Abiel Aguilar-González
email: abiel.aguilar_gonzalez@etu.uca.fr

Miguel Arias-Estrada

François Berry

Depth from motion algorithm and hardware architecture for smart cameras

Keywords: Depth estimation, monocular systems, optical flow, smart cameras, FPGA

Applications such as autonomous navigation, robot vision, autonomous flying, etc., require depth map information of the scene. Depth can be estimated by using a single moving camera (depth from motion). However, traditional depth from motion algorithms have low processing speed and high hardware requirements that limits the embedded capabilities. In this work, we propose a hardware architecture for depth from motion that consists of a flow/depth transformation and a new optical flow algorithm. Our optical flow formulation consists in an extension of the stereo matching problem. A pixel-parallel/window-parallel approach where a correlation function based in the Sum of Absolute Differences computes the optical flow is proposed. Further, in order to improve the Sum of Absolute Differences performance, the curl of the intensity gradient as preprocessing step is proposed. Experimental results demonstrated that it is possible to reach higher accuracy (90% of accuracy) compared with previous FPGA-based optical flow algorithms. For the depth estimation, our algorithm delivers dense maps with motion and depth information on all the image pixels, with a processing speed up to 128 times faster than previous works and making it possible to achieve high performance in the context of embedded applications.

Introduction

Smart cameras are machine vision systems which, in addition to image capture circuitry, are capable of extracting application-specific information from the captured images. For example, for video surveillance, image processing algorithms implemented inside the camera fabric could detect and track pedestrians [START_REF] Hengstler | MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance[END_REF], but for a robotic application, computer vision algorithms could estimate the system egomotion [START_REF] Aguilar-González | Towards a smart camera for monocular SLAM[END_REF]. In recent years, advances in embedded vision systems such as progress in microprocessor power and FPGA technology allowed the creation of compact smart cameras with increased performance for real world applications [START_REF] Carey | Low power high-performance smart camera system based on SCAMP vision sensor[END_REF][START_REF] Birem | A modular FPGA-based smart camera architecture[END_REF][START_REF] Bourrasset | Distributed FPGA-based smart camera architecture for computer vision applications[END_REF][START_REF] Bravo | Efficient smart cmos camera based on fpgas oriented to embedded image processing[END_REF]. As result, in current embedded applications, image processing algorithms inside the smart cameras fabric deliver an efficient on-board solution for: motion detection [START_REF] Köhler | Bio-inspired motion detection in an FPGA-based smart camera module[END_REF], object detection/tracking [START_REF] Olson | Moving object detection and event recognition algorithms for smart cameras[END_REF][START_REF] Norouznezhad | Object tracking on FPGA-based smart cameras using local oriented energy and phase features[END_REF], inspection and surveillance [START_REF] Fularz | The architecture of an embedded smart camera for intelligent inspection and surveillance[END_REF], human behavior recognition [START_REF] Haritaoglu | W 4: Real-time surveillance of people and their activities[END_REF], etc. Another algorithm that could be highly used by smart cameras are computer vision algorithms since they are the basis of several applications (automatic inspection, controlling processes, detecting events, modeling objects or environments, navigation and so on).

Unfortunately, mathematical formulation of computer vision algorithms is not compliant with the hardware technologies (FPGA/CUDA) often used in smart cameras. In this work, we are interested in depth estimation from monocular sequences in the context of a smart camera because depth is the basis to obtain useful scene abstractions, for example: 3D reconstructions of the world and the camera egomotion.

Depth estimation from monocular sequences

In several applications, like autonomous navigation [START_REF] Biswas | Depth camera based indoor mobile robot localization and navigation[END_REF], robot vision and surveillance [START_REF] Hengstler | MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance[END_REF], autonomous flying [START_REF] Stowers | Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor[END_REF], etc., there is a need for determining the depth map of the scene. Depth can be estimated by using stereo cameras [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF], by changing focal length [START_REF] Subbarao | Depth from defocus: a spatial domain approach[END_REF], or by employing a single moving camera [START_REF] Chen | Fast and accurate optical flow based depth map estimation from light fields[END_REF]. In this work we are interested in depth estimation from monocular sequences by using a single moving camera (depth from motion). This choice is motivated because monocular systems have higher efficiency compared with other approaches, simpler and more accurate than defocus techniques and, cheaper/smaller compared with stereo-based techniques. In monocular systems, depth information can be estimated based on two or multiple frames of a video sequence. For two frames, image information may not provide sufficient information for accurate depth estimation.

The use of multiple frames improves the accuracy, reduces the influence of noise and allows the extraction of additional information which cannot be recovered from just two frames, but the system complexity and computational cost is increased. In this work, we use information from two consecutive frames of the monocular sequence since our algorithm is focused for smart cameras and in this context hardware resources are limited.

