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CONTROLLABILITY OF A CLASS OF INFINITE DIMENSIONAL SYSTEMS

WITH AGE STRUCTURE

DEBAYAN MAITY, MARIUS TUCSNAK, AND ENRIQUE ZUAZUA

Dedicated to Günter Leugering for his 65th birthday with friendship and admiration

Abstract. Given a linear dynamical system, we investigate the linear infinite dimensional system
obtained by grafting an age structure. Such systems appear essentially in population dynamics with
age structure when phenomena like spatial diffusion or transport are also taken into consideration.
We first show that the new system preserves some of the wellposedness properties of the initial one.
Our main result asserts that if the initial system is null controllable in a time small enough than the
structured system is also null controllable in a time depending on the various involved parameters.

Key words. Infinite dimensional linear system, age structure, admissible control operator, null
controllability, population dynamics.
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1. Introduction

Infinite dimensional dynamical systems coupling age structuring with diffusion or transport phe-
nomena appear naturally in population dynamics, medicine or epidemiology (see, for instance, Brikci
et al. [9]), Webb [30, 31], Magal and Ruan [19]). A by now classical example is the Lotka-Mckendrick
system with spatial diffusion ([15]). For the convenience of the reader, we describe below the type
of systems to be considered using a simplified example. To this aim, let X (the state space) and U
(the input space) be finite dimensional inner product spaces. Our departure point is the linear time
invariant control system described by

ṗ(t) = Ap(t) +Bu(t), (1.1)

where A : X → X and B : U → X are linear operators. The system (1.1) is supposed to describe
the evolution of a certain population density (particles, individuals,,. . . ) and it is possibly obtained
by approximating a partial differential system. Adding an age structure to the system described by
(1.1) means that we assume that p depends not only on t, but also on the age parameter a which
lies in some bounded interval [0, a†]. Moreover, we assume that individuals can die (with a certain
probability) before the limit age a+ or be born at a certain fertility rate. In this situation, the original
system (1.1) becomes

ṗ(t, a) +
∂p

∂a
(t, a) = Ap(t, a)− µ(a)p(t, a) + χ(a)Bu(t, a), (1.2)
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p(t, 0) =

∫ a†

0
β(a)p(t, a) da, (1.3)

where µ and β are the mortality and fertility rates, respectively and χ is the characteristic function
of some subinterval of [0, a†].

For X = U = C, A = 0 and B = 1 in the original system (1.1), the corresponding age structure
system (1.2) becomes the classical Lotka-Mckendrick system which has been first studied, from the
controllability view point, in Barbu, Iannelli and Martcheva [7]. This problem was recently revisited by
Hegoburu, Magal and Tucsnak [16], Maity [20] and by Anita and Hegoburu [6]. One of the consequences
of our main results improves the above mentioned ones, in the sense that for every n, m ∈ N, X = Cn,
U = Cm, such that the original system (1.1) is controllable then, under appropriate assumptions on
µ, β and χ, the same property holds for the corresponding age structured system (1.2) (see Subsection
4.1 below).

The main focus in this work is on the more complicated situation where X and U are possibly infinite
dimensional spaces, with the operators A and B possibly unbounded. We think, in particular, to the
case when X = L2(Ω), where Ω ⊂ Rn is an open bounded set, A is an advection-diffusion operator
and B describes a boundary or internal control. From the controllability view point, particular cases
of such systems have been studied in several papers. The first ones are probably Ainseba and Aniţa
[2, 3] (see also Ainseba [1], Hegoburu and Tucsnak [17] and Maity, Tucsnak and Zuazua showed [21]).

The main results in this article assert that in the infinite dimensional case (namely when (1.1) is
a PDE system with distributed or boundary control), the wellposedness and null controllability of
the system described by (1.1) are inherited by the corresponding age structured system (1.2). One
of the advantages of this approach is that it allows obtaining in a unified manner a variety of results
existing in the literature, such as those corresponding to an operator A describing diffusion (possibly
with singular coefficients) or transport phenomena, with an operator B corresponding to a distributed
control. Moreover, we obtain controllability results, which seem new, in the case of an unbounded
control operator B is (corresponding to boundary control problems).

To give a precise description of our results, we introduce some notation. Let A : D(A)→ X be be
the generator of the C0 semigroup S on the Hilbert spaceX and let U be another Hilbert space. Both
X and U will be identified with their duals. Let B be a (possibly unbounded) linear operator from U
to X, which is supposed admissible control operator for S (see Section 2 for the precise definition of
this concept). In the examples we have in mind, the above spaces and operators describe the dynamics
of a system without age structure. In particular, X is the state space and U is the control space. The
corresponding age structured system is obtained by first extending these spaces to

X = L2(0, a†;X), (1.4)

U = L2(0, a†;U), (1.5)

where a† > 0 denotes the maximal age individuals can attain. Let p(t) ∈ X be the distribution density
of the individuals with respect to age a > 0 and at some time t > 0. Then the abstract version of the
Lotka-McKendrick system to be considered in this paper writes:

