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Abstract. We propose a method for recruiting asymptomatic Amyloid
positive individuals in clinical trials, using a two-step process. We first
select during a pre-screening phase a subset of individuals which are more
likely to be amyloid positive based on the automatic analysis of data
acquired during routine clinical practice, before doing a confirmatory
PET-scan to these selected individuals only. This method leads to an
increased number of recruitments and to a reduced number of PET-
scans, resulting in a decrease in overall recruitment costs. We validate
our method on 3 different cohorts, and consider 5 different classification
algorithms for the pre-screening phase. We show that the best results are
obtained using solely cognitive, genetic and socio-demographic features,
as the slight increased performance when using MRI or longitudinal data
is balanced by the cost increase they induce. We show that the proposed
method generalizes well when tested on an independent cohort, and that
the characteristics of the selected set of individuals are identical to the
characteristics of a population selected in a standard way. The proposed
approach shows how Machine Learning can be used effectively in practice
to optimize recruitment costs in clinical trials.

Keywords: pre-screening for clinical trials, recruitment costs, amyloidosis, Alzheimer’s
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1 Introduction

1.1 Background

Amyloid plaques, together with neurofibrillary tangles, are one of the earliest
signs of Alzheimer’s disease (AD), appearing before any cognitive impairment
and change in brain structure [14, 27]. They are thought to play an important
role in the disease, by triggering a cascade of events leading to neuronal loss and
cognitive impairment [21, 23, 22]. This Amyloid cascade hypothesis has been very
influential in therapeutic research, as it is hopped that stopping the formation of
the plaques will stop the cascade and hence the progression of the disease. Several
molecules have been designed to target these plaques, by preventing the forma-
tion of the beta-amyloid (Aβ) peptides, by clearing them or by stopping them
from aggregating to form Amyloid plaques [30]. Several of these drugs, such as
solanezumab [13] and bapineuzumab [38], have been tested on individuals with
dementia or with mild cognitive impairments, but did not result in a decrease
of the cognitive decline. The focus of clinical trials is therefore now shifting to-
wards pre-clinical and prodromal individuals, as in the A4 study (trial identifier:
NCT02008357) and the clinical trial for CNP520 (identifier: NCT03131453). The
Amyloid cascade is thought to be a long, progressive process. Slowing down the
formation of Amyloid plaques at the beginning of the process, when individu-
als are not yet cognitively impaired, should have effects on the long run [13, 7],
whereas on symptomatic individuals cognitive damage has already occurred and
might not be reversed.

Setting up clinical trials targeting asymptomatic individuals with amyloid
plaques can however lead to important recruitment costs than can be prohibitive,
as it is necessary to ensure that all enrolled individuals have amyloidosis [36, 44].
The presence of amyloid plaques on the brain can be measured using Positron
emission tomography (PET), or by measuring the concentration of Aβ protein
in the cerebral spinal fluid (CSF). PET scans are very costly (around 1 000e in
Europe, and 5 000$ in the United-States) and require the injection of a radioac-
tive compound, and CSF measurements require a lumbar puncture, which is an
invasive procedure that cannot be considered for systematic screening. When
recruiting amyloid positive (Aβ+) individuals in a cohort of individuals with
dementia, doing a PET scan to every possible individual can be a reasonable
solution, as 90% are expected to be Aβ+ [9]. However, in an elderly asymp-
tomatic population, only one third of the individuals are Aβ+ [9].This implies
that in order to recruit a given number of Aβ+ individuals, three times as many
individuals should be tested for amyloid positivity. Therefore, doing a PET scan
to every recruited individual does not seem to represent a feasible solution for
the large-scale recruitment of asymptomatic amyloid positive individuals [45].

We propose a method for recruiting asymptomatic Aβ+ individuals for clin-
ical trials, which is composed of two steps, as presented in Figure 1. In a pre-
screening phase, we first identify a subpopulation with a higher prevalence of
Aβ+ individuals than in the original cohort, before doing a PET scan to this
sub-population only in a second phase. In order to identify individuals with a



higher risk of being Aβ+, we propose to use a classifier that has been optimized
to minimize the recruitment cost.

1.2 Related works

Several methods have been proposed to automatically predict the amyloid status
of Cognitively Normal (CN) individuals based on cognitive and socio-demographic
information. Mielke et al [32] use a logistic regression with a default threshold
value, and evaluate their method by training and testing the algorithm on the
same individuals. Insel et al [26] use a Random Forest and optimize the threshold
by maximizing the Positive Predictive Value (PPV) of the algorithm. Maximizing
this value implies having a very high threshold value, hence being very selective
and increasing the number of false negatives. A very large number of individuals
then has to be recruited as input, as many positive individuals are discarded.

Other methods focus on MRI features, such as Tosun et al [43] who pre-
dict amyloidosis in subjects with a Mild Cognitive Impairment (MCI) using an
advanced anatomical shape variation measure. Apostolova et al [4] also include
MRI features by using hippocampus volume and cognitive, APOE and periph-
eral blood protein information on MCI subjects using an SVM. Ten Kate et
al [42] use an SVM and tree-based feature selection to predict amyloidosis in CN
and MCI subjects using cognitive, socio-demographic, APOE and MRI features.
In this paper, we propose to take a cost-effective approach of the amyloidosis
prediction, by comparing different methods in terms of cost reduction.

Another approach for reducing clinical trial costs consists in adapting clinical
trial design using previous results. Several studies propose to assess treatment
efficacy in a retrospective manner, using drug trial cohorts to identify a subgroup
of patients responding to treatment [16, 37, 48]. On the other hand, other studies
propose to do so in a prospective manner, adapting the clinical trial as it is
ongoing, by using more advanced methods such as active learning [33, 39].

1.3 Contributions

Selecting amyloid positive subjects for cohort recruitment requires to find a
balance between being very selective, hence discarding a large number of positive
individuals on one hand, or being too permissive and doing unnecessary PET
scans on the other hand. We propose to take this trade-off into account by
optimizing the algorithm for the recruitment cost, which includes both the cost
of recruiting a number R of individuals and the cost of doing a confirmatory
PET scan to a number S of selected individuals. As R depends on the number
of False Negative and S on the number of False Positive, both of these measures
are taken into account when the cost is minimized.

In this study, we extend and evaluate more in depth the approach we proposed
in 2017[3]. We will compare the performance obtained using different features
sets, containing cognitive and imaging features at baseline or over a longitudinal
follow-up, and compare performance for a variety of classification algorithms. All
the algorithms will be cross-validated to maximize the area under the receiver



Fig. 1: Selecting Aβ+ individuals: current (left) and proposed (right) process

operating characteristic (ROC) curve (AUC), and the threshold will be chosen
to minimize the cost. We will validate our method on three different data sets,
corresponding to different disease stages (pre-clinical or prodromal) or recruiting
procedures. The performance will be assessed using two different validation pro-
cedures: by using cross-validation on each cohort ; and by training the algorithm
on a first cohort and testing it on a different one. We will then verify that the
cohorts created with our method are unbiased, and can be used as inputs for
clinical trials.

2 Materials and Methods

2.1 Cohorts

We are interested in studying the performance of our method on different groups
of individuals. To do so, we test the method on three cohorts, noted ADNI-MCI,
ADNI-CN and INSIGHT.