Motivation and scope

In the last decade several works have demonstrated that depth information is highly useful for embedded robotic applications [START_REF] Hengstler | MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance[END_REF][START_REF] Biswas | Depth camera based indoor mobile robot localization and navigation[END_REF][START_REF] Stowers | Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor[END_REF]. Unfortunately, depth information estimation is a relatively complex task. In recent years, the most popular solution is the use of active vision to estimate depth information from the scene [START_REF] Zhang | Visual-lidar odometry and mapping: Low-drift, robust, and fast[END_REF][START_REF] Schubert | Towards camera based navigation in 3d maps by synthesizing depth images[END_REF][START_REF] Maddern | Real-time probabilistic fusion of sparse 3d lidar and dense stereo[END_REF][START_REF] Dai | ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes[END_REF][START_REF] Liu | Robust Keyframe-based Dense SLAM with an RGB-D Camera[END_REF], i.e., LIDAR sensors or RGBD cameras that can deliver accurate depth maps in real time, however they increase the systems size and cost. In this work, we propose a new algorithm and an FPGA hardware architecture for depth estimation. First, a new optical flow algorithm estimates the motion (flow) at each point in the input image. Then, a flow/depth transformation computes the depth in the scene. For the optical flow algorithm: an extension of the stereo matching problem is proposed. A pixel-parallel/window-parallel approach where a Sum of Absolute Differences computes the optical flow is implemented. Further, in order to improve the Sum of Absolute Differences performance, we propose the curl of the intensity gradient as preprocessing step. For the depth estimation proposes: we introduce a flow/depth transformation inspired in the epipolar geometry.

Related work

In previous works, depth estimation is often estimated by using a single moving camera. This approach is called depth from motion and consists in computing the depth from the pixel velocities inside the scene (optical flow). i.e., optical flow is the basis for depth from motion.

FPGA architectures for optical flow

In [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF], a hardware implementation of a high complexity algorithm to estimate the optical flow from image sequences in real time is presented. In order to fulfil with the architectural limitations, the original gradient-based optical flow was modified (using a smoothness constraint for decreasing iterations). The developed architecture can estimate the optical flow in real time and can be constructed with FPGA or ASIC devices. However, due to the mathematical limitations of the CPU formulation (complex/iterative operations), speed processing is low, compared with other FPGA-based architectures for real-time image processing [START_REF] Aguilar-González | An FPGA 2D-convolution unit based on the CAPH language[END_REF][START_REF] Pérez-Patricio | An fpga stereo matching unit based on fuzzy logic[END_REF]. In [START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF], a pipelined optical-flow processing system that works as a virtual motion sensor is described. The proposed approach consists of several spatial and temporal filters (Gaussian and gradient spatial filters and IIR temporal filter) implemented in cascade. The proposed algorithm was implemented in an FPGA device, enabling the easy change of the configuration parameters to adapt the sensor to different speeds, light conditions and other environmental factors. This makes possible the implementation of an FPGA-based smart camera for optical flow. In general, the proposed architecture reaches a reasonable hardware resources usage but accuracy and processing speed is low (lower than 7 fps for 640×480 image resolution). In [START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF], a tensor-based optical flow algorithm is presented. This algorithm was developed and implemented using FPGA technology. Experimental results demonstrated high accuracy compared with previously FPGA-based algorithms for optical flow. In addition, the proposed design can process 640×480 images at 64 fps with a relatively low resource requirement, making it easier to fit into small embedded systems. In [START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on FPGA[END_REF], a highly parallel architecture for motion estimation is presented. The developed FPGA-architecture implements the Lucas and Kanade algorithm [START_REF] Tomasi | Detection and tracking of point features[END_REF] with the multi-scale extension for the computation of large motion estimations in an FPGA. Although the proposed architecture reaches a low hardware requirement with a high processing speed, the use of huge external memory capacity is needed. Further, in order to fulfil with the hardware limitations, the accuracy is low (near 11% more error compared with the original CPU version of the Lukas and Kanade algorithm). Finally, in [START_REF] Honegger | Real-time velocity estimation based on optical flow and disparity matching[END_REF],

an FPGA-based platform with the capability of calculating real-time optical flow at 127 frames per second for a 376×240 pixel resolution is presented. Radial undistortion, image rectification, disparity estimation and optical flow calculation tasks are performed on a single FPGA without the need of external memory. So, the platform is perfectly suited for mobile robots or embedded applications.

Unfortunately, accuracy is low (qualitatively lower accuracy than CPU based approaches).

Optical flow methods based in learning techniques

There are some recent works that addresses the optical flow problem via learning techniques [START_REF] Chao | A survey of optical flow techniques for robotics navigation applications[END_REF].