∂p

∂t
+
∂p

∂a
−Ap+ µ(a)p = 1(a1,a2)Bu, t > 0, a ∈ (0, a†),

p(t, 0) =

∫ a†

0
β(s)p(t, s) ds, t > 0,

p(0, a) = p0,

(1.6)

where 1 is the characteristic function of the interval (a1, a2) with 0 6 a1 < a2 6 a† and p0 is the initial
population density. In the above system, the positive function µ : [0, a†] → R+ denotes the natural
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mortality rate of individuals of age a. We denote by β : [0, a†] → R+ the positive function describing
the fertility rate at age a. We assume that the fertility rate β and the mortality rate µ satisfy the
conditions

(H1) β ∈ L∞(0, a†), β > 0 for almost every a ∈ (0, a†).
(H2) µ ∈ L∞[0, a∗] for every a∗ ∈ (0, a†), µ > 0 for almost every a ∈ (0, a†).

(H3)

∫ a†

0
µ(a) da = +∞.

For more details about the modelling of such system and the biological significance of the hypotheses,
we refer to Webb [30].

Before we state our main result, let us introduce the notion of null controllability of the pair (A,B).

Definition 1.1. We say that a pair (A,B) is null-controllable in time τ, if for every z0 ∈ X there
exists a control u ∈ L2(0, τ, U) such that, the solution of the system

ż(t) = Az(t) +Bu(t) t ∈ [0, τ ], z(0) = z0,

satisfies z(τ) = 0.

The main result of this paper is:

Theorem 1.2. Assume that β and µ satisfy the conditions (H1)-(H3) above. Moreover, suppose that
the fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab), (1.7)

for some ab ∈ (0, a†) and that a1 < ab. Let us assume that the pair (A,B) is null controllable in any
time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (1.8)

Then for every τ > a1 + a† − a2 + 2τ0 and for every p0 ∈ X there exists a control v ∈ L2(0, τ ;U) such
that the solution p of (1.6) satisfies

p(τ, a) = 0 for all a ∈ (0, a†). (1.9)

This result can be seen as a generalization of those obtained in [2, 3, 1, 17, 21] in the case when A
is an elliptic operator with Neumann or Dirichlet homogeneous boundary conditions or in Ainseba et
al. [4], Boutaayamou et al.[8] or Fragnelli [13] when A is a degenerate elliptic operator. As shown in
Section 4 our approach applies, besides the above mentioned examples, to operators A such that the
systems without age structure describes fractional diffusion, transport phenomena or even Schrödinger
type dynamics, with internal or boundary control.

The proof of the above theorem relies on final state observability of the adjoint system. This
consists of combining characteristics method with final state observability of the pair (A∗, B∗), with
no reference to the methodology employed to prove this observability result for the system without age
structure. This idea was already used in [21] where A was second order elliptic differential operator
and B was interior control operator.

The remaining part of this work is organized as follows: In section 2, we study the wellposedness
of the system (1.6) and we determine it’s adjoint. Section 3 is devoted to the proof of Theorem 1. In
section 4, we give several applications of our main theorem. In Section 5 we study controllability of
the system (1.6) with regular controls.
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2. Wellposedness of the system (1.6)

In this section, we rewrite the (1.6) as an abstract control system. Next, we study the wellposedness
of this system and we determine the adjoint of the corresponding semigroup generator.

Let us remind that if A generates a C0-semigroup S on X then there exist M > 1 and ω such that

‖St‖ 6Meωt, for all t > 0. (2.1)

We denote by A∗ the adjoint of A. Then A∗ generates a C0-semigroup S∗ = (S∗t )t>0 on X. Moreover,

‖S∗t ‖ 6Meωt, for all t > 0. (2.2)

We define Xd
1 = D(A∗) equipped with the graph norm. Let X−1 be the dual of Xd

1 with respect to
the pivot space X. In particular,

Xd
1 ⊂ X ⊂ X−1,

with continuous and dense embeddings. It is known (see, for instance, Tucsnak and Weiss [28, Section
2.10] that S extends to a C0 semigroup on X−1, whose generator, which is an extension of A, has the
domain X.

Let B ∈ L(U,X−1) and τ > 0. We define ΦA
τ ∈ L(L2(0,∞;U), X−1) by

ΦA
τ u =

∫ τ

0
Sτ−sBu(s) ds. (2.3)

We introduce admissible control operators:

Definition 2.1. [28, Definition 4.2.1] The operator B ∈ L(U,X−1) is called an admissible control
operator for S if for some τ > 0, Ran ΦA

τ ⊂ X.