The ADNI-MCI cohort contains MCI subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study. It is an ongoing, longitudinal, multicenter
American study carried out in North America, which provides biomarkers, imag-
ing, cognitive and genetic data, for the early detection of AD. It started in 2004
with ADNI1, and two more phases are now available: ADNIGO and ADNI2.
A diagnosis is given at each visit, among CN (Cognitively Normal), MCI or
AD. MCI subjects have a Subjective Memory Concern (SMC) and an objective
memory loss measured by education adjusted scores on Wechsler Memory Scale
Logical Memory II, but don’t have any impairment in the other cognitive do-
mains, especially in activities of daily living. We only consider visits that have an
associated Aβ level, measured with the AV45 PET SUVr (Standardized Uptake
Value Ratio) when available, or with the CSF biomarker when no PET scan
was performed. individuals that changed Amyloid status during the study are
removed. We use the first available visit for each individuals, and a visit at a 12



months interval when studying the impact of longitudinal data. 596 individuals
are available in this cohort, among which 62.9% are Aβ+.

The ADNI-CN cohort contains CN subjects from the ADNI study. These
individuals are cognitively normal, they show no sign of dementia or of cognitive
impairment, but they can have a SMC. individuals and visits are selected and
Aβ values are taken as in the ADNI-MCI cohorts. 431 individuals are available,
among which 37.6% are Aβ+.

The INSIGHT cohort contains individuals from the INSIGHT-preAD study.
It is an ongoing, longitudinal, mono-centric French study carried out in Paris,
France, which aims at studying changes appearing in healthy individuals, over 70
years of age in order to study the very early phases of AD. 318 CN individuals,
with normal cognition and memory but who have a SMC, are followed. Cognitive,
imaging and genetic data is available for every annual visit. The AV45 PET SUVr
is available for every individual and used as the Aβ value. At the time of the
analysis, only the first visit is available for each individual. 27.7% of the 318
individuals are Aβ+ (n=88).

2.2 Input Features

Different sets of features are compared. For all experiments, socio-demographic
features (age, gender, education) and APOE4 are used.

As cognitive assessments are different in ADNI and the INSIGHT-preAD
study, different cognitive features are used. For the two ADNI cohorts, the
Alzheimer’s Disease Assessment Scale - cognitive subscale (ADAS-cog) is used.
The 13 items are aggregated into 4 categories: memory, language, concentra-
tion and praxis. For the INSIGHT cohort, the 112 available features, coming
from SMC questionnaires and cognitive tests are used. They target executive
functions, behavior and overall cognitive skills.

MRI extracted features are also used in order to evaluate their predictive
power. The cortical thicknesses are extracted using FreeSurfer for both ADNI
and INSIGHT subjects. The average thicknesses of 72 cortical regions are used,
and divided by the total cortical thickness in order to get comparable measures
across individuals. The hippocampus volume is extracted using FreeSurfer for the
ADNI cohorts, and using SACHA [10], an in-house hippocampus segmentation
software, for the INSIGHT-preAD study.

The amyloidosis is measured using a PET scan when available and CSF
measurments elsewise. The PET SUVr given by the ADNI and INSIGHT-preAD
studies are extracted using different methods. A individual is considered Aβ+
when PET SUVr is above 1.1 [11] for ADNI and 0.79 for the INSIGHT-preAD
study, or when the concentration of Aβ in the CSF is below 192 pgml[40].

2.3 Algorithms

Different classification algorithms are used to make the prediction and their
performances are compared for the different cohorts, in order to identify an



algorithm that would outperform the others. The hyperparameters of all the
algorithms are tuned using a cross-validation.

5 algorithms are compared: (1) A Random Forest [8], with validation of the
number and the depth of the trees, (2) A logistic regression [20], with validation
of the threshold, (3) a linear Support Vector Machine [34] (SVM), with validation
of the penalty parameter, (4) an adaptive logistic regression [19] (AdaLogReg),
with validation of the learning rate and the number and depth of the learners,
(5) an adaptive boosting [18](AdaBoost), with validation of the same hyperpa-
rameters as for AdaLogReg.

The performance of the algorithms is evaluated using repeated random sub-
sampling validation: the data is repeatedly (50 times) separated into a training
set (drawn without replacement) and a test set (corresponding to the data points
not used in the training set). We use 70% of the data for training and 30% for
testing. For each split, the algorithms are first tuned using a 5-fold validation on
the training set to maximize the AUC, then trained on the whole training set
with the selected hyperparameters, and applied on the test set in order to get a
performance measure. 50 performance measures are therefore obtained, and are
used to get a mean performance and a standard deviation. The whole procedure
is described in pseudocode in the Supplementary Materials (Algorithm 1).

2.4 Performance Measures

Fig. 2: Example of ROC curve (left), S vs R curve (middle) and corresponding
cost curve (right). The solid curve represents the mean performance, the dotted
ones represent the standard deviation and the 2 black dots the points of minimal
cost

Different performance measures are used in order to evaluate different aspects
of the methods.

The area under the Receiver Operating Characteristic (ROC) curve (AUC)
is used to evaluate the performance of the prediction method. It is used to



compare different algorithms, to tune them, and to evaluate the predictive power
of different feature sets.

The minimal cost of recruiting 100 individuals is used to measure the practi-
cal effect of the method, and to find a balance between the number of recruited
individuals and the number of PET scans. In order to compute this minimal cost,
the ROC curve is built by changing the algorithm threshold (Fig 2, left). For
each point on the ROC curve, the corresponding number of individuals to be re-
cruited (R) and the number PET scans (S) is computed (Fig 2, middle) as such :

S = 100 ∗ TP+ FP
TP

(1) R = 100 ∗ N
TP

(2)
where TP stands for number of True Positive, FP for number of False Positive
and N is the total number of predictions that have been made. As the true pos-
itive rate (TPR) and false positive rate (FPR) depend on the number of True
Positive and False Positive which are used to compute S and R, there is a direct
match between each point of the ROC curve and the R vs S curve. Consequently,
as for the FPR and TPR, R and S should be minimized together and a trade-off
has to be made, which is reflected in the total cost.

For each value of S and R, the corresponding cost can be computed, by mak-
ing the hypothesis that recruiting a individual and getting genetic information
and cognitive assessments costs 100e, doing an MRI 400e and doing a PET scan
1000e. When the cost curve (Fig 2, right) is built, the minimum is taken to get
the minimal cost of recruiting 100 individuals, and the corresponding optimal
values of S and R are hence known.

It is to be noted that the cost of recruiting 100 individuals in a cohort will
depend on the proportion of amyloid positive individuals in the cohort, as the
more positive individuals there are, the easier it is. This performance measure
is hence useful to evaluate and compare the performance of different methods
on one cohort, but it cannot be used to compare the performance of a method
across different cohorts.

Statistical testing Each experiment is performed 50 times with 50 train/test
split, and 50 performance measures are obtained. When we compare two exper-
iments, a two-tailed t-test is performed using the 50 performance measures of
each experiment. A p-value is obtained, enabling us to test if the performance
of the two experiments is significantly different at the 0.05 level.

3 Results

3.1 Algorithm and feature choice

Algorithm choice In order to choose the algorithm most suited for this prob-
lem, different classification algorithms are tested on the three data sets. Their
performance, measured using the AUC, is reported in Table 1. These results show
that there is no algorithm that outperforms all the others for all cohorts. It is
however necessary to make a choice and use the same algorithm on all cohorts.
The Random Forest is, for all data sets, among the best performing algorithms.