In 2015 [START_REF] Dosovitskiy | Flownet: Learning optical flow with convolutional networks[END_REF] proposed the use of convolutional neuronal networks (CNNs) as an alternative framework to solve the optical flow estimation problem. Two different architectures were proposed and compared: a generic architecture and another one including a layer that correlates feature vectors at different image locations. Experimental results demonstrated a competitive accuracy at frame rates of 5 to 10 fps. On the other hand, in 2017 [START_REF] Ilg | Flownet 2.0: Evolution of optical flow estimation with deep networks[END_REF] developed a stacked architecture that includes warping of the search image with intermediate optical flow. Further, in order to achieve high accuracy on small displacements, authors introduced a sub-network specializing on small motions. Experimental results demonstrated that it is possible to reach more than 95% of accuracy, decreasing the estimation error by more than 50% compared with previous works.

The proposed algorithm

In Fig. 1 an overview of our algorithm is shown. First, given an imager as sensor, two consecutive frames (f t (x, y), f t+1 (x, y)) are stored in local memory. Then, an optical flow algorithm computes 2D pixel displacements between f t (x, y) and f t+1 (x, y). A dynamic template based on the optical flow previously computed (∆ x,t-1 (x, y), ∆ y,t-1 (x, y)) computes the search region size for the current optical flow. Then, let the optical flow for the current frame be (∆ x (x, y), ∆ y (x, y)), the final step is depth estimation for all the pixels in the reference image D(x, y). In the following subsections, details about the proposed algorithm are presented.

Frame buffer

The first step in our mathematical formulation is image storage, considering that in most cases the imager provides data as a stream, some storage is required in order to have two consecutive frames available at the same time t. More information/details about the storage architecture are presented in Section 4.1. For mathematical formulation, we consider the first frame (frame at t time) as f t (x, y) while the second frame (frame at t + 1 time) is f t+1 (x, y).

Optical flow

In previous works, iterative algorithms, such as the Lucas Kanade [START_REF] Tomasi | Detection and tracking of point features[END_REF] or the Horn-Schunck [START_REF] Horn | Determining optical flow[END_REF] algorithms have been used on order to compute optical flow across video sequences, then, given dense optical flow, geometric methods allow to compute the depth in the scene. However, these algorithms [START_REF] Tomasi | Detection and tracking of point features[END_REF][START_REF] Horn | Determining optical flow[END_REF] have iterative operations that limit the performance for smart camera implementations. In order to avoid the iterative and convergence part of the traditional formulation we replace that with a correlation metric implemented inside a pixel-parallel/window-parallel formulation. In Fig. 2 an overview of our optical flow algorithm is shown. Let (f t (x, y), f t+1 (x, y) be two consecutive frames from a video sequence , curl of the intensity gradient

d f (x,y) dx
are computed, see Eq. 1, where ∇ is the Del operator. Let curl be a vector operator that describes the infinitesimal rotation, then, at every pixel the curl of that pixel is represented by a vector where attributes (length and direction)

characterize the rotation at that point. In our case, we use only the norm of Curl(x, y), as shown in Eq. 2 and, as illustrated in Fig. 3 . This operation increases the robustness under image degradations (color/texture repetition, illumination changes, noise), therefore, simple similarity metrics [START_REF] Khaleghi | Performace evaluation of similarity metrics for stereo corresponce problem[END_REF] deliver accurate pixel tracking, simpler than previous tracking algorithms [START_REF] Tomasi | Detection and tracking of point features[END_REF][START_REF] Horn | Determining optical flow[END_REF]. Given the curl images for two consecutive frames (Curl t (x, y), Curl t+1 (x, y), dense optical flow (∆ x (x, y), ∆ y (x, y), illustrated in Fig. 4) in the reference image is computed as shown in Fig. 5. This process assumes that pixel displacements between frames is such as it exists an overlap on two successive "search regions". A search region is defined as a patch around a pixel to track. Considering that between f t and f t+1 , the image degradation is low, any similarity-based metric have to provide good accuracy. In our case, this similarity is calculated by a SAD (Sum of Absolute Difference). This process is defined in Eq. 3; where r is the patch size (see Fig. 5). (Curl t (x, y), Curl t+1 (x, y)) are curl images on two consecutive frames.

x, y are the spatial coordinates of pixels in f t and, a, b are the spatial coordinates within a search region constructed in f t+1 (see Eq. 4 and 5); where ∆ x(t-1) , ∆ y(t-1) are a dynamic search template, computed as shown in Section 3.3. k is the search size and s is a sampling value defined by the user. Finally, optical flow at the current time (∆ x (x, y), ∆ y (x, y)) is computed by Eq. 6.

