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Given a linear dynamical system, we investigate the linear infinite dimensional system obtained by grafting an age structure. Such systems appear essentially in population dynamics with age structure when phenomena like spatial diffusion or transport are also taken into consideration. We first show that the new system preserves some of the wellposedness properties of the initial one. Our main result asserts that if the initial system is null controllable in a time small enough than the structured system is also null controllable in a time depending on the various involved parameters.

Introduction

Infinite dimensional dynamical systems coupling age structuring with diffusion or transport phenomena appear naturally in population dynamics, medicine or epidemiology (see, for instance, [START_REF] Brikci | An age-and-cyclin-structured cell population model for healthy and tumoral tissues[END_REF], [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF][START_REF] Webb | Population models structured by age, size, and spatial position[END_REF], [START_REF] Magal | Theory and applications of abstract semilinear cauchy problems[END_REF]). A by now classical example is the Lotka-Mckendrick system with spatial diffusion [START_REF] Gurtin | A system of equations for age-dependent population diffusion[END_REF]). For the convenience of the reader, we describe below the type of systems to be considered using a simplified example. To this aim, let X (the state space) and U (the input space) be finite dimensional inner product spaces. Our departure point is the linear time invariant control system described by ṗ(t) = Ap(t) + Bu(t),

(1.1)
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where A : X → X and B : U → X are linear operators. The system (1.1) is supposed to describe the evolution of a certain population density (particles, individuals,,. . . ) and it is possibly obtained by approximating a partial differential system. Adding an age structure to the system described by (1.1) means that we assume that p depends not only on t, but also on the age parameter a which lies in some bounded interval [0, a † ]. Moreover, we assume that individuals can die (with a certain probability) before the limit age a + or be born at a certain fertility rate. In this situation, the original system (1. where µ and β are the mortality and fertility rates, respectively and χ is the characteristic function of some subinterval of [0, a † ].

For X = U = C, A = 0 and B = 1 in the original system (1.1), the corresponding age structure system (1.2) becomes the classical Lotka-McKendrick system which has been first studied, from the controllability view point, in [START_REF] Barbu | On the controllability of the Lotka-McKendrick model of population dynamics[END_REF]. This problem was recently revisited by Hegoburu et al. (2018), [START_REF] Maity | On the Null Controllability of the Lotka-Mckendrick System[END_REF] and by [START_REF] Hegoburu | Null controllability via comparison results for nonlinear age-structured population dynamics[END_REF]. One of the consequences of our main results improves the above mentioned ones, in the sense that for every n, m ∈ N, X = C n , U = C m , such that the original system (1.1) is controllable then, under appropriate assumptions on µ, β and χ, the same property holds for the corresponding age structured system (1.2) (see Subsection 4.1 below).

The main focus in this work is on the more complicated situation where X and U are possibly infinite dimensional spaces, with the operators A and B possibly unbounded. We think, in particular, to the case when X = L 2 (Ω), where Ω ⊂ R n is an open bounded set, A is an advection-diffusion operator and B describes a boundary or internal control. From the controllability view point, particular cases of such systems have been studied in several papers. The first ones are probably [START_REF] Ainseba | Exact and approximate controllability of the age and space population dynamics structured model[END_REF]Anit ¸a (2001, 2004) (see also [START_REF] Ainseba | Exact and approximate controllability of the age and space population dynamics structured model[END_REF], Hegoburu and Tucsnak (2018) and [START_REF] Maity | Controllability and positivity constraints in population dynamics with age structuring and diffusion[END_REF]).

The main results in this article assert that in the infinite dimensional case (namely when (1.1) is a PDE system with distributed or boundary control), the wellposedness and null controllability of the system described by (1.1) are inherited by the corresponding age structured system (1.2). One of the advantages of this approach is that it allows obtaining in a unified manner a variety of results existing in the literature, such as those corresponding to an operator A describing diffusion (possibly with singular coefficients) or transport phenomena, with an operator B corresponding to a distributed control. Moreover, we obtain controllability results, which seem new, in the case of an unbounded control operator B is (corresponding to boundary control problems).

To give a precise description of our results, we introduce some notation. Let A : D(A) → X be be the generator of the C 0 semigroup S on the Hilbert spaceX and let U be another Hilbert space. Both X and U will be identified with their duals. Let B be a (possibly unbounded) linear operator from U to X, which is supposed admissible control operator for S (see Section 2 for the precise definition of this concept). In the examples we have in mind, the above spaces and operators describe the dynamics of a system without age structure. In particular, X is the state space and U is the control space. The corresponding age structured system is obtained by first extending these spaces to

X = L 2 (0, a † ; X), (1.4) U = L 2 (0, a † ; U ), (1.5)
where a † > 0 denotes the maximal age individuals can attain. Let p(t) ∈ X be the distribution density of the individuals with respect to age a 0 and at some time t 0. Then the abstract version of the Lotka-McKendrick system to be considered in this paper writes:

           ∂p ∂t + ∂p ∂a -Ap + µ(a)p = 1 (a1,a2) Bu, t 0, a ∈ (0, a † ), p(t, 0) = a † 0 β(s)p(t, s) ds, t 0, p(0, a) = p 0 , (1.6)
where 1 is the characteristic function of the interval (a 1 , a 2 ) with 0 a 1 < a 2 a † and p 0 is the initial population density. In the above system, the positive function µ : [0, a † ] → R + denotes the natural mortality rate of individuals of age a. We denote by β : [0, a † ] → R + the positive function describing the fertility rate at age a. We assume that the fertility rate β and the mortality rate µ satisfy the conditions (H1) β ∈ L ∞ (0, a † ), β 0 for almost every a ∈ (0, a † ).

(H2) µ ∈ L ∞ [0, a * ] for every a * ∈ (0, a † ), µ 0 for almost every a ∈ (0, a † ).

(H3)

a † 0 µ(a) da = +∞.
For more details about the modelling of such system and the biological significance of the hypotheses, we refer to [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF]. Before we state our main result, let us introduce the notion of null controllability of the pair (A, B).

Definition 1.1. We say that a pair (A, B) is null-controllable in time τ, if for every z 0 ∈ X there exists a control u ∈ L 2 (0, τ, U ) such that, the solution of the system

ż(t) = Az(t) + Bu(t) t ∈ [0, τ ], z(0) = z 0 , satisfies z(τ ) = 0.
The main result of this paper is:

Theorem 1.2. Assume that β and µ satisfy the conditions (H1)-(H3) above. Moreover, suppose that the fertility rate β is such that

β(a) = 0 for all a ∈ (0, a b ), (1.7)
for some a b ∈ (0, a † ) and that a 1 < a b . Let us assume that the pair (A, B) is null controllable in any time τ > τ 0 , with

0 τ 0 < τ , τ = min{a 2 -a 1 , a b -a 1 }. (1.8)
Then for every τ > a 1 + a †a 2 + 2τ 0 and for every p 0 ∈ X there exists a control v ∈ L 2 (0, τ ; U) such that the solution p of (1.6) satisfies p(τ, a) = 0 for all a ∈ (0, a † ).