Reminding that the input space X and the control space U for the corresponding age structured
system are defined in (1.4) and (1.5), respectively, we introduce the operator A : D(A) → X defined
by

D(A) =
{
ϕ ∈ C([0, a†];X) | ϕ(0) =

∫ a†

0
β(a)ϕ(a) da,−∂ϕ

∂a
+Aϕ− µϕ ∈ X

}
,

Aϕ = −∂ϕ
∂a

+Aϕ− µϕ. (2.4)

Let us set

X−1 = L2(0, a†;X−1) (2.5)

and we introduce the control operator B ∈ L(U ,X−1) defined by

Bu = 1(a1,a2)Bu (u ∈ U). (2.6)

With the above notation, we rewrite the system (1.6) as

ṗ = Ap+ Bu, p(0) = p0. (2.7)

We now show that A generates a C0-semigroup on X under the assumption that A generates a C0

semigroup on X. More precisely:

Theorem 2.2. Assume A generates a C0 semigroup on X. Then A defined in (2.4) generates a C0

semigroup on X .
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The proof of this theorem is divided into several parts. We are going to follow the approach of
[31, 29]. Integrating along the characteristic lines, the solution of (2.7) with u = 0, at least formally,
can be written as

p(t, a) =


π(a)

π(a− t)Stp0(a− t), t < a,

π(a)Sabp0(t− a) t > a,
(2.8)

where π(a) = e
−
∫ a

0
µ(s)ds

is the probability of survival of an individual from age 0 to a and bϕ(t) is
the unique continuous solution of the following linear Volterra integral equation in X :

bϕ(t) =

∫ t

0
β(a)π(a)Sabϕ(t− a) + St

∫ a†−t

0
β(a+ t)

π(a+ t)

π(a)
ϕ(a) da, (2.9)

where the last integral is 0 if t > a†. This motivates us to define a semigroup T on X as follows:

Ttϕ =


π(a)

π(a− t)Stϕ(a− t), t < a,

π(a)Sabϕ(t− a) t > a.
(2.10)

Note that

bϕ(t) =

∫ a†

0
β(a)Ttϕ(a) da. (2.11)

The following result can be obtained along the lines of [31, Theorem 4] (see also [29, Theorem 2.2]) :

Proposition 2.3. The family of operators T defined in (2.21) is a C0-semigroup on X .

Let A denote the generator of the semigroup T. Therefore to prove Theorem 2.2 we only need to
show A = A, where A is defined in (2.4). To this aim, we first prove the following result :

Lemma 2.4. Let A be the unbounded operator defined in (2.4). Then λI − A is onto for λ large
enough.

Proof. Given λ > 0, f ∈ X and ψ ∈ X, we consider the following problem

λϕ+
∂ϕ

∂a
−Aϕ+ µϕ = f, ϕ(0) = ψ. (2.12)

Since A generates a C0-semigroup on X, the above problem admits a unique solution ϕ ∈ C([0, a†];X)
and given by

ϕ(a) = e−λaπ(a)Saψ +

∫ a

0
e−λ(a−s)π(a− s) Sa−sf(s) ds. (2.13)

From the above formula, we obtain

ϕ(0)−
∫ a†

0
β(a)ϕ(a)da

= ψ −
∫ a†

0
e−λaπ(a)β(a)Saψ da−

∫ a†

0
β(a)

∫ a

0
e−λ(a−s)π(a)Sa−sf(s) dsda. (2.14)

Now consider the operator F(λ) ∈ L(X) defined by

F(λ)ψ =

∫ a†

0
e−λaπ(a)β(a)Saψ da. (2.15)
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Using (2.1), it is verify that

‖F(λ)ψ‖X 6M‖β‖L∞(0,a†)
1

λ− ω‖ψ‖X .

Thus lim
λ→∞

‖F(λ)‖L(X) = 0, and we clearly have that I −F(λ) is invertible for large λ. Let us take

ψ = (I −F(λ))−1

∫ a†

0
β(a)

∫ a

0
e−λ(a−s)π(a− s)Sa−sf(s) dsda.

Then using (2.14) it is easy to see that, ϕ defined by (2.13) with above choice of ψ satisfies the following
system

λϕ+
∂ϕ

∂a
−Aϕ = f, ϕ(0) =

∫ a†

0
β(a)ϕ(a) da.

Thus λI −A is onto. Moreover, the unique solution of the above system is given by

ϕ(a) = e−λaπ(a)Sa(I −F(λ))−1

(∫ a†

0
β(a)

∫ a

0
e−λ(a−s)π(a− s)Sa−sf(s) dsda

)
+

∫ a

0
e−λ(a−s)π(a− s) Sa−sf(s) ds. (2.16)

�

Now we show that the generator of the semigroup T coincides with A.
Proposition 2.5. Let Ã be the generator of the semigroup T and let A be defined in (2.4). Then

Ã = A.
Proof. Let ϕ ∈ D(A). Let λ > 0 sufficiently large and we set f := λϕ − Ãϕ. Then using (2.21), we
have

ϕ(a) =

∫ ∞
0

e−λtTtf(a) dt =

∫ a

0
e−λt

π(a)