Curl(x, y) = ∇ × d f (x, y) dx = ∂ ∂y ∂ f (x, y) ∂x - ∂ ∂x ∂ f (x, y) ∂y (1) Curl(x, y) = | ∂ ∂y ∂ f (x, y) ∂x - ∂ ∂x ∂ f (x, y) ∂y | (2)
where

149 ∂ f (x, y) ∂x = G x (x, y) = f (x + 1, y) -f (x -1, y) ∂ f (x, y) ∂y = G y (x, y) = f (x, y + 1) -f (x, y -1) ∂ ∂y ∂ f (x, y) ∂x = G x (x, y + 1) -G x (x, y -1) ∂ ∂x ∂ f (x, y) ∂y = G y (x + 1, y) -G y (x -1, y) 150 SAD(a, b) = u=r ∑ u=-r v=r ∑ v=-r |Curl t (x + u, y + v)| -|Curl t+1 (x + u + a, y + v + b)| (3) a = ∆ x(t-1) (x, y) -k : s : ∆ x(t-1) (x, y) + k (4) b = ∆ y(t-1) (x, y) -k : s : ∆ y(t-1) (x, y) + k (5) [∆ x (x, y), ∆ y (x, y)] = arg min (a,b) SAD(a, b) (6)

Search template

In optical flow, the search window size defines the maximum allowed motion to be detected in the sequence, see Fig. [START_REF] Birem | A modular FPGA-based smart camera architecture[END_REF]. In general, let p be a pixel in the reference image (f t), whose 2D spatial location is defined as (x t , y t), the same pixel in the tracked image (f t+1) has to satisfy x t+1 ∈ x tk : 1 : x + k, y t+1 ∈ yk : 1 :

y t + k,
where k is the search size for the tracking step. In practice, large search region sizes increase the tracking performance since feature tracking could be carried out in both slow and fast camera movements. However, large search sizes decrease the accuracy, i.e., if the search region size is equal to 1, then, x t+1 ∈ x t -1 : 1 : x t + 1, y t+1 ∈ y t -1 : 1 : y t + 1 so, there are 9 possible candidates for the tracking step and the mistake possibility is equal to 8, this considering that camera movement is slow and therefore pixel displacements between images are close to cero. In other scenario, if the search region size is equal to 10, then, x t+1 ∈ x t -10 : 1 : x t + 10, y t+1 ∈ y t -10 : 1 : y t + 10 so, there are 100 possible candidates for the tracking step and the mistake possibility is equal to 99. In our work, we propose to use the feedback of the previous optical flow step as a dynamic search size for the current step so, if camera movement in t -1 is slow, small search sizes closer to the pixels being tracked (x t , y t) are used. On the other hand, given fast camera movements small search sizes far to the pixels being tracked are used. This makes the tracking step compute accurate results without outliers, furthermore, the use of small search sizes decreases the computational resources usage. For practical purposes we use a search region size equal to 10 since it provides a good tradeoff between robustness/accuracy and computational resources. So, let ∆ x,t-1 (x, y), ∆ y,t-1 (x, y) be the optical flow at time t -1, the search template for the current time is computed as shown in Eq. 7 -8, where k is the template size.

∆ x (x + u, y + v) = u=k,v=k ∑ u=-k,v=-k (mean u=k,v=k ∑ u=-k,v=-k ∆ x,t-1 (x, y)) (7)
∆ y (x + u, y + v) = u=k,v=k ∑ u=-k,v=-k (mean u=k,v=k ∑ u=-k,v=-k ∆ y,t-1 (x, y)) (8)

Depth estimation

In previous works it was demonstrated that monocular image sequences provide only partial information about the scene due to the computation of relative depth, unknown scale factor, etc. [START_REF] Fortun | Optical flow modeling and computation: a survey[END_REF].

In order to recover the depth in the scene it is necessary to have assumptions about the scene and its So, let ∆ x (x, y), ∆ y (x, y) be the optical flow (pixel velocity) at t time, depth in the scene depth(x, y) is computed as proposed in Eq. 9, where depth(x, y) is the norm of the optical flow. In Fig. 7 an example of depth map computed by the proposed approach is shown.

depth(x, y) = ||[∆ x (x, y), ∆ y (x, y)]|| = ∆ x (x, y) 2 + ∆ y (x, y) 2 (9)