(1.9)

This result can be seen as a generalization of those obtained in [START_REF] Ainseba | Exact and approximate controllability of the age and space population dynamics structured model[END_REF]Anit ¸a (2001, 2004); [START_REF] Ainseba | Exact and approximate controllability of the age and space population dynamics structured model[END_REF]; Hegoburu and Tucsnak (2018); [START_REF] Maity | Controllability and positivity constraints in population dynamics with age structuring and diffusion[END_REF] in the case when A is an elliptic operator with Neumann or Dirichlet homogeneous boundary conditions or in [START_REF] Ainseba | Null controllability of a population dynamics with degenerate diffusion[END_REF], [START_REF] Boutaayamou | Null controllability of a population dynamics with interior degeneracy[END_REF] or [START_REF] Fragnelli | Carleman estimates and null controllability for a degenerate population model[END_REF] when A is a degenerate elliptic operator. As shown in Section 4 our approach applies, besides the above mentioned examples, to operators A such that the systems without age structure describes fractional diffusion, transport phenomena or even Schrödinger type dynamics, with internal or boundary control.

The proof of the above theorem relies on final state observability of it's adjoint system. This consists of combining characteristics method with final state observability of the pair (A * , B * ), with no reference to the methodology employed to prove this observability result for the system without age structure. This idea was already used in [START_REF] Maity | Controllability and positivity constraints in population dynamics with age structuring and diffusion[END_REF] where A was second order elliptic differential operator and B was interior control operator.

The remaining part of this work is organized as follows: In section 2, we study the wellposedness of the system (1.6) and we determine it's adjoint. Section 3 is devoted to the proof of Theorem 1. In section 4, we give several applications of our main theorem. In Section 5 we study controllability of the system (1.6) with regular controls.

2 Wellposedness of the system (1.6)

In this section, we rewrite the (1.6) as an abstract control system. Next, we study the wellposedness of this system and we determine the adjoint of the corresponding semigroup generator.

Let us remind that if A generates a C 0 -semigroup S on X then there exist M 1 and ω such that S t M e ωt , for all t 0.

(2.1)

We denote by A * the adjoint of A. Then A * generates a C 0 -semigroup S * = (S * t ) t 0 on X. Moreover,

S *
t M e ωt , for all t 0.

(2.2)

We define X d 1 = D(A * ) equipped with the graph norm. Let X -1 be the dual of X d 1 with respect to the pivot space X. In particular, X d 1 ⊂ X ⊂ X -1 , with continuous and dense embeddings. It is known (see, for instance, (Tucsnak and Weiss, 2009, Section 2.10)) that S extends to a C 0 semigroup on X -1 , whose generator, which is an extension of A, has the domain X.

Let B ∈ L(U, X -1 ) and τ > 0. We define Φ A τ ∈ L(L 2 (0, ∞; U ), X -1 ) by

Φ A τ u = τ 0 S τ -s Bu(s) ds. (2.3)
We introduce admissible control operators:

Definition 2.1. (Tucsnak and Weiss, 2009, Definition 4.2.1) The operator B ∈ L(U, X -1 ) is called an admissible control operator for S if for some τ > 0, Ran Φ A τ ⊂ X.

The above admissibility condition can also be reformulated in terms of the adjoint of the operators (see (Tucsnak and Weiss, 2009, Proposition 4.4.1)). The operator B ∈ L(U, X -1 ) is an admissible control operator for S, if and only if, for all τ > 0, there exists a constant C τ > 0 such that

τ 0 B * S * t z 2 U dt C τ z 2 X , ∀z ∈ D(A * ).
(2.4)

Reminding that the input space X and the control space U for the corresponding age structured system are defined in (1.4) and (1.5), respectively, we introduce the operator A : D(A) → X defined by

D(A) = ϕ ∈ C([0, a † ]; X) | ϕ(0) = a † 0 β(a)ϕ(a) da, - ∂ϕ ∂a + Aϕ -µϕ ∈ X , Aϕ = - ∂ϕ ∂a + Aϕ -µϕ. (2.5) Let us set X -1 = L 2 (0, a † ; X -1 ) (2.6)
and we introduce the control operator B ∈ L(U, X -1 ) defined by

Bu = 1 (a1,a2) Bu (u ∈ U).
(2.7)

With the above notation, we rewrite the system (1.6) as ṗ = Ap + Bu, p(0) = p 0 .

(2.8)

We now show that A generates a C 0 -semigroup on X under the assumption that A generates a C 0 semigroup on X. More precisely: Theorem 2.2. Assume A generates a C 0 semigroup on X. Then A defined in (2.5) generates a C 0 semigroup on X .

The proof of this theorem is divided into several parts. We are going to follow the approach of [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF]; [START_REF] Walker | Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations[END_REF]. Integrating along the characteristic lines, the solution of (2.8) with u = 0, at least formally, can be written as

p(t, a) =    π(a) π(a -t) S t p 0 (a -t), t < a, π(a)S a b p0 (t -a) t a,
(2.9)

where π(a) = e -a 0 µ(s)ds is the probability of survival of an individual from age 0 to a and b ϕ (t) is the unique continuous solution of the following linear Volterra integral equation in X :

b ϕ (t) = t 0 β(a)π(a)S a b ϕ (t -a) + S t a † -t 0 β(a + t) π(a + t) π(a) ϕ(a) da, (2.10)
where the last integral is 0 if t a † . This motivates us to define a semigroup T on X as follows:

T t ϕ =    π(a) π(a -t) S t ϕ(a -t), t < a, π(a)S a b ϕ (t -a) t a. (2.11) Note that b ϕ (t) = a † 0 β(a)T t ϕ(a) da.
(2.12)

The following result can be obtained along the lines of (Webb, 2008, Theorem 4) (see also [START_REF] Walker | Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations[END_REF], Theorem 2.2)) :

Proposition 2.3. The family of operators T defined in (2.22) is a C 0 -semigroup on X .

Let A denote the generator of the semigroup T. Therefore to prove Theorem 2.2 we only need to show A = A, where A is defined in (2.5). To this aim, we first prove the following result : Lemma 2.4. Let A be the unbounded operator defined in (2.5). Then λI -A is onto for λ large enough.