Data set Random
Forest

Logistic
regression SVM AdaLogReg AdaBoost

INSIGHT 67.5 (5.5) 62.7 (6.1) * 62.0 (5.8) * 67.5 (5.7) 67.2 (6.9)
ADNI-CN 69.1 (4.0) 69.5 (4.1) 67.3 (5.0) 66.4 (4.6) * 66.5 (5.1)
ADNI-MCI 82.4 (2.8) 81.9 (2.6) 81.8 (2.7) 80.9 (2.8) 80.5 (3.3) *

Table 1: Benchmark of algorithms. * = statistically significantly different from
the Random Forest at the 0.05 level after Bonferroni correction for multiple com-
parisons. Data are: average Area Under the ROC curve (standard deviation).
SVM = support vector machine; AdaLogReg = adaptive logistic regression; Ad-
aBoost = adaptive boosting; ROC = receiver operating characteristic.

It outperforms each other algorithm in one cohort: the Logistic Regresion in
INSIGHT (p = 0.001), the SVM in INSIGHT (p=0.0001), the adaptive logisitic
regression in ADNI-CN (p=0.03) and AdaBoost in ADNI-MCI (p=0.045). No al-
gorithm significantly outperforms it on any cohort. The Random Forest therefore
represent the best algorithm for this classification task.

Fig. 3: Performance variations depending on the number of kept LASSO vari-
ables: mean Area Under the ROC curve (plain line) and standard deviation
(dashed lines)

Feature selection for cognitive variables In the INSIGHT cohort 112 cogni-
tive features are available. Using all of them results in an AUC of 56.2% (±7.5),
which is significantly lower than the performance obtained on the other cohorts
because of a less favorable ratio between number of features and individuals,
as only 318 individuals are available. We therefore compare different dimension
reduction and feature selection methods in order to solve this issue and improve
the performance on this cohort.



Automatic methods Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) using fastICA[25] are first considered, but both lead
to an AUC under 52%, whatever the number of selected dimensions.

LASSO feature selection is also considered. In the LASSO, a regularized
regression using a l1 penalty is used, setting some of the feature weights to 0,
hence keeping only the most relevant features. A linear regression using LASSO
is performed between the input features and the amyloid status in order to
select from 5 up to 60 features. The selected features are then used to perform
the classification, using a Random Forest. The evolution of the AUC with the
number of selected features is presented in Fig. 3, showing that the best results
are obtained using 15 features. Using the LASSO features selection leads to
an AUC of 64.3% (±5.2), which is significantly better than the performance
obtained using all features (p<0.0001).

Using expert knowledge In a last analysis, manual feature engineering is con-
sidered. Aggregates are formed for each cognitive test, using expert knowledge
regarding the tests and the features which are most relevant for AD diagnosis.
26 aggregates are hence built. Using them as input in place of the 112 original
cognitive features leads to an AUC of 67.5% (±5.5), which is significantly better
(p<0.005) than the performance obtained using automatic dimension reduction.

Use of MRI We want to assess the prediction power of MRI-extracted features
(cortical thicknesses and hippocampus volume) and compare it with the per-
formance obtained using cognitive features. In all experiments, APOE genotype
and socio-demographic features are also used as inputs.

We first compared the performance obtained by using only cognitive features
on one hand, and only MRI features on the other. As the number of MRI features
is large regarding the number of subject, a LASSO feature selection if performed
to select 12 variables. The results are presented on lines 1 and 2 of Table 2.
Using MRI features instead of cognitive scores leads to a significant decrease in
the AUC for all cohorts (p < 0.001). These results show that the used cognitive
features are a better predictor of amyloidosis than the chosen set of MRI features.

Although they are less predictive than cognitive scores, using the MRI fea-
tures as input along with cognitive scores could lead to better performance. We
therefore train the algorithm using both MRI and cognitive features and com-
pare its performance with the ones obtained using solely cognitive scores. The
results, presented in line 1 and 3 of Table 2, show that including MRI features in
the inputs does not lead to a significant increase in the AUC. For the INSIGHT
and ADNI-MCI cohorts, it does lead to non-significant increase in the AUC, but
the resulting cost for recruiting 100 individuals is higher (for INSIGHT, 527,437
e ±36,332, instead of 291,325e ±57,400), as the cost of doing an MRI to each
recruited individual has to be added to the initial cost. For ADNI-CN including
MRI features in the input leads to a significant decrease in the AUC (p < 0.01).
In all the cohorts, including MRI features leads to an increase in cost.



INSIGHT cohort ADNI-CN cohort ADNI-MCI cohort
Proposed approach 67.5 (5.5) 69.1 (4.0) 82.4 (2.8)
MRI features only 61.9 (6.5) 59.0 (4.6) 80.1 (3.0)

MRI & cognitive features 68.8 (4.4) 67.1 (3.8) 82.8 (2.2)
With longitudinal variations NA 71.7 (8.3) 87.7 (4.8)

After correction for age 68.5 (5.0) 67.7 (3.9) 80.9 (2.4)
APOE only 63.7 (4.6) 62.1 (3.5) 75.1 (2.9)

Table 2: Results in different experimental conditions. Data are: average percent-
age of Area Under the ROC Curve (standard deviation). NA = Not Applicable

3.2 Use of longitudinal measurements

Longitudinal measurements are available for individuals in the two ADNI co-
horts. In order to evaluate the impact of using longitudinal measurements in
amyloidosis prediction, the rate of change of the cognitive scores, computed us-
ing a 12-month visit, are included in the input features. The results, presented
in line 4 of Table 2, show that the AUC is significantly better than the one
obtained using only socio-demographic information, APOE and cognitive scores
at baseline, ADNI-MCI (p<0.0001), and not significantly better for ADNI-CN
(p = 0.06). Using longitudinal information overall leads to a better prediction.

However the cost of collecting such measurements has to be taken into ac-
count, since all individuals have to undergo cognitive assessments twice. Setting
the cost of cognitive assessments for the second visit to 50e for each individual,
the total cost of recruiting 100 individuals using longitudinal information is of
243,448e (± 104,597) for ADNI-CN and 133,452e (± 22,140) for ADNI-MCI.
This new cost is slightly lower than the one obtained using cross-sectional mea-
surements in ADNI-CN (234,591 ± 23,106) and higher for ADNI-MCI (136,205
± 3678). Therefore, although using longitudinal measurements leads to an in-
crease in AUC, it does not lead to a decrease in recruitment cost.

3.3 Proposed method performance

Cost reduction Table 3 presents the cost of recruiting 100 Aβ+ individuals
in the different cohorts with the proposed method, as well as an estimation of
the costs of recruiting these individuals with the current method, consisting in
scanning all potential individuals. This estimated current cost depends on the
proportion of Aβ+ in the data set. In order to find 100 Aβ+ individuals in the
INSIGHT cohort for example, 100/0.277 = 361 individuals on average should be
recruited and undergo a PET scan, which corresponds to a total cost of 397,111e.
However, with the proposed method, about 832 individuals should be recruited
and 208 PET scans would have to be done, leading to a cost of 291,325e on
average for recruiting 100 Aβ+ individuals. The resulting savings would reach
106,174e for this cohort.