Optical flow

For the "Optical flow" unit, we consider that flow estimation problem can be a generalization of the dense matching problem. i.e., stereo matching algorithms track (searching on the horizontal axis around the search image), all pixels in the reference image. Optical flow aims to track all pixels between two consecutive frames from a video sequence (searching around spatial coordinates of the pixels in the search image). Then, it is possible to extend previous stereo matching FPGA architectures to fulfil with our application domain. In this work, we extended the FPGA architecture presented in [START_REF] Pérez-Patricio | An fpga stereo matching unit based on fuzzy logic[END_REF], since it has low hardware requirements and high parallelism level. In Fig. 10, the developed architecture is shown. First, the "curl" units deliver curl images in parallel, see Eq. 2. More details about the FPGA architecture of this unit are shown in Section 4.2.2. The "circular buffer" units are responsible for data transfers in segments of the image (usually several rows of pixels). So, the core of the FPGA architecture are the circular buffers attached to the local processors that can hold temporarily as cache, for image sections from two frames, and that can deliver parallel data to the processors. More details about the FPGA architecture of this unit are shown in Section 4.2.1. Then, given optical flow previously computed, 121 search regions are constructed in parallel, see Fig. 5 and Eq. 4 -5. For our implementation, the search region size is equal to 10, therefore, the center of the search regions are all the sampled pixels within the reference region. Given the reference region in f t (x, y) and 121 search regions in f t+1 (x, y), search regions are compared with the reference region (Eq. 3) in parallel. For that, a pixel-parallel/window-parallel scheme is implemented. Finally, in the "flow estimation" unit a multiplexer tree can determine the a, b indices that minimize Eq. 3, and therefore, the optical flow for all pixels in the reference image, using Eq. 6. In [START_REF] Aguilar-González | An FPGA 2D-convolution unit based on the CAPH language[END_REF] we proposed a circular buffer schema in which input data from the previous n rows of an image can be stored using memory buffers (block RAMs/BRAMs) until the moment when a n × n neighborhood is scanned along subsequent rows. In this work, we follow a similar approach to achieve high data reuse and high level of parallelism. Then, our algorithm is processed in modules where all image patches can be read in parallel. First, a shift mechanism "control" unit manages the read/write addresses of n + 1 BRAMs, in this formulation n BRAMs are in read mode and one BRAM is in write mode in each clock cycle. Then, data inside the read mode BRAMs can be accessed in parallel and each pixel within a n × n region is delivered in parallel a n × n buffer, as shown in Fig. 11, where the "control" unit delivers control data (address and read/write enable) for the BRAM modules, one entire row is stored in each BRAM. Finally the "data" unit delivers n × n pixels in parallel. In our implementation, there is 1 circular buffer of 13×13 pixels/bytes, 1 circular buffer of 17×17 and 2 circular buffers of 3×3. For more details see [START_REF] Aguilar-González | An FPGA 2D-convolution unit based on the CAPH language[END_REF].

Curl estimation

In Fig. 12, the curl architecture is shown. First, one "circular buffer" holds 3 rows of the frame being processed and allows for local parallel access of a 3 × 3 patch that facilitates parallel processing.

Then, image gradients (

∂ f (x,y) ∂x , ∂ f (x,y)
∂y) are computed. Another "circular buffer" holds 3 rows of the gradient image previously computed and delivers a 3 × 3 patch for the next step. Second derivatives

(∂ ∂y ∂ f (x,y) ∂x , ∂ ∂x ∂ f (x,y)
∂y) are computed inside the "derivative" unit. Finally, the curl of the input image is computed by the "curl" unit.

Depth estimation

In Fig. 13, the depth estimation architecture is shown. Let "pix1 [7;0]", "pix2 [7:0]" be the pixel stream for the optical flow at current frame (Eq. 6); first, the "multiplier" unit computes the square value of the input data. Then, the "adder" unit carries out the addition process for both components (∆ 2 x , ∆ 2 y).

Finally, the "sqrt" unit computes the depth in the scene, using Eq. 9. In order to achieve high efficiency in the square root computation, we adapted the architecture developed by Yamin Li and Wanming

Chu [START_REF] Li | A new non-restoring square root algorithm and its VLSI implementations[END_REF]. This architecture uses a shift register mechanism and compares the more significant/less significant bits to achieving the root square operation without using embedded multipliers.

Result and discussion

The developed FPGA architecture was implemented in an FPGA Cyclone IV EP4CGX150CF23C8 of Altera. All modules were designed via Quartus II Web Edition version 10.1SP1 and, all modules were validated via post-synthesis simulations performed in ModelSim Altera. For all tests, we consider k = 3, s = 2 (Eq. 4 and 5) since these values provided a relatively "good" performance for real world scenarios . In practice, we recommend these values as reference. Higher k = 3, s = 2 values could provide higher accuracy, however, processing speed and hardware requirements can be increased. On the other hand, lower k = 3, s = 2 values should provide higher performance in terms of hardware requirements /processing speed but accuracy could decrease. The full hardware resource consumption of the architecture is shown in Table 1. Our algorithm formulation allows for a compact system design; it requires 66% of the total logic elements of the FPGA Cyclone IV EP4CGX150CF23C8. For memory bits, our architecture uses 74% of the total resources, this represents 26 block RAMs consumed mainly in the circular buffers. These hardware utilization enables to target a relatively small FPGA device and therefore could be possible a small FPGA-based smart camera, suitable for real-time embedded applications. In the following subsections comparisons with previous work are presented.