Proof. Given λ > 0, f ∈ X and ψ ∈ X, we consider the following problem

λϕ + ∂ϕ ∂a -Aϕ + µϕ = f, ϕ(0) = ψ. (2.13)
Since A generates a C 0 -semigroup on X, the above problem admits a unique solution ϕ ∈ C([0, a † ]; X) and given by

ϕ(a) = e -λa π(a)S a ψ + a 0 e -λ(a-s) π(a -s) S a-s f (s) ds. (2.14)
From the above formula, we obtain

ϕ(0) - a † 0 β(a)ϕ(a)da = ψ - a † 0 e -λa π(a)β(a)S a ψ da - a † 0 β(a) a 0 e -λ(a-s) π(a)S a-s f (s) dsda. (2.15)
Now consider the operator F(λ) ∈ L(X) defined by

F(λ)ψ = a † 0 e -λa π(a)β(a)S a ψ da.
(2.16) Using (2.1), we have

F(λ)ψ X M β L ∞ (0,a † ) 1 λ -ω ψ X .
Thus lim λ→∞ F(λ) L(X) = 0, and we clearly have that I -F(λ) is invertible for large λ. Let us take

ψ = (I -F(λ)) -1 a † 0 β(a) a 0 e -λ(a-s) π(a -s)S a-s f (s) dsda.
Then using (2.15) it is easy to see that, ϕ defined by (2.14) with above choice of ψ satisfies the following system

λϕ + ∂ϕ ∂a -Aϕ = f, ϕ(0) = a † 0 β(a)ϕ(a) da.
Thus λI -A is onto. Moreover, the unique solution of the above system is given by

ϕ(a) = e -λa π(a)S a (I -F(λ)) -1 a † 0 β(a) a 0 e -λ(a-s) π(a -s)S a-s f (s) dsda + a 0 e -λ(a-s) π(a -s) S a-s f (s) ds. (2.17)
Now we show that the generator of the semigroup T coincides with A.

Proposition 2.5. Let A be the generator of the semigroup T and let A be defined in (2.5). Then A = A.

Proof. Let ϕ ∈ D(A). Let λ > 0 sufficiently large and we set f := λϕ -Aϕ. Then using (2.22), we have

ϕ(a) = ∞ 0 e -λt T t f (a) dt = a 0 e -λt π(a) π(a -t) S t f (a -t) dt + ∞ a e -λt π(a)S a b f (t -a) dt = a 0 e -λ(a-s) π(a -s) S a-s f (s) ds + e -λa π(a)S a ∞ 0 e -λt b f (t) dt.
(2.18)

Now using (2.12) and (2.22), we get

∞ 0 e -λt b f (t) dt = a † 0 β(a) ∞ 0 e -λt T t f (a) dtda = a † 0 β(a) a 0 e -λt π(a) π(a -t) S t f (a -t) dtda + a † 0 β(a) ∞ a e -λt π(a)S a b f (t -a) dtda = a † 0 β(a) a 0 e -λ(a-s) π(a -s)S a-s f (s) dsda + a † 0 e -λa β(a)π(a)S a ∞ 0 e -λt b f (t) dtda.
Therefore,

∞ 0 e -λt b f (t) dt = (I -F(λ)) -1 a † 0 β(a) a 0 e -λ(a-s) π(a -s)S a-s f (s) dsda,
where F(λ) is defined in (2.16). Using the above relation in (2.18) and comparing this expression with (2.17) it is easy to see that ϕ ∈ D(A). We have thus proved that D( A) ⊂ D(A) and

Aϕ = - ∂ϕ ∂a + Aϕ -µϕ = Aϕ (ϕ ∈ D( A)). (2.19)
Conversely, let us assume that ϕ ∈ D(A). For λ sufficiently large, we define f := λϕ

+ ∂ϕ ∂a -Aϕ + µϕ. Then f ∈ X . Set ψ = (λI -A) -1 f ∈ D( A). Therefore using (2.19) we have that λ(ϕ -ψ) + ∂ ∂a (ϕ -ψ) -A(ϕ -ψ) + µ(ϕ -ψ) = 0. Thus ϕ -ψ = e -λa π(a)S a (ϕ -ψ)(0).
Using the definition of F(λ) in (2.16), it is easy to see that the above relation is equivalent to

(I -F(λ))(ϕ -ψ)(0) = 0.
Thus for λ sufficiently large ϕ(0) = ψ(0) and therefore ϕ = ψ ∈ D( A). This completes the proof of the proposition.

Proof of Theorem 2.2. The proof of this theorem follows from Proposition 2.3 and Proposition 2.5.

Remark 2.6. An alternative proof of Theorem 2.2 can be obtained by combining the results in (Magal and Ruan, 2018, Section 3.8) with a perturbation result of Desch-Schappcher type (see, for instance, (Tucsnak and Weiss, 2009, Section 5.4)).

Next we show that B defined in (2.7) is an admissible control operator:

Lemma 2.7. Let us assume that B ∈ L(U, X -1 ) is an admissible control operator for S. Then the operator B ∈ L(U, X -1 ) defined in (2.7) is an admissible control operator for the semigroup T generated by A.

Proof. The proof follows easily from definition 2.1 and the fact that B is an admissible control operator.

Using Proposition 2.2 and Lemma 2.7, we have the following wellposedness result of the system (2.8) (see for instance [START_REF] Tucsnak | Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher[END_REF], Proposition 4.2.5)) :

Theorem 2.8. For every p 0 ∈ X and for every u ∈ L 2 (0, a † ; U) the system (2.8) admits a unique solution

p ∈ C([0, a † ]; X ).
With the above notation our main result in Theorem 1.2 can be restated as: If the pair (A, B) is null controllable in time τ 0 , then the pair (A, B) is null controllable in time τ > a 1 + a †a 2 + 2τ 0 . To prove this assertion, we are going to use the fact that null controllability of the pair (A, B) at time τ is equivalent to final state observability in time τ of the pair (A * , B * ). In the following theorem we determine the adjoint of A and B. To this aim, we first consider an auxiliary operator A 0 defined by

D(A 0 ) = ψ ∈ X | q(t, a † ) = 0, ∂ψ ∂a -µψ + A * ψ ∈ X , A 0 ψ = ∂ψ ∂a -µψ + A * ψ.
(2.20)

We have the following proposition:

Proposition 2.9. The operator A 0 is the infinitesimal generator of a C 0 -semigroup T 0 on X . Moreover,

T 0 t M e ωt , (2.21)
where M and ω are defined in (2.2).

Proof. The proof this proposition is similar to that of Theorem 2.2. We briefly sketch the idea. Integrating along the characteristic lines we define the semigroup T 0 on X as follows:

T 0 t ϕ =    π(a) π(a + t) S * t ϕ(a + t), t < a † -a, 0 t a † -a.
(2.22)

As S * t is a C 0 -semigroup, it follows that T t is also a C 0 -semigroup (see Proposition 2.3). Moreover, proceeding as Proposition 2.5 we can show that the domain of the semigroup T 0 t is A 0 . The estimate (2.21) is easy to obtain from the expression of the semigroup T 0 t .

The result below gives the adjoint operators of A and B. We skip it's proof since it is fully similar to the one given for (Maity et al., 2019, Proposition 2.3).