Current
method Proposed method

Dataset
Estimated
current cost

in e

% of
AUC
(std)

Individuals
to be

recruited

Number
needed to

scan

New cost in
e (std)

Estimated
savings in e

INSIGHT
(27.7% Aβ+)

397,111
(N=361)

67.5
(5.5) 832 208 291,325

(57,400) 106,174

ADNI-CN
(37.6% Aβ+)

292,553
(N=266)

69.1
(4.0) 599 175 234,591

(23,106) 58,063

ADNI-MCI
(62.9% Aβ+)

174,880
(N=159)

83.8
(2.1) 264 112 138,294

(4857) 36586

Table 3: Comparison of the proposed method results with the estimated initial
costs for recruiting K=100 amyloid positive individuals. AUC = Area Under the
ROC curve; std = standard deviation.

The results presented in Table 3 show that the proposed method leads to a
significant cost reduction when recruiting 100 individuals for all cohorts (p<0.001),
representing estimated savings of about 20%.

Age difference between groups In the cohorts we used, the Aβ+ individuals
are older than the Aβ- individuals, especially in the ADNI cohorts (see Table
S1 in Supplementary Materials). One can therefore ask if the predictor is using
this age difference, by simply predicting that older individuals are Aβ+ and
younger individuals are Aβ-, or by predicting the age of the individuals rather
than their amyloid status. To confirm that it is not the case, we correct all
the cognitive variables for age by using a linear regression and remove the age
from the input features. After correction (results shown in line 5 of Table 2),
the prediction performance is not impacted in INSIGHT and does not decrease
significantly for ADNI-CN (p>0.05). In the ADNI-MCI cohort, correcting for
age leads to a significant decrease in AUC (p<0.01) but results in a recruitment
cost that is still significantly higher than doing a PET scan for all individuals
(p<0.01). These results show that the prediction algorithm does not rely on
the age difference between the groups and captures differences between amyloid
positive and negative individuals that is not due to aging.

Training on a cohort and testing on a different one The previous results
are obtained by training and testing the method on distinct individuals from the
same cohort. We want to confirm that these results would generalize well in a
different setting, by verifying that they hold when the method is trained on a
first cohort and tested on a different one.

ADNI and INSIGHT-preAD are very different studies. They have been de-
signed for different purposes, as INSIGHT aims at studying very early phases
of AD by studying changes appearing in healthy individuals, and ADNI aims
at defining the progression of Alzheimer’s disease. The INSIGHT and ADNI-



Data set AUC in %
Trained and tested on INSIGHT 61.9 (6.5)
Trained on ADNI-CN, tested on INSIGHT 62.0 (6.6)
Trained on ADNI-CN, tested on INSIGHT (all samples) 66.1 (3.6)
Trained and tested on [INSIGHT ADNI-CN] 61.3 (6.9)
Trained and tested on [INSIGHT ADNI-CN] (all samples) 67.5 (3.2)

Table 4: Results using MRI variables, socio-demographic and genetic information
on different data sets. Data are: average Area Under the ROC curve in % (std)

CN cohorts both include individuals who show no sign of dementia but with
different inclusion criteria, and hippocampal measures have been extracted us-
ing different softwares. Hence, although these 2 cohorts can be compared, they
are very different by design and purpose. In an ideal setup, cognitive features,
socio-demographic information and APOE should be used as input, however the
cognitive assessments are different for ADNI and the INSIGHT-preAD study,
hence they can’t be used as inputs when using these two cohorts.

We therefore train the prediction algorithm on ADNI-CN using socio-demographic
information, APOE and MRI features. We then test on INSIGHT the method
trained on ADNI-CN in order to evaluate the generalization performance of our
method. As the number of MRI features is large, LASSO feature selection was
performed to select 12 MRI features. In order to have a fair comparison with
training and testing on INSIGHT, the size of the selected training and test size
are kept the same as the training and test set coming from INSIGHT. We there-
fore randomly select 318 ∗ 0.7 = 223 from the ADNI-CN cohort to form the
training set, and 318 ∗ 0.3 = 95 from INSIGHT to form the test set. This opera-
tion, followed by the classification, is performed 50 times in order to get a mean
performance and a standard deviation.

The results, presented in Table 4, show that training on ADNI-CN and testing
on INSIGHT gives similar performances to training and testing on the INSIGHT
cohort.

Representativity of the selected population For the selected individuals
to be used as a clinical trial cohort, it is important to ensure that the selected
population will be representative of the whole population of Aβ+ individuals
that could have been selected. We therefore compare the individuals selected
using the prediction method followed by a confirmatory PET scan with the Aβ+
individuals of the cohort.

We first pool together the test data set of the 50 cross-validation runs and
look at the distribution of age, ADAS (for ADNI cohorts), MMSE, education,
age and gender. The histograms obtained for ADNI-CN are presented in figure
4. We can see that these histogram are very similar for age, gender, education,
and cognitive features, but the proportion of APOE4 carriers is higher in the
group selected with the proposed method. Similar observations can be made for
all cohorts.



Fig. 4: Histogram of the different features for the selected group (orange) and
for the whole Aβ+ group (blue), for the ADNI-CN cohort

In order to evaluate if there is a significant difference for each of these features,
we compare the selected populations of the 50 runs with the populations of Aβ+
individuals of the corresponding test sets. A statistical test is performed for each
of the 50 runs and a p-value is obtained for each of them. The used statistical test
is a t-test for the features with a normal distribution (age and ADAS), a binomial
proportion test for binary features (presence of APOE4 alleles and gender) and a
Mann–Whitney U test for the remaining features (MMSE and education). A p-
value is obtained for each run, for each feature. Figure 5 presents the proportion
of these p-value that are below 0.05, for each feature.

The main bias that can be seen across cohorts is a higher proportion of
APOE4 carriers, which is statistically significant in 16% of cases for INSIGHT,
48% for ADNI-CN and 98% for ADNI-MCI. Although this bias is important,
especially for the ADNI cohorts, it seems acceptable as many current recruiting
procedures also have this bias or only recruit APOE4 carriers, such as in the
Alzheimer’s Prevention Initiative Generation study [31].

The proposed method leads to an unbiased cohort in terms of age, gender,
and education, as well as cognitive scores in more than 94% of cases for the
asymptomatic cohorts, and 82% for ADNI-MCI.

3.4 Building larger cohorts

Pooling data sets Different cohorts can be pooled in order to create a big-
ger data set, containing a large number of individuals. However, this operation



Fig. 5: Proportion of runs with a significant difference between the groups for
each feature, in each of the 3 cohorts

requires that the heterogeneity of the pooled cohort does not alter the perfor-
mances of the method that is applied. In order to verify this hypothesis, we pool
the ADNI-CN cohort with the INSIGHT cohort. We train and test the method
on individuals coming from both of this cohort, using the same training and test
size as in INSIGHT, in order to compare the performances with the one obtained
by training and testing solely on INSIGHT. As in the generalization experiment,
we use MRI features instead of cognitive features which are different in the 2
cohorts. The results, presented in Table 4 show that the performances are not
significantly different when the algorithm is trained and tested on the pooled
cohort, which shows that the heterogeneity of pooled data sets does not alter
the classification performances.

Effect of sample size When learning on ADNI-CN and testing on INSIGHT to
test generalization, we used the same training and learning size as in INSIGHT
to have a fair comparison, hence using only 52% of the available data at each run.
For the same reason, we used only 42% of the created cohort when we pooled
the INSIGHT and the ADNI-CN cohort. We now want to measure the impact
of increasing the cohort size by using the full cohort in each case, always keeping
the same ratio for the size of the training and test data sets (70%-30%). The
results, presented in Table 4 show that increasing the cohort size significantly
increases the performances (p<0.0005). This result comforts the need to create
large data sets, or pool existing ones, to create more accurate prediction tools.



