal processing problems.
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