Proposition 2.10. The adjoint of A in X is defined by

D(A * ) = D(A 0 ), A * ψ = ∂ψ ∂a -µψ + A * ψ + β(a)ψ(0). Moreover, B * ∈ L(L 2 (0, a † ; D(A * )); U) defined by B * ψ = 1 (a1,a2) B * ψ,
where B * ∈ L(D(A * ), U ) is the adjoint of the operator B.

We end this subsection with the following result, which will be required later on.

Lemma 2.11. Assume the hypothesis of Lemma 2.7. Then there exists a constant C τ > 0 such that the solution ϕ to the system

φ = A 0 ϕ + f (t) t ∈ [0, τ ], ϕ(0) = 0, (2.23) satisfies τ 0 B * ϕ 2 U C τ f L 2 (0,τ ;X ) , (2.24)
for every f ∈ L 2 (0, τ ; X ).

Proof. We first note that B ∈ L(U, X -1 ) defined in (2.7) is also an admissible control operator for the semigroup T 0 generated by A 0 . The result follows from [START_REF] Curtain | Well posedness of triples of operators (in the sense of linear systems theory)[END_REF], Theorem 5.1 and Remark 5.4).

3 An Observability Inequality.

As mentioned above, the null-controllability of a pair (A, B) is equivalent to the final state observability of the pair (A * , B * ), see (Tucsnak and Weiss, 2009, Theorem 11.2.1). Recall that that final-state observability of (A * , B * ) is defined as Definition 3.1. (Tucsnak and Weiss, 2009, Definition 6.1.1) The pair (A * , B * ) is final state observable in time τ if there exists a k τ > 0 such that

T * τ q 0 2 X k 2 τ τ 0 B * T * τ q 0 2 U , (q 0 ∈ D(A * )).
For A defined in (2.5) and q 0 ∈ X we set

q(t) = T * t q 0 (t 0),
where T is the semigroup generated by A. According to Proposition 2.10, q satisfies, for t 0, a ∈ (0, a † ):

       ∂q ∂t - ∂q ∂a -A * q -β(a)q(t, 0) + µ(a)q = 0, q(t, a † ) = 0,
q(0, a) = q 0 (a).

(3.1)

In view of (Tucsnak and Weiss, 2009, Theorem 11.2.1), the statement in Theorem 1.2 is equivalent to the following theorem:

Theorem 3.2. Assume that β and µ satisfy the conditions (H1)-(H3). Moreover, suppose that the fertility rate

β is such that β(a) = 0 for all a ∈ (0, a b ), (3.2)
for some a b ∈ (0, a † ) and that a 1 < a b . Let us assume that the pair (A * , B * ) is final state observable in time τ > τ 0 , with

0 τ 0 < τ , τ = min{a 2 -a 1 , a b -a 1 }. (3.3)
Then the pair (A * , B * ) is final-state observable for every τ > a 1 + a †a 2 + 2τ 0 . In other words, for every τ > a 1 + a †a 2 + τ 0 there exists k τ > 0 such that the solution q of (3.1) satisfies

q(τ ) 2 X k 2 τ τ 0 B * q(t) 2 U dt, (q 0 ∈ D(A * )).
(3.4)

Remark 3.3. Using the expression of B * it is easy to see that the inequality (3.4) reads as

a † 0 q(τ, a) 2 X da κ 2 τ τ 0 a2 a1 B * q(t, a) 2 U dadt, (3.5) 
for any q 0 ∈ D(A * ).

The main idea of the proof is to use final state observability of the pair (A * , B * ) along the characteristic lines. We first have the following proposition, which is an easy consequence of the final state observability of the pair (A * , B * ).

Proposition 3.4. Let us assume that the pair (A * , B * ) is final state observable in any time T > T 0 with T 0 0. Let C(T ) be the observability cost with C(T ) → ∞ as T → T 0 . Let T 1 , T 2 and T 3 are three real numbers such that

0 T 1 < T 2 T 3 with T 2 -T 1 > T 0 .
Then for every w 0 ∈ D(A * ), the solution w of the problem

dw dt = A * w t ∈ [T 1 , T 3 ], w(T 1 ) = w 0 , (3.6) 
satisfies the estimate

w(T 3 ) 2 X M e ω(T3-T2) C(T 2 -T 1 ) T2 T1 B * w(s) 2 U ds, (3.7)
where M and ω are defined in (2.2).

Proof. By semigroup property (2.2), it is easy to see that

w(T 3 ) 2 X
M e ω(T3-T2) w(T 2 ) 2 X . Now applying the final state observability of (A * , B * ) on the time interval [T 1 , T 2 ] we obtain

w(T 2 ) 2 X C(T 2 -T 1 ) B * w(s) 2 U ds.
Combining the above two estimates we conclude the proof of the proposition.

The following three propositions are crucial in proving Theorem 3.2. Proposition 3.5. Let us assume the hypothesis of Theorem 3.2. Let τ > τ 0 + a 1 .

Then for every q 0 ∈ D(A * ), the solution q of the system (3.1), verifies

a1 0 q(τ, a) 2 X da M C µ e ωa1 max C(τ -a 1 ), C(a 2 -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U da dt, (3.8)
where

C µ = e 2 µ L 1 [0,a0] .
Proof. Let us recall that τ is defined by τ = min{a 2a 1 , a ba 1 }. Thus without loss of generality we can assume that a 2 a b . Since β(a) = 0 for all a ∈ (0, a 2 ), q satisfies ∂q ∂t -∂q ∂a -A * q + µ(a)q = 0, t 0, a ∈ (0, a 2 ), (3.9)

We set q(t, a) = q(t, a) e -a 0 µ(r) dr .

(3.10)

Then q satisfies ∂ q ∂t - ∂ q ∂a -A * q = 0, t 0, a ∈ (0, a 2 ). (3.11)
Without loss of generality, let us assume that τ < a 2 , τ > a 2a 1 .

(3.12)

We set b 0 = a 2τ and we split the interval (0, a 1 ) as follows (0, a 1 ) = (0, b 0 ) ∪ (b 0 , a 1 ).

(3.13)

Let us remark that, the choices in (3.12) are made to cover all possible scenarios. Indeed, if τ < a 2a 1 we can choose b 0 = a 1 or if τ > a 2 we choose b 0 = 0. We are going to use Proposition 3.4 along the characteristics. In the remaining part of the proof we give upper bounds for I q(τ, a) 2 X da where I is successively each one of the intervals appearing in the decomposition (3.13). Upper bound on (0, b 0 ): For a.e a ∈ (0, b 0 ), we first set w(s) = q(s, a + τs) s ∈ (0, τ ).

Then w satisfies ∂w ∂s -A * w = 0, s ∈ (0, τ ).