4 Discussion

4.1 Results of the experiments

Algorithm and feature choice The algorithm benchmark shows there is not
one outstanding algorithm that would outperform all the others on all data sets.
These findings support the "No free lunch" theorem[47, 46], stating that different
algorithms perform best on different problems. As a choice had to be made, we
used the Random Forest which performed well on the 3 cohorts. It is not however
a general recommendation. When working on a new classification problem, even
similar to this one, one should always compare different algorithms to choose
the most suited one.

Because the number of features is large compared to the number of available
subjects, using all the available features may result in a low performance[24].
The low performance we obtained on the INSIGHT cohort using all the available
cognitive features is an illustration of this phenomenon, known as the curse of
dimensionality. A typical way of solving this issue is using automatic methods
for dimension reduction. We showed that, in our case, selecting features using
expert knowledge gives better results. It corroborates the fact that when a large
number of features and a small data set are available, feature engineering using
domain knowledge is necessary[12].

Hypothetical models of AD suggest neurodegeneration and changes in struc-
tural MRI appear earlier than cognitive decline[27]. This hypothesis is supported
by findings from Bateman et al. [6], showing that, in autosomal dominant AD,
brain atrophy occurs 15 years before AD diagnosis, 5 years before episodic mem-
ory decline and 10 years before changes in other cognitive domains. Studies by
Ameiva et al. show changes in several domain of cognition can be observed 9
years before diagnosis[1], and up to 16 years before diagnosis for individuals with
higher education[2]. Overall, brain atrophy may appear before or at about the
same time as cognitive decline, and one could expect using MRI would improve
the prediction of amyloidosis, especially for cognitively normal individuals. Our
analysis however suggests that it is not the case. This finding that clinical signs
can allow for efficient pre-screening goes against the current purely biological
definition of AD by NIA-AA[28]. We can suppose memory decline has already
started for individuals with a SMC, so that cognitive features are already slightly
altered. It leads us to think that subtle cognitive changes appear in late preclin-
ical AD, as hypothesized by Sperling et al. in their 3 stage model of pre-clinical
AD[41]. The results can however depend on the choice of MRI features. In future
studies, different neuroimaging features could be used to test this hypothesis that
cognitive changes are anterior to substantial structural changes, in line with pre-
vious studies on optimal neuroimaging feature selection in pre-clinical AD[29].
Alternatively, a more advanced feature selection algorithm might be able to iden-
tify the most informative MRI features and therefore improve their performance,
as proposed in other methods [42].

In the ADNI-CN cohort, adding the MRI features even leads to a decrease in
AUC, whereas it leads to a slight increase for INSIGHT. A possible explanation



for this difference between cohorts is that in ADNI, the number of cognitive
features (4) is low compared to the number of MRI features (73), whereas the
difference is smaller for INSIGHT (26 cognitive features for the same number of
MRI features). In ADNI the cognitive scores can therefore be under-represented
compared to the MRI features. This effect should be handled by the Random
Forest, that can give different weights to different features. It however requires
the number of individuals to be large enough compared to the number of features,
which is not the case here.

Overall, we showed that with our method the best results are obtained with-
out performing an MRI and without longitudinal features, but using only data
that can be easily acquired. MRI should not be performed in the pre-screening
phase, however performing an MRI at the end of the recruitment process will
always be needed to exclude vascular lesions or tumors and as a reference for
adverse event monitoring.

Method performance We showed that using the proposed method as a pre-
screening phase for individual recruitment in clinical trials leads to reducing
the recruitment cost by about 20%. These findings are however based on cost
hypothesis that can seem arbitrary. In particular, the cost of recruiting a new
subject is the same whatever the number of subjects that have been recruited.
In practice, because a large number of studies intend to recruit large numbers
of subjects, the more subjects are recruited, the more difficult it is to recruit a
new one. Having a non-constant cost could therefore represent an improvement
of the proposed method and be closer to the difficulties encountered in practice.

We can expect the method to generalize well and give similar results when
applied on any cohort of cognitively normal individuals because we showed we
obtain similar performances when training and testing on the same cohort or on
two different ones. The cohorts we used for testing are slightly unbalanced, with
Aβ+ individuals older than Aβ- individuals, but correcting for age gives similar
cost reductions, so the same results should be obtained on cohorts that do not
have the same unbalance. Comparing the selected Aβ+ individuals with all the
Aβ+ individuals of the cohort shows that the subset selected with the proposed
method is unbiased. The proposed method therefore leads to the recruitment of
a representative cohort with a reduced cost.

The proposed approach is time efficient, as in the worst case the training
phase may take few minutes, while testing a new subject could be done in less
than a second. Therefore, computational time is not a limiting factor for using
such methods in practice. Furthermore, since only clinical data may be used for
good performance, the method could be easily deployed in the current clinical
practice.

Data set size Table 4 shows that pooling data sets does not alter the perfor-
mance of the prediction, although it brings heterogeneity; and that increasing
the cohort size improves the prediction. This last finding is supported by the cur-
rent machine learning literature, stating that gathering more data often yields



an increase in performance greater than the increase one could obtain by im-
proving the prediction algorithm[12]. It shows the importance of gathering more
data in the medical field and more specifically related to dementia. While the
largest cohorts widely available usually include less than 1500 subjects, creating
larger cohorts could result in a significant increase of performance for predicting
amyloidosis or for other predictive task, such as automatic diagnosis based on
neuroimages[17, 5]. As long as larger cohorts are not available, we recommend
pooling different cohorts in order to get a better prediction performance. For ex-
ample, the preclinical cohorts presented by Epelbaum et al[15] could be pooled
to create a bigger cohort to train and validate our method.

4.2 Comparison with existing methods

Univariate approaches A standard approach for prediction is using univariate
methods. As a comparison with our method, a Random Forest is trained and
tested on each input variable separately. The best univariate results are obtained
using APOE (Table 2, line 4). The AUC obtained using APOE is significantly
lower (p<0.0001) than the AUC of the proposed multivariate method, for all
cohorts, with an AUC of 63.7±4.6 instead of 67.5±5.5 for INSIGHT for example.
The proposed method therefore outperforms its univariate equivalent.

Other multivariate approaches We wanted to compare the performance of
our method with that of other similar studies. Different cohorts and different per-
formance measures have been used in these studies, the comparison is therefore
not straightforward and the results should be interpreted with caution.

In the study of Mielke et al [32] the studied cohort is composed of CN indi-
viduals from the Mayo Clinic Study of Aging. This cohort is comparable with
the ADNI-CN cohort used in this work, as individuals from both cohorts are CN,
and the ratio of Aβ+ individuals is close (34.9% in the Mayo Clinic Study of
Aging cohort, 37.6% in ADNI-CN). A logistic regression is used with an a priori
set and non-optimized threshold, and the performance measures were obtained
by training and testing the algorithm on the same individuals. The resulting
AUC, of 0.71, is significantly better than the AUC we obtain on ADNI-CN
(69.1, p<0.05), which is expected as training and testing an algorithm on the
same individuals generally gives better results than testing it on a different set
of individuals.