For optical flow, comparisons with previous FPGA-based optical flow algorithms are presented. For depth estimation, we presented a detailed discussion about the performance and limitations of the proposed algorithm compared with the current state of the art. In comparison with previous work, in Table 2 we present hardware resource utilization between our FPGA architecture and previous FPGA-based optical flow algorithms. There are several works [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF][START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF][START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF][START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on FPGA[END_REF] whose FPGA implementations aims to parallelize all recursive operations in the original mathematical formulation. Unfortunately, most popular formulations such as those based in KTL [START_REF] Tomasi | Detection and tracking of point features[END_REF] or Horn-Schunck [START_REF] Horn | Determining optical flow[END_REF], have iterative operations that are hard to parallelize. As result, most previous works have relatively high hardware occupancy/implementations compared with a full parallelizable design approach. Compared with previous works, our FPGA architecture outperform most previous works, for similar image resolution, less logic elements and memory bits than [START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF][START_REF] Honegger | Real-time velocity estimation based on optical flow and disparity matching[END_REF],

Performance for the optical flow algorithm

and less logic elements and memory bits than [START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on FPGA[END_REF]. [START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on FPGA[END_REF] decreases the memory usage by a multiscale coding which makes possible to store only half of the original image, however, this reduction involves pixel interpolation for some cases and this increases the logic elements usage. For [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF], the authors introduced an iterative-parallel approach; this makes possible to achieve low hardware requirements but processing speed is low. Finally, for [START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF], a filtering-based approach makes possible to achieve low hardware requirements with relatively high accuracy and high processing speed but the algorithmic formulation requires to store several entire frames, requiring large external memory (near 250 MB for store 3 entire frames), this increase the system size and cost. In Table 3, speed processing for different image resolutions is shown. We synthesized different versions of our FPGA architecture (Fig. 8), and we adapted the circular buffers in order to work with all tested image resolutions. Then, we carried out post-synthesis simulation in ModelSim Altera. In all cases, our FPGA architecture reached real-time processing. When compared with previous work (Table 4), our algorithm provided the highest speed processing, it outperforms several previous work [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF][START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF][START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF][START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on FPGA[END_REF][START_REF] Honegger | Real-time velocity estimation based on optical flow and disparity matching[END_REF], and for HD images, our algorithm reaches real-time processing: more than 60 fps for 1280×1024 image resolution. In Fig. 14, qualitative results for this work compared with previous work are shown. In a first experiment we used the "Garden" dataset since previous work [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF][START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF][START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF] used this dataset as reference.

When compared with previous work (Fig. 14), our algorithm provides high performance under real world scenarios, it outperforms several previous work [START_REF] Martín | Hardware implementation of optical flow constraint equation using FPGAs[END_REF][START_REF] Díaz | FPGA-based real-time optical-flow system[END_REF][START_REF] Wei | FPGA-based Real-time Optical Flow Algorithm Design and Implementation[END_REF], quantitatively closer to the ground truth (error near to 9%) compared with other FPGA-based approaches. In a second experiment quantitative and qualitative results for the KITTI dataset [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF], are shown. In all cases our algorithm provides high performance, it reaches an error near to 10% with several test sequences, as shown in Fig. [START_REF] Subbarao | Depth from defocus: a spatial domain approach[END_REF]. In both experiments we compute the error by comparing the ground truth Ω x (x, y), Ω y (x, y)

(provided with the dataset) with the computed optical flow ∆ x (x, y), ∆ y (x, y). First, we compute the local error (the error magnitude at each point of the input image) as defined in Eq. 10; where i, j is the input image resolution. Then, a global error (Ξ) can be computed as shown in Eq. 11; where i, j is the input image resolution. ξ(x, y) is the local error at each pixel in the reference image and the global error (Ξ) is the percentage of pixels in the reference image in which local error is higher to zero.

ξ(x, y) = x=i ∑ x=1 y=j ∑ y=1 Ω x (x, y) 2 + Ω y (x, y) 2 -∆ x (x, y) 2 + ∆ y (x, y) 2 (10) Ξ = 100% i • j • x=i ∑ x=1 y=j ∑ y=1 1 i f ξ(x, y) >= 0 0 otherwise (11)