(3.14)

Applying Proposition 3.4, with T 0 = τ 0 , T 1 = 0, T 2 = τ + aa 1 and T 3 = τ we obtain

w(τ ) 2 X M e ω(a1-a) C(τ + a -a 1 ) τ +a-a1 0 B * w(s) 2 U ds.
In terms of q, the above inequality writes

q(τ, a) 2 X M e ω(a1-a) C(τ + a -a 1 ) τ +a-a1 0 B * q(s, a + τ -s, x) 2 U ds = M e ω(a1-a) C(τ + a -a 1 ) τ +a a1 B * q(τ + a -s, s) 2 U ds.
Integrating with respect to a over (0, b 0 ) we obtain b0

0 q(τ, a) 2 X da M e ωa1 C(τ -a 1 ) b0 0 τ +a a1 B * q(τ + a -s, s) 2 U dsda = M e ωa1 C(τ -a 1 ) a2 a1 b0 s-τ B * q(τ + a -s, s) 2 U dads = M e ωa1 C(τ -a 1 ) a2 a1 a2-s 0 B * q(r, s) 2 U drds M e ωa1 C(τ -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.15) 0 a 1 a 2 t = τ b 0 t = τ 0 + a 1 t = a 1
Figure 1: An illustration of the choice made in (3.12): Blue region corresponds to the interval (0, b 0 ). Since τ > a 1 , the trajectory γ(s) := (τs, a + s), s ∈ [0, τ ] (or equivalently the backward characteristics staring from (τ, a)) enters the observation region (a 1 , a 2 ) × (0, τ ) at s = a 1a. At s = τ, γ(s) hits the line t = 0 without leaving the observation region. The red region corresponds to the interval (b 0 , a 1 ). In this case, the trajectory γ(s) enters the observation domain at s = a 1a and exits the observation region at s = a 2a. Since, (A * , B * ) is final state observable in time τ > τ 0 , we need length of the characteristics to be greater than τ 0 within the observation region. Thus we need τ > τ 0 + a 1 in order to observe q at final time.

Upper bound on (b 0 , a 1 ): For a.e. a ∈ (b 0 , a 1 ), we define

w(s) = q(s, a + τ -s) s ∈ (τ + a -a 2 , τ ).
Then w satisfies ∂w ∂s

-A * w = 0, s ∈ (τ + a -a 2 , τ ). (3.16) Applying Proposition 3.4 with T 0 = τ 0 , T 1 = τ + a -a 2 , T 2 = τ + a -a 1 and T 3 = τ it follows that w(τ ) 2 X M e ω(a1-a) C(a 2 -a 1 ) τ +a-a1 τ +a-a2 B * w(s) 2 U ds.
In terms of q, the above inequality becomes

q(τ, a) 2 X M e ω(a1-a) C(a 2 -a 1 ) τ +a-a1 τ +a-a2 B * q(s, a + τ -s) 2 U ds = M e ω(a1-a) C(a 2 -a 1 ) a2 a1 B * q(τ + a -s, s) 2 U ds.
Integrating with respect to a over (b 0 , a 1 ) we get

a1 b0 q(τ, a) 2 X da M e ω(a1-b0) C(a 2 -a 1 ) a1 b0 a2 a1 B * q(τ + a -s, s) 2 U dsda = M e ω(a1-b0) C(a 2 -a 1 ) a2 a1 a1 b0 B * q(τ + a -s, s) 2 U dads = M e ω(a1-b0) C(a 2 -a 1 ) a2 a1 τ +a1-s τ +b0-s B * q(r, s) 2 U drds M e ωa1 C(a 2 -a 1 ) a2 a1 τ 0 B * q(r, s) 2 U drds = M e ωa1 C(a 2 -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.17)
Therefore, combining (3.15) and (3.17) we get a0 0 q(τ, a) 2 X da M e ωa1 max C(τa 1 ), C(a 2a 1 ) τ 0 a2 a1 B * q(t, a) 2 U da dt.

(3.18) Finally using the above estimate and the definition of q in (3.10) we obtain (3.20). This completes the proof of the proposition.

Next, we consider the system (3.1) with β = 0. More precisely, we consider the system

       ∂z ∂t - ∂z ∂a -A * z + µ(a)z = 0, (t, a) ∈ (0, τ ) × (0, a † ) z(t, a † ) = 0, t ∈ (0, τ ) z(0, a) = z 0 (a) a ∈ (0, a † ).
(3.19) Proposition 3.6. Let us assume the hypothesis of Theorem 3.2. Let τ > τ 0 and a 1 < a 0 < a 2τ 0 .

Then for every z 0 ∈ D(A * ), the solution z of the system (3.19), verifies (3.20) where

a0 a1 z(τ, a) 2 X da M C µ e ωa1 max C(τ ), C(a 2 -a 0 ) τ 0 a2 a1 B * z(t, a) 2 U da dt,
C µ = e 2 µ L 1 [0,a0] .
Proof. The proof is similar to that of Proposition 3.5. Let us briefly explain the main steps. We consider the case τ < a 2a 1 .

We split the interval (a 1 , a 0 ) as (see Fig. 2)

(a 1 , a 0 ) = (a 1 , a 3 ) ∪ (a 3 , a 0 ) where a 3 = a 2 -τ.
If τ a 2a 1 , then we choose a 3 = a 1 . Then we estimate I z(τ, a) 2 X da where I is successively each one of interval appearing in the above decomposition. These estimates are similar to the ones presented in Proposition 3.5, thus omitted here. In the next proposition, we estimate q(t, 0). More precisely, we prove the following: Proposition 3.7. Let us assume the hypothesis of Theorem 3.2 and let τ > τ 0 + a 1 and η ∈ (τ 0 + a 1 , τ ). Then for every q 0 ∈ D(A * ), the solution q of the system (3.1), satisfies

0 a 1 a 2 a 0 a 2 -τ 0 a 3 t = τ t = τ 0
τ η q(t, 0) 2 X dt M e ωa1 C(η -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.21)
Proof. First of all, without loss of of generality we can assume that a 2 a b (otherwise we simply observe for small ages). Then for all t 0 and a ∈ (0, a 2 ), q satisfies the system (3.9). Let q be defined as in (3.10). In particular, q satisfies (3.11). Here also we are going to use Proposition 3.4 along the characteristics. Without loss of generality, let us assume that a 2 a b and η < a 2 < τ.

Case 1: For a.e. t ∈ (a 2 , τ ), we define

w(s, x) = q(s, t -s), s ∈ (t -a 2 , t). (3.22) Then w satisfies ∂w ∂s -A * w = 0 s ∈ (t -a 2 , t), (3.23)
Using Proposition 3.4, with t 0 = ta 2 , t 1 = ta 1 and T = t, we obtain

w(t) 2 X M e ωa1 C(a 2 -a 1 ) t-a1 t-a2
B * w(s, x) 2 U ds.