The cohort used by Insel et al [26] contains CN individuals, with a proportion
of positive individuals of 40.8%, so the closest cohort is again ADNI-CN. The
AUC is not provided in the study, so it cannot be used for comparison. The Pos-
itive Prediction Rate (PPR) and Negative Prediction Rate (NPR) are however
given and, as shown in Supplementary Materials, they can be used to compute
S and R. The normalized cost can therefore be computed, and is significantly
lower (p < 0.0001) with our method.

The AUC we obtain on the MCI cohort is comparable to the ones obtained
in other studies or slightly higher[43, 4, 42]. Ten Kate et al [42] obtain a slightly



better AUC for the prediction in CN subjects. This difference might be explained
by the use of a different feature selection method.

5 Conclusion

We proposed a method for creating cohorts of Aβ+ individuals with a reduced
recruitment cost. In a pre-screening phase, we use a classifier to identify a sub-
population of individuals who are more likely to be amyloid positive, based on
clinical data. We then do a confirmatory PET scan to the individuals of this
subpopulation only. The whole algorithm has been optimized so as to minimize
the cost of the cohort recruitment. As such automatic methods are today lim-
ited by the number of subjects, future studies could be performed on a Phase 3
clinical trial cohort, as such cohorts often include more than 1000 participants.
New screening technologies, such as blood-based biomarkers[40, 35], could trans-
form the recruitment process for clinical trials, which could also be facilitated
by web-based cognition evaluation systems, such as the Brain Health Registry
(trial identifier: NCT02402426).

Acknowledgements

This work has been partly funded by the European Research Council under grant
agreement No678304, European Union’s Horizon 2020 research and innovation
program under grant agreement No666992. This manuscript benefited from the
support of the Program “PHOENIX” led by the Sorbonne University Foundation
and sponsored by la Fondation pour la Recherche sur Alzheimer. HH is supported
by the AXA Research Fund, the “Fondation partenariale Sorbonne Université”
and the “Fondation pour la Recherche sur Alzheimer”, Paris, France. The research
leading to these results has received funding from the program “Investissements
d’avenir” ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Agence
Institut Hospitalo-Universitaire-6). OC is supported by a "contrat d’interface
local" from AP-HP.

The INSIGHT-preAD study was promoted by INSERM in collaboration with
ICM, IHU-A-ICM and Pfizer and has received support within the "Investisse-
ment d’Avenir" (ANR-10-AIHU-06) program. The INSIGHT-preAD study was
realized in collaboration with the "CHU de Bordeaux" (coordination CIC EC7),
the promoter of Memento cohort, funded by the Foundation Plan-Alzheimer.
The study was further supported by AVID/Lilly *Data used in preparation
of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf



References

1. Hélène Amieva, Hélène Jacqmin-Gadda, Jean-Marc Orgogozo, Nicolas Le Carret,
Catherine Helmer, Luc Letenneur, Pascale Barberger-Gateau, Colette Fabrigoule,
and Jean-François Dartigues. The 9 year cognitive decline before dementia of the
Alzheimer type: a prospective population-based study. Brain, 128(5):1093–1101,
May 2005.

2. Hélène Amieva, Hind Mokri, Mélanie Le Goff, Céline Meillon, Hélène Jacqmin-
Gadda, Alexandra Foubert-Samier, Jean-Marc Orgogozo, Yaakov Stern, and Jean-
François Dartigues. Compensatory mechanisms in higher-educated subjects with
Alzheimer’s disease: a study of 20 years of cognitive decline. Brain, 137(4):1167–
1175, April 2014.

3. Manon Ansart, Stéphane Epelbaum, Geoffroy Gagliardi, Olivier Colliot, Didier
Dormont, Bruno Dubois, Harald Hampel, Stanley Durrleman, et al. Prediction
of amyloidosis from neuropsychological and mri data for cost effective inclusion
of pre-symptomatic subjects in clinical trials. In Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, pages 357–364.
Springer, 2017.

4. Liana G. Apostolova, Kristy S. Hwang, David Avila, David Elashoff, Omid Kohan-
nim, Edmond Teng, Sophie Sokolow, Clifford R. Jack, William J. Jagust, Leslie
Shaw, John Q. Trojanowski, Michael W. Weiner, and Paul M. Thompson. Brain
amyloidosis ascertainment from cognitive, imaging, and peripheral blood protein
measures. Neurology, 84(7):729–737, February 2015.

5. Mohammad R. Arbabshirani, Sergey Plis, Jing Sui, and Vince D. Calhoun. Sin-
gle subject prediction of brain disorders in neuroimaging: Promises and pitfalls.
NeuroImage, 145:137–165, 2017.

6. Randall J. Bateman, Chengjie Xiong, Tammie L.S. Benzinger, Anne M. Fagan, Al-
ison Goate, Nick C. Fox, Daniel S. Marcus, Nigel J. Cairns, Xianyun Xie, Tyler M.
Blazey, David M. Holtzman, Anna Santacruz, Virginia Buckles, Angela Oliver,
Krista Moulder, Paul S. Aisen, Bernardino Ghetti, William E. Klunk, Eric McDade,
Ralph N. Martins, Colin L. Masters, Richard Mayeux, John M. Ringman, Martin N.
Rossor, Peter R. Schofield, Reisa A. Sperling, Stephen Salloway, and John C. Mor-
ris. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease.
New England Journal of Medicine, 367(9):795–804, 2012.

7. Robert E. Becker and Nigel H. Greig. A New Regulatory Road-Map for Alzheimer’s
Disease Drug Development. Current Alzheimer research, 11(3):215–220, 2014.

8. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
9. G. Chetelat, R. La Joie, N. Villain, A. Perrotin, V. de La Sayette, F. Eustache,

and R. Vandenberghe. Amyloid imaging in cognitively normal individuals, at-risk
populations and preclinical alzheimer’s disease. Neuroimage Clin, 2:356–365, 2013.

10. M. Chupin, A. Hammers, R. S. N. Liu, O. Colliot, J. Burdett, E. Bardinet, J. S.
Duncan, L. Garnero, and L. Lemieux. Automatic segmentation of the hippocampus
and the amygdala driven by hybrid constraints: method and validation. NeuroIm-
age, 46(3):749–761, 2009.

11. Christopher M Clark, Michael J Pontecorvo, Thomas G Beach, Barry J Bedell,
R Edward Coleman, P Murali Doraiswamy, Adam S Fleisher, Eric M Reiman,
Marwan N Sabbagh, Carl H Sadowsky, Julie A Schneider, Anupa Arora, Alan P
Carpenter, Matthew L Flitter, Abhinay D Joshi, Michael J Krautkramer, Ming Lu,
Mark A Mintun, and Daniel M Skovronsky. Cerebral PET with florbetapir com-
pared with neuropathology at autopsy for detection of neuritic amyloid-β plaques:
a prospective cohort study. The Lancet Neurology, 11(8):669–678, 2012.



12. Pedro Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78, 2012.

13. R. S. Doody, R. G. Thomas, M. Farlow, T. Iwatsubo, B. Vellas, S. Joffe,
K. Kieburtz, R. Raman, X. Sun, P. S. Aisen, E. Siemers, H. Liu-Seifert, and
R. Mohs. Phase 3 trials of solanezumab for mild-to-moderate alzheimer’s disease.
New England Journal of Medicine, 370(4):311–321, 2014.

14. B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu,
H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch,
J.F. Dartigues, C. Duyckaerts, S. Epelbaum, G. B. Frisoni, S. Gauthier, R. Gen-
thon, and A. A. Gouw et al. Preclinical Alzheimer’s disease: Definition, natural
history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3):292–323, 2016.