Performance for the depth estimation step

In Fig. 15, quantitative and qualitative results for the KITTI dataset [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF], are shown. In all cases our algorithm provides rough depth maps compared with stereo-based or deep learning approaches [START_REF] Fu | Deep Ordinal Regression Network for Monocular Depth Estimation[END_REF][START_REF] Li | Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference[END_REF] but with real-time processing and with the capability to be implemented in embedded hardware, suitable for smart cameras. To our knowledge, previous FPGA-based approaches are limited; there are several GPU-based approaches but in these cases most of the effort was for accuracy improvements and real-time processing or embedded capabilities were not considered so, in several cases, details about the hardware requirements or the processing speed are not provided [START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF][START_REF] Yang | Learning Edge with Geometry all at Once by Watching Videos[END_REF][START_REF] Godard | Digging Into Self-Supervised Monocular Depth Estimation[END_REF]. In Table 5 quantitative comparisons between our algorithm and the current state of the art are presented. For previous works, the RMS error, hardware specifications and processing speed were obtained from the published manuscripts while for our algorithm we computed the RMS error as indicated by the KITTI dataset, [START_REF] Uhrig | Depth Prediction Evaluation[END_REF]. For accuracy comparisons, most previous works [START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF][START_REF] Yang | Learning Edge with Geometry all at Once by Watching Videos[END_REF][START_REF] Godard | Digging Into Self-Supervised Monocular Depth Estimation[END_REF][START_REF] Yang | Unsupervised Learning of Geometry with Edge-aware Depth-Normal Consistency[END_REF][START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF][START_REF] Zou | Df-net: Unsupervised joint learning of depth and flow using cross-task consistency[END_REF] outperform our algorithm (near 15% more accurate than ours); however, our algorithm outperform all of them in terms of processing speed (a processing speed up to 128 times faster than previous works) and with embedded capabilities (making it possible to develop a smart camera/sensor suitable for embedded applications). Finally, in Fig. 17 an example of 3D reconstruction using our approach is shown. Our depth maps allow for a real-time dense 3D reconstruction. Previous works like the ORB-SLAM [START_REF] Mur-Artal | ORB-SLAM: a versatile and accurate monocular SLAM system[END_REF] or LSD-SLAM [START_REF] Engel | Large-scale direct monocular SLAM[END_REF] compute motion and depth in 2 to 7% of all image pixels, while ours compute 80% of the image pixels. Then, our algorithm improves by around 15 times the current state of the art, making possible real-time dense 3D reconstructions and with the capability to be implemented inside FPGA devices, suitable for smart cameras. The KITTI dataset: Sequence 00; 3D reconstruction by the proposed approach. Our algorithm provides rough depth maps (lower accuracy compared with previous algorithms) but with real-time processing and with the capability to be implemented in embedded hardware; as result, real-time dense 3D reconstructions can be obtained and, these can be exploited by several real world applications such as, augmented reality, robot vision and surveillance, autonomous flying, etc.

Conclusions

Depth from Motion is the problem of depth estimation using information from a single moving camera. Although several Depth from Motion algorithms were developed, previous works have low processing speed and high hardware requirements that limits the embedded capabilities. In order to solve these limitations in this work we have proposed a new depth estimation algorithm whose FPGA implementation deliver high efficiency in terms of algorithmic parallelization. Unlike previous works, depth information is estimated in real time inside a compact FPGA device, making our mathematical formulation suitable for smart embedded applications.

Comparted with the current state of the art, previous algorithms outperform our algorithm in terms of accuracy but our algorithm outperforms all previous approaches in terms of processing speed and hardware requirements; these characteristics makes our approach a promising solutions for the current embedded systems. We believed that several real world applications such as augmented reality, robot vision and surveillance, autonomous flying, etc., can take advantages by applying our algorithm since it delivers real-time depth maps that can be exploited to create dense 3D reconstructions or other abstractions useful for the scene understanding.

Figure 1 .

 1 Figure 1. Block diagram of the proposed algorithm

Figure 2 .

 2 Figure 2.The optical flow step: first, curl images (Curl t (x, y)), (Curl t+1 (x, y)) are computed. Then, given the curl images for two consecutive frames, pixels displacements ∆ x (x, y), ∆ y (x, y) (optical flow for all pixels in the reference image) are computed using a dynamic template based on the optical flow previously computed (∆ x,t-1 (x, y), ∆ y,t-1 (x, y)).

Figure 3 .Figure 4 .

 34 Figure 3. Curl computation example. Input image taken from the KITTI benchmark dataset[START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF]

Figure 5 .

 5 Figure 5. The proposed optical flow algorithm formulation: patch size = 10, search size = 10, sampling value = 2. For each pixel in the reference image f t , n overlapped regions are constructed in f t+1 , n region center that minimizes or maximizes any similarity metric is the tracked position (flow) of the pixel (x, y) at f t+1 .

2 -Figure 6 .

 26 Figure 6. (a) Epipolar geometry: depth in the scene is proportional to the disparity value, i.e., far objects have low disparity values while closer objects are associated with high disparity values. To compute the disparity map (disparities for all pixels in the image) a stereo pair (two images with epipolar geometry) are needed. (b) Single moving camera: in this work we suppose that depth in the scene is proportional to the pixel velocity across the time. To compute the pixel velocity, optical flow across two consecutive frames has to be computed.