In terms of q the above inequality reads as

q(t, 0) 2 X M e ωa1 C(a 2 -a 1 ) t-a1 t-a2 B * q(s, t -s) 2 U ds = M e ωa1 C(a 2 -a 1 ) a2 a1 B * q(t -s, s) 2 U ds.
Integrating with respect to t over [a 2 , τ ] we obtain

τ a2 q(t, 0) 2 dt M e ωa1 C(a 2 -a 1 ) τ a2 a2 a1 B * q(t -s, s) 2 U dsdt = M e ωa1 C(a 2 -a 1 ) a2 a1 τ a2 B * q(t -s, s) 2 U dtds = M e ωa1 C(a 2 -a 1 ) a b a1 τ -s a2-s B * q(r, s) 2 U drds M e ωa1 C(a 2 -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dxdadt. (3.24)
Case 2: For a.e t ∈ (η, a 2 ), we define

0 a 1 a 2 = a b t = a 1 t = τ η t = τ 0 + a 1
Figure 3: An illustration of the estimate of q(t, 0). Here we have chosen a 2 = a b . Since τ > τ 0 + a 1 all the backward characteristics starting from (t, 0) enters the observation domain (the green region) and the length of the characteristics within the observation region is greater than τ 0 .

w(s) = q(s, ts) s ∈ (0, t).

(3.25)

Then w satisfies ∂w ∂s -A * w = 0 s ∈ (0, t).

By applying Proposition 3.4, with t 0 = 0, t 1 = ta 1 and T = t, we obtain

w(t) 2 X M e ωa1 C(t -a 1 ) t-a1 0 B * w(s) 2 U ds.
This yields

q(t, 0) 2 X M e ωa1 C(t -a 1 ) t-a1 0 B * q(s, t -s) 2 U ds = M e ωa1 C(t -a 1 ) t a1 B * q(t -s, s) 2 U ds.
Integrating with respect to t over [η, a 2 ] we get

a2 η q(t, 0) 2 X dt M e ωa1 C(η -a 1 ) a2 η t a1 B * q(t -s, s) 2 U dsdt M e ωa1 C(η -a 1 ) a2 0 t a1 B * q(t -s, s) 2 U dsdt = M e ωa1 C(η -a 1 ) a2 a1 a2 s B * q(t -s, s) 2 U dtds = M e ωa1 C(η -a 1 ) a2 a1 a2-s 0 B * q(r, s) 2 U drds M e ωa1 C(η -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.26)
Combining, (3.24) and (3.26) we obtain

τ η q(t, 0) 2 X dt M e ωa1 C(η -a 1 ) τ 0 a2 a1 B * q(t, a) 2 U dadt.
Note that, from the definition of q in (3.10), we have q(t, 0) = q(t, 0). Thus from the above estimate we clearly obtain (3.21).

3.1 Proof of the main result.

We are now in a position to prove Theorem 3.2, thus, consequently, our main result in Theorem 1.2.

Proof of Theorem 3.2. The constant C τ appearing in this proof depends only on τ, a † , µ, β, A and B. Let us set

δ = τ -(a 1 + a † -a 2 + 2τ 0 ) and η = a 1 + τ 0 + δ 2 .
Without loss of generality we can assume τ is such that a 1 < a 2τ 0δ/2. (see Fig. 4). By Proposition 3.5, we already have that

a1 0 q(τ, a) 2 X da C µ e ωa1 C(τ 0 + δ/2) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.27)
Thus the rest of the proof is devoted towards the estimate of a † a1 q(τ, a) 2 X da. To this aim, let us define

q η (a) := q(η, a), a ∈ (0, a † ) and V (t, a) := β(a)q(t, 0), t ∈ (η, τ ), a ∈ (0, a † ). (3.28) We write q(t, a) = q 1 (t, a) + q 2 (t, a), t ∈ (η, τ ), a ∈ (0, a † ), (3.29) 
where

q 1 solves        ∂q 1 ∂t - ∂q 1 ∂a -A * q 1 + µ(a)q 1 = 0, t ∈ (η, τ ), a ∈ (0, a † ), q 1 (t, a † ) = 0, t ∈ (η, τ ), q 1 (η, a) = q η (a), a ∈ (0, a † ), (3.30) and q 2 solves        ∂q 2 ∂t - ∂q 2 ∂a -A * q 2 + µ(a)q 2 = V (t, a), t ∈ (η, τ ), a ∈ (0, a † ), q 2 (t, a † ) = 0, t ∈ (η, τ ), q 2 (η, a) = 0, a ∈ (0, a † ).
(3.31) Using Duhamel's formula we can write q 2 as

q 2 (t, a) = t η T 0 t-s V (s, •) ds, (3.32)
where T 0 is the C 0 semigroup defined in (2.22). Using (2.21) and Proposition 3.7 we get

a † a1 q 2 (τ, a) 2 X da C τ τ η q(t, 0) 2 X dt C τ C(τ 0 + δ/2) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.33)
On the other hand, we write

a † a1 q 1 (τ, a) 2 X da = a2-τ0-δ/2 a1 q 1 (τ, a) 2 X da + a † a2-τ0-δ/2 q 1 (τ, a) 2 da. (3.34)
From the semigroup representation of T 0 t in (2.22), we have

0 a 1 a 2 a † a b t = τ 0 + a 1 t = η t = τ a 2 -τ 0 -δ/2 t = a 1 + a † -a 2 + 2τ 0 q 1 = 0 a 2 -τ 0 -δ/2 Estimate of q 1 (τ, a)
Estimate of q 2 (τ, a)

0 a 1 a 2 a b a † Figure 4: q 1 (t, a) = for t -η a † -a. (3.35) In particular, q 1 (τ, a) = 0 for a ∈ [a 2 -τ 0 -δ/2, a † ].
Therefore,

a † a1 q 1 (τ, a) 2 X da = a2-τ0-δ/2 a1 q 1 (τ, a) 2 X da. (3.36)
Since τη > τ 0 , applying Proposition 3.6 to q 1 with a 0 = a 2τ 0δ/2, we obtain

a2-τ0-δ/2 a1 q 1 (τ, a) 2 X da C τ C(τ 0 + δ/2) τ η a2 a1 B * q 1 (t, a) 2 U dadt. (3.37)
Using Lemma 2.11 and Proposition 3.7 we deduce

τ η a2 a1 B * q 1 (t, a) 2 U dadt 2 τ η a2 a1 B * q(t, a) 2 U dadt + τ η a2 a1 B * q 2 (t, a) 2 U dadt C τ τ η a2 a1 B * q(t, a) 2 U dadt + τ η q(t, 0) 2 X dt C τ (1 + C(τ 0 + δ/2)) τ η a2 a1 B * q(t, a) 2 U dadt.
Combining the above estimate together with (3.36) and (3.37) we have

a † a1 q 1 (τ, a) 2 X da C τ (1 + C(τ 0 + δ/2)) 2 τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.38)
The above estimate together with (3.29) and (3.33) yields

a † a1 q(τ, a) 2 X da C τ (1 + C(τ 0 + δ/2)) 2 + C(τ 0 + δ/2) τ 0 a2 a1 B * q(t, a) 2 U dadt. (3.39)
Finally, combining the above estimate with (3.27) we obtain (3.4) with

κ 2 τ = C τ 2 + C τ -(a 1 + a † -a 2 ) 2 2 . (3.40)
This completes the proof of the theorem.