π(a− t)Stf(a− t) dt+

∫ ∞
a

e−λtπ(a)Sabf (t− a) dt

=

∫ a

0
e−λ(a−s)π(a− s) Sa−sf(s) ds+ e−λaπ(a)Sa

∫ ∞
0

e−λtbf (t) dt. (2.17)

Now using (2.11) and (2.21), we get∫ ∞
0

e−λtbf (t) dt =

∫ a†

0
β(a)

∫ ∞
0

e−λtTtf(a) dtda

=

∫ a†

0
β(a)

∫ a

0
e−λt

π(a)

π(a− t)Stf(a− t) dtda+

∫ a†

0
β(a)

∫ ∞
a

e−λtπ(a)Sabf (t− a) dtda

=

∫ a†

0
β(a)

∫ a

0
e−λ(a−s)π(a− s)Sa−sf(s) dsda+

∫ a†

0
e−λaβ(a)π(a)Sa

∫ ∞
0

e−λtbf (t) dtda.

Therefore, ∫ ∞
0

e−λtbf (t) dt = (I −F(λ))−1

∫ a†

0
β(a)

∫ a

0
e−λ(a−s)π(a− s)Sa−sf(s) dsda,

where F(λ) is defined in (2.15). Using the above relation in (2.17) and comparing this expression with

(2.16) it is easy to see that ϕ ∈ D(A). We have thus proved that D(Ã) ⊂ D(A) and

Ãϕ = −∂ϕ
∂a

+Aϕ− µϕ = Aϕ (ϕ ∈ D(Ã)). (2.18)
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Conversely, let us assume that ϕ ∈ D(A). For λ sufficiently large, we define f := λϕ+ ∂ϕ
∂a −Aϕ+µϕ.

Then f ∈ X . Set ψ = (λI − A)−1f ∈ D(Ã). Therefore using (2.18) we have that

λ(ϕ− ψ) +
∂

∂a
(ϕ− ψ)−A(ϕ− ψ) + µ(ϕ− ψ) = 0.

Thus

ϕ− ψ = e−λaπ(a)Sa(ϕ− ψ)(0).

Using the definition of F(λ) in (2.15), it is easy to see that the above relation is equivalent to

(I −F(λ))(ϕ− ψ)(0) = 0.

Thus for λ sufficiently large ϕ(0) = ψ(0) and therefore ϕ = ψ ∈ D(Ã). This completes the proof of
the proposition. �

Proof of Theorem 2.2. The proof of this theorem follows from Proposition 2.3 and Proposition 2.5. �

Remark 2.6. An alternative proof of Theorem 2.2 can be obtained by combining the results in [19,
Section 3.8] with a perturbation result of Desch-Schappcher type (see, for instance, [28, Section 5.4].

Next we show that B defined in (2.6) is an admissible control operator:

Lemma 2.7. Let us assume that B ∈ L(U,X−1) is an admissible control operator for S. Then the
operator B ∈ L(U ,X−1) defined in (2.6) is an admissible control operator for the semigroup T generated
by A.

Proof. The proof follows easily from definition 3.1 and the fact that B is an admissible control operator.
�

Using Proposition 2.2 and Lemma 2.7, we have the following wellposedness result of the system
(2.7) (see for instance [28, Proposition 4.2.5]) :

Theorem 2.8. For every p0 ∈ X and for every u ∈ L2(0, a†;U) the system (2.7) admits a unique
solution

p ∈ C([0, a†];X ).

With the above notation our main result in Theorem 1.2 can be restated as: If the pair (A,B) is
null controllable in time τ0, then the pair (A,B) is null controllable in time τ > a1 + a† − a2 + 2τ0.
To prove this assertion, we are going to use the fact that null controllability of the pair (A,B) at time
τ is equivalent to final state observability in time τ of the pair (A∗,B∗). In the following theorem we
determine the adjoint of A and B. To this aim, we first consider an auxiliary operator A0 defined by

D(A0) =

{
ψ ∈ X | q(t, a†) = 0,

∂ψ

∂a
− µψ +A∗ψ ∈ X

}
, A0ψ =

∂ψ

∂a
− µψ +A∗ψ. (2.19)

We have the following proposition:

Proposition 2.9. The operator A0 is the infinitesimal generator of a C0-semigroup T0 on X . More-
over,

‖T0
t ‖ 6Meωt, (2.20)

where M and ω are defined in (2.2).
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Proof. The proof this proposition is similar to that of Theorem 2.2. We briefly sketch the idea.
Integrating along the characteristic lines we define the semigroup T0 on X as follows:

T0
tϕ =


π(a)

π(a+ t)
S∗tϕ(a+ t), t < a† − a,

0 t > a† − a.
(2.21)

As S∗t is a C0-semigroup, it follows that Tt is also a C0-semigroup (see Proposition 2.3). Moreover,
proceeding as Proposition 2.5 we can show that the domain of the semigroup T0

t is A0. The estimate
(2.20) is easy to obtain from the expression of the semigroup T0

t . �

The result below gives the adjoint operators of A and B. We skip its proof since it is fully similar
to the one given for of [21, Proposition 2.3].