15. Stéphane Epelbaum, Rémy Genthon, Enrica Cavedo, Marie Odile Habert, Foudil
Lamari, Geoffroy Gagliardi, Simone Lista, Marc Teichmann, Hovagim Bakardjian,
Harald Hampel, and Bruno Dubois. Preclinical Alzheimer’s disease: A system-
atic review of the cohorts underlying the concept. Alzheimer’s & Dementia: The
Journal of the Alzheimer’s Association, 13(4):454–467, 2017.

16. Jared C. Foster, Jeremy M.G. Taylor, and Stephen J. Ruberg. Subgroup identifica-
tion from randomized clinical trial data. Statistics in Medicine, 30(24):2867–2880,
October 2011.

17. Katja Franke, Gabriel Ziegler, Stefan Klöppel, and Christian Gaser. Estimating
the age of healthy subjects from T1-weighted MRI scans using kernel methods:
Exploring the influence of various parameters. NeuroImage, 50(3):883–892, 2010.

18. J. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001.

19. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. The annals of statistics, 28(2):337–407, 2000.

20. J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

21. J. A. Hardy and G. A. Higgins. Alzheimer’s disease: the amyloid cascade hypoth-
esis. Science, 256(5054):184–185, 1992.

22. John Hardy and David Allsop. Amyloid deposition as the central event in the
aetiology of Alzheimer’s disease. Trends in Pharmacological Sciences, 12:383–388,
1991.

23. John Hardy and Dennis J. Selkoe. The Amyloid Hypothesis of Alzheimer’s Disease:
Progress and Problems on the Road to Therapeutics. Science, 297(5580):353–356,
2002.

24. G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-
actions on Information Theory, 14(1):55–63, 1968.

25. A. Hyvarinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

26. P. S. Insel, S. Palmqvist, R. S. Mackin, R. L. Nosheny, O. Hansson, M. W. Weiner,
and N. Mattsson. Assessing risk for preclinical β-amyloid pathology with APOE,
cognitive, and demographic information. Alzheimer’s & Dementia: Diagnosis, As-
sessment & Disease Monitoring, 4:76–84, 2016.

27. C. R Jack, D. S Knopman, W. J Jagust, L. M Shaw, P. S Aisen, M. W Weiner,
R. C Petersen, and J. Q Trojanowski. Hypothetical model of dynamic biomarkers
of the alzheimer’s pathological cascade. Lancet Neurology, 9(1):119, 2010.

28. Clifford R. Jack, David A. Bennett, Kaj Blennow, Maria C. Carrillo, Billy Dunn,
Samantha Budd Haeberlein, David M. Holtzman, William Jagust, Frank Jessen,
Jason Karlawish, Enchi Liu, Jose Luis Molinuevo, Thomas Montine, Creighton



Phelps, Katherine P. Rankin, Christopher C. Rowe, Philip Scheltens, Eric Siemers,
Heather M. Snyder, Reisa Sperling, Cerise Elliott, Eliezer Masliah, Laurie Ryan,
and Nina Silverberg. NIA-AA Research Framework: Toward a biological definition
of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4):535–562, April 2018.

29. Clifford R. Jack, Heather J. Wiste, Stephen D. Weigand, David S. Knop-
man, Michelle M. Mielke, Prashanthi Vemuri, Val Lowe, Matthew L. Senjem,
Jeffrey L. Gunter, Denise Reyes, Mary M. Machulda, Rosebud Roberts, and
Ronald C. Petersen. Different definitions of neurodegeneration produce similar
amyloid/neurodegeneration biomarker group findings. Brain, 138(12):3747–3759,
December 2015.

30. Eric Karran, Marc Mercken, and Bart De Strooper. The amyloid cascade hy-
pothesis for Alzheimer’s disease: an appraisal for the development of therapeutics.
Nature Reviews Drug Discovery, 10(9):698–712, 2011.

31. C Lopez Lopez, A Caputo, F Liu, ME Riviere, ML Rouzade-Dominguez,
RG Thomas, JB Langbaum, R Lenz, EM Reiman, A Graf, et al. The alzheimer’s
prevention initiative generation program: Evaluating cnp520 efficacy in the pre-
vention of alzheimer’s disease. The journal of prevention of Alzheimer’s disease,
4(4):242–246, 2017.

32. M. M. Mielke, H. J. Wiste, S. D. Weigand, D. S. Knopman, V. J. Lowe, R. O.
Roberts, Y. E. Geda, Dana M. Swenson-Dravis, B. F. Boeve, M. L. Senjem, P. Ve-
muri, R. C. Petersen, and C. R. Jack. Indicators of amyloid burden in a population-
based study of cognitively normal elderly. Neurology, 79(15):1570–1577, 2012.

33. Stanislav Minsker, Ying-Qi Zhao, and Guang Cheng. Active Clinical Trials for Per-
sonalized Medicine. Journal of the American Statistical Association, 111(514):875–
887, April 2016.

34. K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduc-
tion to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181–201, 2001.

35. Akinori Nakamura, Naoki Kaneko, Victor L. Villemagne, Takashi Kato, James
Doecke, Vincent Doré, Chris Fowler, Qiao-Xin Li, Ralph Martins, Christopher
Rowe, Taisuke Tomita, Katsumi Matsuzaki, Kenji Ishii, Kazunari Ishii, Yu-
taka Arahata, Shinichi Iwamoto, Kengo Ito, Koichi Tanaka, Colin L. Masters,
and Katsuhiko Yanagisawa. High performance plasma amyloid-β biomarkers for
Alzheimer’s disease. Nature, 554(7691):249–254, February 2018.

36. J. T. O’Brien and K. Herholz. Amyloid imaging for dementia in clinical practice.
BMC Medicine, 13, 2015.

37. Min Qian and Susan A. Murphy. Performance guarantees for individualized treat-
ment rules. The Annals of Statistics, 39(2):1180–1210, April 2011.

38. Stephen Salloway, Reisa Sperling, Nick C. Fox, Kaj Blennow, William Klunk, Mur-
ray Raskind, Marwan Sabbagh, Lawrence S. Honig, Anton P. Porsteinsson, Steven
Ferris, Marcel Reichert, Nzeera Ketter, Bijan Nejadnik, Volkmar Guenzler, Maja
Miloslavsky, Daniel Wang, Yuan Lu, Julia Lull, Iulia Cristina Tudor, Enchi Liu,
Michael Grundman, Eric Yuen, Ronald Black, and H. Robert Brashear. Two Phase
3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. New England
Journal of Medicine, 370(4):322–333, 2014.

39. Andrew Satlin, Jinping Wang, Veronika Logovinsky, Scott Berry, Chad Swanson,
Shobha Dhadda, and Donald A. Berry. Design of a Bayesian adaptive phase 2 proof-
of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody
for the treatment of Alzheimer’s disease. Alzheimer’s & Dementia: Translational
Research & Clinical Interventions, 2(1):1–12, January 2016.



40. Leslie M. Shaw, Hugo Vanderstichele, Malgorzata Knapik-Czajka, Christopher M.
Clark, Paul S. Aisen, Ronald C. Petersen, Kaj Blennow, Holly Soares, Adam Simon,
Piotr Lewczuk, Robert Dean, Eric Siemers, William Potter, Virginia M.-Y. Lee,
and John Q. Trojanowski. Cerebrospinal Fluid Biomarker Signature in Alzheimer’s
Disease Neuroimaging Initiative Subjects. Annals of neurology, 65(4):403–413,
2009.