Applications

The aim of this section is to apply the controllability result obtained in Theorem 1.2 for different class of operators A and B. In particular, we assume that the pair (A, B) is null-controllable for arbitrary time (i.e. τ 0 = 0). Then by Theorem 1.2, the system (1.6) is null controllable in time τ > a 1 + a †a 2 .

Finite dimensional diffusion

A Special Case: Let us choose: n = m = 1, A = 0 and B = 1, i.e., we consider the classical diffusion free Lotka-McKendrick system. This system has already been studied in [START_REF] Barbu | On the controllability of the Lotka-McKendrick model of population dynamics[END_REF]; Hegoburu et al. (2018); [START_REF] Maity | On the Null Controllability of the Lotka-Mckendrick System[END_REF]; [START_REF] Hegoburu | Null controllability via comparison results for nonlinear age-structured population dynamics[END_REF]. By applying Theorem 1.2 to this particular case, we recover the result obtained in (Hegoburu and Anit ¸a, 2019, Theorem 1.1) (see also Hegoburu et al. (2018); [START_REF] Maity | On the Null Controllability of the Lotka-Mckendrick System[END_REF]).

4.2 Transport equation with age structure.

Let Ω = (0, L). We consider the following control problem

                 ∂p ∂t + ∂p ∂a + ∂ ∂x (v(x)p) + µ(a)p = 0, (t, a, x) ∈ (0, τ ) × (0, a † ) × Ω, p(t, a, 0) = 1 (a1,a2) u(t, a), (t, a) ∈ (0, τ ) × (0, a † ), p(t, 0, x) = a † 0 β(a)p(t, a, x) da, (t, x) ∈ (0, τ ) × Ω, p(0, a, x) = p 0 (a, x) (a, x) ∈ ×(0, a † ) × Ω, (4.2)
where v ∈ C 1 [0, L] and v(x) v > 0. We take X = L 2 (Ω) and U = R. The operator A is defined by

D(A) = ϕ ∈ H 1 (0, L) | ϕ(0) = 0 , Aϕ = - ∂ ∂x (vϕ).
The control operator B is defined by, Bu = uδ 0 , where δ 0 is the Dirac mass at 0. It is well known that, the pair (A, B) is null controllable in time τ > L v . Therefore, in order to apply Theorem 1.2, we choose L or v such that

L v < min{a 2 -a 1 , a b -a 1 }. (4.3) Thus the system (4.2) is null controllable in time τ > a † + a 1 -a 2 + 2L v .

Population dynamics models with spatial diffusion.

Let Ω be a smooth bounded domain in R 3 . Let us set X = L 2 (Ω). We consider the Lotka McKendrick system with spatial diffusion. For (t, a, x) ∈ (0, τ ) × (0, a † ) × Ω, let p(t, a, x) be the distribution density of individuals with respect to age a 0 and spatial position x ∈ Ω at some time t 0. The control problem we consider is : (4.4) where O ⊂ Ω and Γ ⊂ ∂Ω.

                   ∂p ∂t + ∂p ∂a -∆p + µ(a)p = d 1 1 (a1,a2) 1 O u 1 , (t, a, x) ∈ (0, τ ) × (0, a † ) × Ω ∂p ∂n = d 2 1 (a1,a2) 1 Γ u 2 , (t, a, x) ∈ (0, τ ) × (0, a † ) × ∂Ω p(t, 0, x) = a † 0 β(a)p(t, a, x) da, (t, x) ∈ (0, τ ) × Ω, p(0, a, x) = p 0 (a, x) (a, x) ∈ (0, a † ) × Ω,

Interior control

We consider the case d 2 = 0. In this case, we have

A = ∆, D(A) = ϕ ∈ H 2 (Ω) | ∂ϕ ∂n = 0 , (4.5) 
and

B = 1 O . (4.6)
It is well known that the pair (A, B) is null controllable in arbitrary time, where A and B are defined as in (4.5) and (4.6) respectively (see for instance [START_REF] Fursikov | Controllability of evolution equations[END_REF]). Therefore by Theorem 1.2 the system (4.4) is null controllable in time τ > a 1 + a †a 2 by interior controls u 1 ∈ L 2 ((0, τ ) × (0, a † ) × Ω). This result was already obtained in [START_REF] Maity | Controllability and positivity constraints in population dynamics with age structuring and diffusion[END_REF].

Boundary control with respect to the spatial variable

We consider the case d 1 = 0. In this case

B * w = 1 Γ w, w ∈ D(A).
It is well known that (A * , B * ) is final state observable for any time [START_REF] Seidman | Observation and prediction for the heat equation[END_REF]. Thus applying Theorem 1.2, with τ 0 = 0 we get that the system (4.4) is null controllable in time τ > a 1 + a †a 2 by controls u 2 ∈ L 2 ((0, τ ) × (0, a † ) × Γ).

Population dynamics models with degenerate diffusion:

Let Ω = (0, 1) and O = ( 1 , 2 ) ⊂ Ω. We consider the following age structured model with degenerate diffusion :

                 ∂p ∂t + ∂p ∂a -k(x) ∂ 2 p ∂x 2 + µ(a)p = 1 (a1,a2) 1 O u, (t, a, x) ∈ (0, τ ) × (0, a † ) × Ω p(t, a, 0) = p(t, a, 1) = 0, (t, a) ∈ (0, τ ) × (0, a † ), p(t, 0, x) = a † 0 β(a)p(t, a, x) da, (t, x) ∈ (0, τ ) × Ω, p(0, a, x) = p 0 (a, x) (a, x) ∈ (0, a † ) × Ω, (4.7)
where k is a non-negative continuous function in [0, 1] and degenerate at the boundary, i.e.

k(0) = k(1) = 0. (4.8)
Let us set the state and the control space as follows:

X = L 2 1/k (0, 1) = ϕ ∈ L 2 (0, 1) | 1 0 ϕ 2 k dx < ∞ and U = L 2 (0, 1). (4.9)
We consider the unbounded operator A on X defined by

D(A) = ϕ ∈ L 2 1/k (0, 1) ∩ H 1 0 (0, 1) | k∂ xx ϕ ∈ L 2 1/k (0, 1) and Aϕ = k∂ xx ϕ.
The operator B is defined by B = 1 O . By (Cannarsa et al., 2008, Theorem 2.3), the operator A generates a C 0 -semigroup on X. We now make several assumptions on the degenerate coefficient k so that the pair (A, B) is null controllable. Following, [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF], we make the following assumptions on k : The function k ∈ C 0 [0, 1] ∩ C 3 (0, 1) is such that, it satisfies (4.8) and k > 0 in (0, 1). Moreover, there exists ε ∈ (0, 1) such that 1) The function

x∂ x k k ∈ L ∞ (0, ε) and there exists M 1 ∈ (0, 2) and C 1 > 0 such that x∂ x k k M 1 and ∂ xx x∂ x k k C 1 1 k(x)
for all x ∈ (0, ε);

2) The function (

x -1)∂ x k k ∈ L ∞ (1 -ε, 1) and there exists M 2 ∈ (0, 2) and C 2 > 0 such that (x -1)∂ x k k M 2 and ∂ xx (x -1)∂ x k k C 2 1 k(x)
for all x ∈ (1ε, 1).