Proposition 2.10. The adjoint of A in X is defined by

D(A∗) = D(A0), A∗ψ =
∂ψ

∂a
− µψ +A∗ψ + β(a)ψ(0).

Moreover, B∗ ∈ L(L2(0, a†;D(A∗));U) defined by

B∗ψ = 1(a1,a2)B
∗ψ,

where B∗ ∈ L(D(A∗), U) is the adjoint of the operator B.

3. An Observability Inequality.

As mentioned above, the null-controllability of a pair (A, B) is equivalent to the final state ob-
servability of the pair (A∗,B∗), see [28, Theorem 11.2.1]. Recall that that final-state observability of
(A∗,B∗) is defined as

Definition 3.1. [28, Definition 6.1.1] The pair (A∗,B∗) is final state observable in time τ if there
exists a kτ > 0 such that

‖T∗τq0‖2X 6 k2
τ

∫ τ

0
‖B∗T∗τq0‖2U , (q0 ∈ D(A∗)).

For A defined in (2.4) and q0 ∈ X we set

q(t) = T∗t q0 (t > 0),

where T is the semigroup generated by A. According to Proposition 2.10, q satisfies, for t > 0, a ∈
(0, a†): 

∂q

∂t
− ∂q

∂a
−A∗q − β(a)q(t, 0) + µ(a)q = 0,

q(t, a†) = 0,

q(0, a) = q0(a).

(3.1)

In view of [28, Theorem 11.2.1], the statement in Theorem 1.2 is equivalent to the following theorem:

Theorem 3.2. Assume that β and µ satisfy the conditions (H1)-(H3). Moreover, suppose that the
fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab), (3.2)

for some ab ∈ (0, a†) and that a1 < ab. Let us assume that the pair (A∗, B∗) is final state observable
in time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (3.3)
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Then the pair (A∗,B∗) is final-state observable for every τ > a1 + a† − a2 + 2τ0. In other words, for
every τ > a1 + a† − a2 + τ0 there exists kτ > 0 such that the solution q of (3.1) satisfies

‖q(τ)‖2X 6 k2
τ

∫ τ

0
‖B∗q(t)‖2U dt, (q0 ∈ D(A∗)). (3.4)

Remark 3.3. Using the expression of B∗ it is easy to see that the inequality (3.4) reads as∫ a†

0
‖q(τ, a)‖2X da 6 κ2

τ

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt, (3.5)

for any q0 ∈ D(A∗).
The main idea of the proof is to use final state observability of the pair (A∗, B∗) along the chacrac-

teristic lines. We first have the following proposition, which is an easy consequence of the final state
observability of the pair (A∗, B∗).

Proposition 3.4. Let us assume that the pair (A∗, B∗) is final state observable in any time T > T0

with T0 > 0. Let C(T ) be the observability cost with C(T )→∞ as T → T0. Let T1, T2 and T3 are three
real numbers such that

0 6 T1 < T2 6 T3 with T2 − T1 > T0.

Then for every w0 ∈ D(A∗), the solution w of the problem

dw

dt
= A∗w t ∈ [T1, T3], w(T1) = w0, (3.6)

satisfies the estimate

‖w(T3)‖2X 6Meω(T3−T2)C(T2 − T1)

∫ T2

T1

‖B∗w(s)‖2U ds, (3.7)

where M and ω are defined in (2.2).

Proof. By semigroup property (2.2), it is easy to see that∥∥w(T3)
∥∥2

X
6Meω(T3−T2)

∥∥w(T2)
∥∥2

X
.

Now applying the final state observability of (A∗, B∗) on the time interval [T1, T2] we obtain∥∥w(T2)
∥∥2

X
6 C(T2 − T1)

∥∥B∗w(s)
∥∥2

U
ds.

Combining the above two estimates we conclude the proof of the proposition. �

The following three propositions are crucial in proving Theorem 3.2.

Proposition 3.5. Let us assume the hypothesis of Theorem 3.2. Let

τ > τ0 + a1.

Then for every q0 ∈ D(A∗), the solution q of the system (3.1), obeys∫ a1

0
‖q(τ, a)‖2Xda 6MCµe

ωa1 max
{
C(τ − a1), C(a2 − a1)

}∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt, (3.8)

where Cµ = e
2‖µ‖L1[0,a0] .
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Proof. Without loss of generality let us assume that a2 6 ab. Since β(a) = 0 for all a ∈ (0, a2), q
satisfies

∂q

∂t
− ∂q

∂a
−A∗q + µ(a)q = 0, t > 0, a ∈ (0, a2), (3.9)

We set

q̃(t, a) = q(t, a) e
−

∫ a

0
µ(r) dr

. (3.10)

Then q̃ satisfies
∂q̃

∂t
− ∂q̃

∂a
−A∗q̃ = 0, t > 0, a ∈ (0, a2). (3.11)