41. Reisa A. Sperling, Paul S. Aisen, Laurel A. Beckett, David A. Bennett, Suzanne
Craft, Anne M. Fagan, Takeshi Iwatsubo, Clifford R. Jack, Jeffrey Kaye, Thomas J.
Montine, Denise C. Park, Eric M. Reiman, Christopher C. Rowe, Eric Siemers,
Yaakov Stern, Kristine Yaffe, Maria C. Carrillo, Bill Thies, Marcelle Morrison-
Bogorad, Molly V. Wagster, and Creighton H. Phelps. Toward defining the pre-
clinical stages of Alzheimer’s disease: Recommendations from the National Insti-
tute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimer’s & dementia : the journal of the Alzheimer’s As-
sociation, 7(3):280–292, May 2011.

42. Mara ten Kate, Alberto Redolfi, Enrico Peira, Isabelle Bos, Stephanie J. Vos,
Rik Vandenberghe, Silvy Gabel, Jolien Schaeverbeke, Philip Scheltens, Olivier
Blin, Jill C. Richardson, Regis Bordet, Anders Wallin, Carl Eckerstrom, José Luis
Molinuevo, Sebastiaan Engelborghs, Christine Van Broeckhoven, Pablo Martinez-
Lage, Julius Popp, Magdalini Tsolaki, Frans R. J. Verhey, Alison L. Baird, Cristina
Legido-Quigley, Lars Bertram, Valerija Dobricic, Henrik Zetterberg, Simon Love-
stone, Johannes Streffer, Silvia Bianchetti, Gerald P. Novak, Jerome Revillard,
Mark F. Gordon, Zhiyong Xie, Viktor Wottschel, Giovanni Frisoni, Pieter Jelle
Visser, and Frederik Barkhof. MRI predictors of amyloid pathology: results from
the EMIF-AD Multimodal Biomarker Discovery study. Alzheimer’s Research &
Therapy, 10(1):100, September 2018.

43. Duygu Tosun, Sarang Joshi, and Michael W. Weiner. Neuroimaging Predictors of
Brain Amyloidosis in Mild Cognitive Impairment. Annals of neurology, 74(2):188–
198, August 2013.

44. Jennifer L. Watson, Laurie Ryan, Nina Silverberg, Vicky Cahan, and Marie A.
Bernard. Obstacles And Opportunities In Alzheimer’s Clinical Trial Recruitment.
Health affairs (Project Hope), 33(4):574–579, 2014.

45. Michael M. Witte, Norman L. Foster, Adam S. Fleisher, Monique M. Williams,
Kimberly Quaid, Michael Wasserman, Gail Hunt, J. Scott Roberts, Gil D. Ra-
binovici, James L. Levenson, Ann Marie Hake, Craig A. Hunter, Luann E.
Van Campen, Michael J. Pontecorvo, Helen M. Hochstetler, Linda B. Tabas, and
Paula T. Trzepacz. Clinical use of amyloid-positron emission tomography neu-
roimaging: Practical and bioethical considerations. Alzheimer’s & Dementia: Di-
agnosis, Assessment & Disease Monitoring, 1(3):358–367, 2015.

46. David H. Wolpert. The Supervised Learning No-Free-Lunch Theorems. In Ra-
jkumar Roy, Mario Köppen, Seppo Ovaska, Takeshi Furuhashi, and Frank Hoff-
mann, editors, Soft Computing and Industry, pages 25–42. Springer London, Lon-
don, 2002.

47. David H Wolpert and William G Macready. No Free Lunch Theorems for Op-
timization. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
1(1):16, 1997.

48. Yingqi Zhao, Donglin Zeng, A. John Rush, and Michael R. Kosorok. Estimating
Individualized Treatment Rules Using Outcome Weighted Learning. Journal of the
American Statistical Association, 107(499):1106–1118, September 2012.



A Supplementary Materials

A.1 Computing R and S from the PPV and NPR

The number of False Positives (FP) can be computed from the Positive Predicted
Value (PPV) and the number of True Positives (TP) as such:

PPV =
TP

FP + TP

TP = PPV ∗ FP + PPV ∗ TP

FP =
1− PPV

PPV
TP (3)

In a similar manner, the number of False Negatives (FN) can be computed
from the Negative Predicted Value (NPV) and the number of True Negatives
(TN):

TN =
NPV

1−NPV
∗ FN (4)

We know that, NP being the number of positive subjects in the test set,

FN = NP − TP (5)

And, N being the total number of subjects in the test set:

FP + FN + TP + TN = N (6)

Using equations 3 to 6, we can deduce

TP = (N(1−NPV )−NP )
PPV

1−NPV − PPV

And S and R and be computed using equations 1 and 2.

A.2 Difference of age in the 3 cohorts

Age average for Aβ-
individuals (std)

Age average for Aβ+
individuals (std) p-value

INSIGHT 75.7 (3.5) 76.8 (3.4) 0.01
ADNI-CN 74.4 (6.5) 76.2 (6.1) 0.005
ADNI-MCI 72.0 (8.5) 74.7 (6.9) < 0.001

Table S1: Age comparison between Aβ- and Aβ+ individuals for the different
cohorts. std = standard deviation.

A.3 Algorithm pseudo-code



Algorithm 1 Pseudocode of the method
Input: x and y
Output: probs: probability of each subject to be Aβ+; auc: the obtained AUC;
min_cost: minimal cost for recruiting the subjects; optimal_threshold: probability
threshold for which the minimal cost is obtained

for i = 1 to 50 do
. Randomly split into training and test set, with 30% in test set
x_train, y_train, x_test, y_test← split(x, y, 0.3)

. Hyper-parameter tuning using the AUC
splits_x, splits_y ← split_in_5(x_train, y_train)
for num_fold = 1 to 5 do

. Get the corresponding folds for training and testing
x_test_fold, y_test_fold← splits_x[num_fold], splits_y[num_fold]
x_train_fold← all_folds_except_i(splits_x, num_fold)
y_train_fold← all_folds_except_i(splits_y, num_fold)
for i_size = 1 to number_leaf_sizes do

for i_cycles = 1 to number_num_cycles do
. Train and predict with the selected parameters
rf ← fit_rf(x_train_fold, y_train_fold, leaf_sizes[i_size], num_cycles[i_cycles])
probs← get_rf_score(rf, x_test_fold)
. Compute the corresponding AUC
auc← get_auc(probs, y_test_fold)
aucs_table.insert(auc)

end for
end for

end for
. Average the AUC for each parameters over all folds
mean_aucs← average_over_folds(aucs_table)
. Select the parameter values corresponding to the best AUC
i_best_size, i_best_num_cycles← argmax(mean_aucs)
leaf_size, num_cycle← leaf_sizes[i_best_size], num_cycles[i_best_num_cycles]

. Train and apply the model with the selected hyper-parameters
rf ← train_rf(x_train, y_train, leaf_size, num_cycles)
probs← get_rf_score(rf, x_test)
auc← get_auc(probs, y_test)

. Get the threshold for minimal cost
sen_table, spe_table, thresholds_table← get_all_sensitivities_specificities(probs, y_test)
costs_table← all_possible_costs(sen_table, spe_table)
min_cost← min(costs_table)
i_min← argmin(costs_table)
optimal_threshold← thresholds_table[i_min]

end for