Under the above assumptions, by (Cannarsa et al., 2008, Theorem 4.5) the pair (A, B) is null controllable in any time. Therefore by Theorem 1.2, the system (4.7) is null controllable in time τ > a † + a 1a 2 .

Remark 4.1. Let us make the following remarks:

• Recently, similar controllability result for the system (4.7) was proved in [START_REF] Fragnelli | Carleman estimates and null controllability for a degenerate population model[END_REF]. Our result can be seen as a improvement of the above mentioned result, as we are able to tackle the case of a control which is active for small ages and we show that our global controllability result applies to individuals of all ages, without needing to exclude ages in a neighbourhood of zero.

• Our method also applies to the case when the spatial variable is multidimensional. Of course, we need to make suitable assumptions on degeneracy. For instance, we can consider the case studied by Cannarsa, Martinez andVancostenoble Cannarsa et al. (2009, 2016) 

Fractional diffusion equation with age structure:

Let X = L 2 (Ω) and let A := (-∆ D ) α or A := (-∆ N ) α , where -∆ D and -∆ N are the Dirichlet and the Neumann Laplacian in Ω and α > 1/2. Let B be defined by (4.6). Then (A, B) is null controllable in any time (see for instance [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF][START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional Laplacian[END_REF]; [START_REF] Tenenbaum | On the null-controllability of diffusion equations[END_REF]). Therefore the conclusion of Theorem 1.2 also holds with the above choice of (A, B).

Schrödinger equation with age structure:

Let Ω be a square in R 2 and we consider the Schrödinger operator as diffusion operator. More precisely, we take X = L 2 (Ω) A = -i∆, D(A) = H 2 (Ω) ∩ H 1 0 (Ω). Let B is defined by (4.6). Then the pair (A, B) is null controllable in any time (see [START_REF] Jaffard | Contrôle interne exact des vibrations d'une plaque carrée[END_REF]). Thus the conclusion of Theorem 1.2 holds with τ 0 = 0.

Alternatively, we can take Ω be a unit disc in R 2 and O ⊂ Ω be an open set such that O ∩ ∂Ω = ∅. The operators A and B are defined as above. The pair (A, B) is null controllable in any time, which was proved in (Anantharaman et al., 2016, Theorem 1.2). Therefore Theorem 1.2 also holds in this setup.

Controllability with regular controls

In Theorem 1.2, we have shown that the age structured system (1.6) is null controllable by controls u ∈ L 2 ((0, τ ) × (0, a † ); U ). However, in many practical applications, we may need to choose controls in more regular spaces. For instance, while proving positivity of the controlled trajectory of the system (4.4) one need to choose control u 1 ∈ L ∞ ((0, τ ) × (0, a † ) × Ω) (see (Maity et al., 2019, Theorem 4.6)). The aim of this section is to show that null controllability by "smooth" controls of the pair (A, B) is also inherited by the pair (A, B).

To this aim, let us fix s ∈ N ∪ {0} and a Hilbert space V so that V → U. Following, Pighin and Zuazua [START_REF] Pighin | Controllability under positivity constraints of multi-d wave equations[END_REF] we introduce the notion of smooth controllability.

Definition 5.1. We say that a pair (A, B) is smoothly null controllable in time τ, if for every z 0 ∈ D(A s ) there exists a control u ∈ L ∞ (0, τ, V ) such that, the solution of the system ż(t) = Az(t) + Bu(t) t ∈ [0, τ ], z(0) = z 0 , satisfies z(τ ) = 0.

The smooth controllability property of the system (1.6) can be stated as follows:

Theorem 5.2. Let us assume the hypothesis of Theorem 1.2. Let us also assume that the pair (A, B) is smoothly null controllable in any time τ > τ 0 , with 0 τ 0 < τ , τ = min{a 2a 1 , a ba 1 }.

(5.1)

Then for every τ > a 1 + a †a 2 + 2τ 0 and for every p 0 ∈ L ∞ (0, a † ; D(A s )) there exists a control v ∈ L ∞ ((0, τ ) × (0, a † ) × V ) such that the solution p of (1.6) satisfies p(τ, a) = 0 for all a ∈ (0, a † ).

(5.2)

The proof the above theorem is a consequence of a suitable observability inequality. Let us briefly describe the main steps. The main idea is the same, i.e, to use observability property of the pair (A, B) along the characteristics. The smooth controllability in time τ of the pair (A, B) is equivalent to the following final state observability inequality (see for instance [START_REF] Pighin | Controllability under positivity constraints of multi-d wave equations[END_REF], Section 2)): there exists a constant k τ > 0 such that for any z 0 ∈ D(A * ) (5.3) where D(A s ) * and V * are the dual of D(A s ) * and V respectively, with respect to the pivot spaces X and U and i : V → U is the inclusion map. Applying the above observability property of the pair (A, B) along the characteristics one can prove that: for every τ > a 1 + a †a 2 + 2τ 0 and q 0 ∈ D(A * ), the solution q of (3.1) satisfies i * B * q(t, a) V * dadt.

S * τ z 0 D(A s ) * k τ τ 0 i * B * S * t z 0 V * dt,
(5.4)

Next, using a classical duality argument (see for instance (Maity et al., 2019, Theorem 4.6) or [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF], Proposition 2.5)) we can easily prove Theorem 5.2.

  a) = Ap(t, a)µ(a)p(t, a) + χ(a)Bu(t, a),

Figure 2 :

 2 Figure 2: In this case, the trajectory γ(s) = (τs, a + s) starts inside the observation region. Thus we just need τ > τ 0 in order to apply final state observability of the pair (A * , B * ) along the characteristics.

  Let us take X = R n and U = R m with m n. Let A be a real n × n matrix and B be a real n × m matrix. Let us assume that rank[B, AB, . . . A n-1 B] = n. (4.1)

  , a) D(A s ) * da κ 2

  . More precisely, let Ω be a smooth bounded domain in R 2 . The operator A is defined byAϕ = div (M (x)∇ϕ) ,with appropriate boundary conditions. The control operator B is defined by B = 1 O , where O ⊂ Ω. Under suitable assumptions on the degenerate matrix M (x), the pair (A, B) is null controllable in arbitrary time (see for instance(Cannarsa et al., 2009, Theorem 2.2)). Thus the corresponding age structured model is also null controllable in time τ > a 1 + a †a 2 .
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