Without loss of generality, let us assume that

τ < a2, τ > a2 − a1. (3.12)

We set b0 = a2 − τ and we split the interval (0, a1) as follows

(0, a0) = (0, b0) ∪ (b0, a1). (3.13)

Let us remark that, the choices in (3.12) are made to cover all possible scenarios. Indeed, if τ < a2−a1

we can choose b0 = a1 of if τ > a2 we choose b0 = 0. We are going to use Proposition 3.4 along the

characteristics. In the remaining part of the proof we give upper bounds for

∫
I
‖q̃(τ, a)‖2Xda where I

is successively each one of the intervals appearing in the decomposition (3.13).
Upper bound on (0, b0):

For a.e a ∈ (0, b0), we first set

w(s) = q̃(s, a+ τ − s) s ∈ (0, τ).

Then w satisfies
∂w

∂s
−A∗w = 0, s ∈ (0, τ), (3.14)

Applying Proposition 3.4, with T0 = τ0, T1 = 0, T2 = τ + a− a1 and T3 = τ we obtain

‖w(τ)‖2X 6Meω(a1−a)C(τ + a− a1)

∫ τ+a−a1

0
‖B∗w(s)‖2U ds.

In terms of q̃, the above inequality writes

‖q̃(τ, a)‖2X 6Meω(a1−a)C(τ + a− a1)

∫ τ+a−a1

0
‖B∗q̃(s, a+ τ − s, x)‖2U ds

= Meω(a1−a)C(τ + a− a1)

∫ τ+a

a1

‖B∗q̃(τ + a− s, s)‖2U ds.

Integrating with respect to a over (0, b0) we obtain∫ b0

0
‖q̃(τ, a)‖2X da 6Meωa1C(τ − a1)

∫ b0

0

∫ τ+a

a1

‖B∗q̃(τ + a− s, s)‖2U dsda

= Meωa1C(τ − a1)

∫ a2

a1

∫ b0

s−τ
‖B∗q̃(τ + a− s, s)‖2U dads

= Meωa1C(τ − a1)

∫ a2

a1

∫ a2−s

0
‖B∗q̃(r, s)‖2U drds

6Meωa1C(τ − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (3.15)
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b

0 a1 a2

t = τ
b0

t = τ0 + a1

b

b

b

t = a1

Figure 1. An illustration of the choice made in (3.12): Blue region corresponds to
the interval (0, b0). Since τ > a1, the trajectory γ(s) := (τ − s, a + s), s ∈ [0, τ ] (or
equivalently the backward characteristics staring from (τ, a)) enters the observation
region (a1, a2)× (0, τ) at s = a1 − a. At s = τ, γ(s) hits the line t = 0 without leaving
the observation region. The red region corresponds to the interval (b0, a1). In this case,
the trajectory γ(s) enters the observation domain at s = a1−a and exits the observation
region at s = a2 − a. Since, (A∗, B∗) is final state observable in time τ > τ0, we need
length of the characteristics to be greater than τ0 within the observation region. Thus
we need τ > τ0 + a1 in order to observe q̃ at final time.

Upper bound on (b0, a1):

For a.e. a ∈ (b0, a1), we define

w(s) = q̃(s, a+ τ − s) s ∈ (τ + a− a2, τ).

Then w satisfies
∂w

∂s
−A∗w = 0, s ∈ (τ + a− a2, τ). (3.16)

Applying Proposition 3.4 with T0 = τ0, T1 = τ + a− a2, T2 = τ + a− a1 and T3 = τ it follows that

‖w(τ)‖2X 6Meω(a1−a)C(a2 − a1)

∫ τ+a−a1

τ+a−a2
‖B∗w(s)‖2U ds.

In terms of q̃, the above inequality becomes

‖q̃(τ, a)‖2X 6Meω(a1−a)C(a2 − a1)

∫ τ+a−a1

τ+a−a2
‖B∗q̃(s, a+ τ − s)‖2U ds

= Meω(a1−a)C(a2 − a1)

∫ a2

a1

‖B∗q̃(τ + a− s, s)‖2U ds.

Integrating with respect to a over (b0, a1) we get∫ a1

b0

‖q̃(τ, a)‖2X da 6Meω(a1−b0)C(a2 − a1)

∫ a1

b0

∫ a2

a1

‖B∗q̃(τ + a− s, s)‖2U dsda
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= Meω(a1−b0)C(a2 − a1)

∫ a2

a1

∫ a1

b0

‖B∗q̃(τ + a− s, s)‖2U dads

= Meω(a1−b0)C(a2 − a1)

∫ a2

a1

∫ τ+a1−s

τ+b0−s
‖B∗q̃(r, s)‖2U drds

6Meωa1C(a2 − a1)

∫ a2

a1

∫ τ

0
‖B∗q̃(r, s)‖2U drds

= Meωa1C(a2 − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (3.17)

Therefore, combining (3.15) and (3.17) we get∫ a0

0
‖q̃(τ, a)‖2X da 6 Meωa1 max

{
C(τ − a1), C(a2 − a1)

}∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (3.18)

Finally using the above estimate and the definition of q̃ in (3.10) we obtain (3.20). This completes the
proof of the proposition. �

Next, we consider the system (3.1) with β = 0. More precisely, we consider the system
∂z

∂t
− ∂z

∂a
−A∗z + µ(a)z = 0, (t, a) ∈ (0, τ)× (0, a†)

z(t, a†) = 0, t ∈ (0, τ)

z(0, a) = z0(a) a ∈ (0, a†).