Figure 7 .

 7 Figure 7. Depth estimation using the proposed algorithm

Figure 8 .

 8 Figure 8. FPGA architecture for the proposed algorithm

Figure 9 .

 9 Figure 9. FPGA architecture for the "frame buffer" unit. Two external memories configured in switching mode makes possible to store the current frame (time t) into a DRAM configured in write mode while another DRAM (in read mode) deliver pixel flow for a previous frame (frame at time t -1).

Figure 10 .

 10 Figure 10. FPGA architecture for the optical flow estimation

 (a) General formulation of a 3 × 3 circular buffer (b) FPGA architecture for the circular buffers

Figure 11 .

 11 Figure 11. The circular buffers architecture. For a n × n patch, a shift mechanism "control" unit manages the read/write addresses of n + 1 BRAMs. In this formulation n BRAMs are in read mode and one BRAM is in write mode in each clock cycle. Then, the n × n buffer delivers logic registers with all pixels within the patch in parallel.

Figure 12 .

 12 Figure 12. FPGA architecture for the "curl" unit

Figure 13 .

 13 Figure 13. FPGA architecture for the "depth estimation" unit

Figure 14 .Figure 15 .

 1415 Figure 14. Accuracy performance for different FPGA-based optical flow algorithms.

Figure 16 .

 16 Figure 16. Depth estimation: quantitative/qualitative results for the KITTI dataset

Figure 17 .

 17 Figure17. The KITTI dataset: Sequence 00; 3D reconstruction by the proposed approach. Our algorithm provides rough depth maps (lower accuracy compared with previous algorithms) but with real-time processing and with the capability to be implemented in embedded hardware; as result, real-time dense 3D reconstructions can be obtained and, these can be exploited by several real world applications such as, augmented reality, robot vision and surveillance, autonomous flying, etc.

Table 1 .

 1 Hardware resource consumption for the developed FPGA architecture.

		Consumption/image resolution
	Resource	640×480	320×240	256×256
	Total logic elements	69,879 (59%)	37,059 (31%) 21,659 (18%)
	Total pins	16 (3%)	16 (3%)	16 (3%)
	Total Memory Bits	618,392 (15%) 163,122 (4%)	85,607 (2%)
	Embedded multiplier elements	0 (0%)	0 (0%)	0 (0%)
	Total PLLs	1 (25%)	1 (25%)	1 (25%)

Table 2 .

 2 Hardware resource consumption comparisons

	Method	Logic elements	Memory bits	Image resolution
	Martín et al. [22] (2005)	11,520	147,456	256×256
	Díaz et al. [25] (2006)	513,216	685,670	320×240
	Wei et al. [26] (2007)	10,288	256 MB (DDR)	640×480
	Barranco et al. [27] (2012)	82,526	573,440	640×480
	Honegger et al. [29] (2012)	49,655	1,111,000	376×240
	Our work*	69,879	624,244	640×480
	Our work*	37,059	163,122	320×240
	Our work*	21,659	85,607	256×256
	*Operating frequency = 50 MHz		

Table 3 .

 3 Processing speed for different image resolutions

	Resolution	Frames/s	Pixels/s
	1280×1024	68	90,129,200
	640×480	297	91,238,400
	320×240	1,209	92,880,000
	256×256	1,417	92,876,430
	*Operating frequency = 50 MHz	

Table 4 .

 4 Processing speed comparisons

	Method	Resolution Frames/s	Pixels/s
	Martín et al. [22]	256×256	60	3,932,160
	Díaz et al. [25]	320×240	30	2,304,000
	Wei et al. [26]	640×480	64	19,550,800
	Barranco et al. [27]	640×480	31	9,523,200
	Honegger et al. [29]	376×240	127	11,460,480
	Our work	640×480	297	91,238,400

Table 5 .

 5 Depth estimation process in the literature: performance and limitations for the KITTI dataset.

	Method	Error (RMS)	Speed	Image resolution	Approach	
	Zhou et al. [42](2017)	6.8%	-	128×416	DfM-based*	-
	Yang et al. [46](2017)	6.5%	5 fps	128×416	CNN-based*	GTX 1080 (GPU)
	Mahjourian et al. [47](2018)	6.2%	100 fps	128×416	DfM-based*	Titan X (GPU)
	Yang et al.					

Funding: This research received no external funding. Acknowledgments: This work has been sponsored by the French government research program "Investissements d'avenir" through the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union through the program Regional competitiveness and employment, and by the Auvergne region. This work has been sponsored by Campus France through the scholarship program "bourses d'excellence EIFFEL", dossier No. MX17-00063 and by the National Council for Science and Technology (CONACyT), Mexico, through the scholarship No. 567804..

Conflicts of Interest:

The authors declare no conflict of interest.