(3.19)

Proposition 3.6. Let us assume the hypothesis of Theorem 3.2. Let

τ > τ0 and a1 < a0 < a2 − τ0.

Then for every z0 ∈ D(A∗), the solution q of the system (3.1), obeys∫ a0

a1

‖z(τ, a)‖2Xda 6MCµe
ωa1 max

{
C(τ), C(a2 − a0)

}∫ τ

0

∫ a2

a1

‖B∗z(t, a)‖2U da dt, (3.20)

where Cµ = e
2‖µ‖L1[0,a0] .

Proof. The proof is similar to that of Proposition 3.5. Let us briefly explain the main steps. We
consider the case

τ < a2 − a1.

We split the interval (a1, a0) as (see Fig. 2)

(a1, a0) = (a1, a3) ∪ (a3, a0) where a3 = a2 − τ.

If τ > a2 − a1, then we choose a3 = a1. Then we estimate

∫
I
‖z(τ, a)‖2Xda where I is successively

each one of interval appearing in the above decomposition. These estimates are similar to the ones
presented in Proposition 3.5, thus omitted here.

�

In the next proposition, we estimate q(t, 0). More precisely, we prove the following:

Proposition 3.7. Let us assume the hypothesis of Theorem 3.2 and let τ > τ0+a1 and η ∈ (τ0+a1, τ).
Then for every q0 ∈ D(A∗), the solution q of the system (3.1), satisfies∫ τ

η
‖q(t, 0)‖2X dt 6Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.21)
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0 a1 a2

a0

a2 − τ0

a3
t = τ

t = τ0

Figure 2. In this case, the trajectory γ(s) = (τ−s, a+s) starts inside the observation
region. Thus we just need τ > τ0 in order to apply final state observability of the pair
(A∗, B∗) along the characteristics.

Proof. First of all, without loss of of generality we can assume that a2 6 ab (otherwise we simply
observe for small ages). Then for all t > 0 and a ∈ (0, a2), q satisfies the system (3.9). Let q̃ be defined
as in (3.10). In particular, q̃ satisfies (3.11). Here also we are going to use Proposition 3.4 along the
characteristics. Without loss of generality, let us assume that

a2 6 ab and η < a2 < τ.

Case 1: For a.e. t ∈ (a2, τ), we define

w(s, x) = q̃(s, t− s), s ∈ (t− a2, t). (3.22)

Then w satisfies
∂w

∂s
−A∗w = 0 s ∈ (t− a2, t), (3.23)

Using Proposition 3.4, with t0 = t− a2, t1 = t− a1 and T = t, we obtain

‖w(t)‖2X 6Meωa1C(a2 − a1)

∫ t−a1

t−a2
‖B∗w(s, x)‖2U ds.

In terms of q̃ the above inequality reads as

‖q̃(t, 0)‖2X 6Meωa1C(a2 − a1)

∫ t−a1

t−a2
‖B∗q̃(s, t− s)‖2U ds

= Meωa1C(a2 − a1)

∫ a2

a1

‖B∗q̃(t− s, s)‖2U ds.

Integrating with respect to t over [a2, τ ] we obtain∫ τ

a2

‖q̃(t, 0)‖2 dt 6Meωa1C(a2 − a1)

∫ τ

a2

∫ a2

a1

‖B∗q̃(t− s, s)‖2U dsdt

= Meωa1C(a2 − a1)

∫ a2

a1

∫ τ

a2

‖B∗q̃(t− s, s)‖2U dtds
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= Meωa1C(a2 − a1)

∫ ab

a1

∫ τ−s

a2−s
‖B∗q̃(r, s)‖2U drds

6Meωa1C(a2 − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dxdadt. (3.24)

Case 2: For a.e t ∈ (η, a2), we define

0 a1 a2 = ab

t = a1

t = τ

η

t = τ0 + a1

Figure 3. An illustration of the estimate of q̃(t, 0). Here we have chosen a2 = ab. Since
τ > τ0 + a1 all the backward characteristics starting from (t, 0) enters the observation
domain (the green region) and the length of the characteristics within the observation
region is greater than τ0.

w(s) = q̃(s, t− s) s ∈ (0, t). (3.25)

Then w satisfies
∂w

∂s
−A∗w = 0 s ∈ (0, t).

By applying Proposition 3.4, with t0 = 0, t1 = t− a1 and T = t, we obtain

‖w(t)‖2X 6Meωa1C(t− a1)

∫ t−a1

0
‖B∗w(s)‖2U ds.

This yields

‖q̃(t, 0)‖2X 6Meωa1C(t− a1)

∫ t−a1

0
‖B∗q̃(s, t− s)‖2U ds = Meωa1C(t− a1)

∫ t

a1

‖B∗q̃(t− s, s)‖2U ds.

Integrating with respect to t over [η, a2] we get∫ a2

η
‖q̃(t, 0)‖2X dt 6Meωa1C(η − a1)

∫ a2

η

∫ t

a1

‖B∗q̃(t− s, s)‖2U dsdt

6Meωa1C(η − a1)

∫ a2

0

∫ t

a1

‖B∗q̃(t− s, s)‖2U dsdt
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= Meωa1C(η − a1)

∫ a2

a1

∫ a2

s
‖B∗q(t− s, s)‖2U dtds

= Meωa1C(η − a1)

∫ a2

a1

∫ a2−s

0
‖B∗q(r, s)‖2U drds

6Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (3.26)

Combining, (3.24) and (3.26) we obtain∫ τ

η
‖q̃(t, 0)‖2X dt 6Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt.

Note that, from the definition of q̃ in (3.10), we have q̃(t, 0) = q(t, 0). Thus from the above estimate
we clearly obtain (3.21). �

3.1. Proof of the main result. We are now in a position to prove Theorem 3.2, thus, consequently,
our main result in Theorem 1.2.

Proof of Theorem 3.2. The constant Cτ appearing in this proof depends only on τ, a†, µ, β,A and B.
Let us set

δ = τ − (a1 + a† − a2 + 2τ0) and η = a1 + τ0 +
δ

2
.

Without loss of generality we can assume τ is such that a1 < a2 − τ0 − δ/2. By Proposition 3.5, we
already have that∫ a1

0
‖q(τ, a)‖2X da 6 Cµe

ωa1C(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.27)

Thus the rest of the proof is devoted towards the estimate of

∫ a†

a1

‖q(τ, a)‖2X da. To this aim, let us

define

qη(a) := q(η, a), a ∈ (0, a†) and V (t, a) := β(a)q(t, 0), t ∈ (η, τ), a ∈ (0, a†). (3.28)

We write

q(t, a) = q1(t, a) + q2(t, a), t ∈ (η, τ), a ∈ (0, a†), (3.29)

where q1 solves 
∂q1

∂t
− ∂q2

∂a
−A∗q + µ(a)q1 = 0, t ∈ (η, τ), a ∈ (0, a†),

q(t, a†) = 0, t ∈ (η, τ),

q(η, a) = qη(a), a ∈ (0, a†),

(3.30)

and q2 solves 
∂q2

∂t
− ∂q2

∂a
−A∗q2 + µ(a)q2 = V (t, a), t ∈ (η, τ), a ∈ (0, a†),

q2(t, a†) = 0, t ∈ (η, τ),

q2(η, a) = 0, a ∈ (0, a†).

(3.31)

Using Duhamel’s formula we can write q2 as

q2(t, a) =

∫ t

η
T0
t−sV (s, ·) ds, (3.32)
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where T0 is the C0 semigroup defined in (2.21). Using (2.20) and Proposition 3.7 we get∫ a†

a1

‖q2(τ, a)‖2X da 6 Cτ

∫ τ

η
‖q(t, 0)‖2X dt 6 CτC(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.33)

On the other hand, we write∫ a†

a1

‖q1(τ, a)‖2X da =

∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖2X da+

∫ a†

a2−τ0−δ/2
‖q1(τ, a)‖2 da. (3.34)

From the semigroup representation of T0
t in (2.21), we have

0 a1 a2 a†ab

t = τ0 + a1

t = η

t = τ

q1 = 0

a2 − τ0 − δ/2

t = a1 + a† − a2 + 2τ0

q2 = 0

a2 − τ0 − δ/2

T T

Estimate of q1(τ, a)
Estimate of q2(τ, a)

0 a1 a2ab a†

Figure 4.

q1(t, a) = 0 for t− η > a† − a. (3.35)

In particular,

q1(τ, a) = 0 for a ∈ [a2 − τ0 − δ/2, a†].
Therefore, ∫ a†

a1

‖q1(τ, a)‖2X da =

∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖2X da. (3.36)

Since τ − η > τ0, applying Proposition 3.6 to q1 with a0 = a2 − τ0 − δ/2, we obtain∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖2X da 6 CτC(τ0 + δ/2)

∫ τ

η

∫ a2

a1

‖B∗q1(t, a)‖2U dadt. (3.37)

We define the triangle (see Fig. 4)

T =
{

(t, a) | t ∈ [a+ − a+ η, τ ], a ∈ [a0, a2]
}
⊂ [η, τ ]× [a1, a2], (3.38)
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and we set

T c =
{

[η, τ ]× [a1, a2]
}
\ T . (3.39)

From (2.21), it easily follows that

q1(t, a) = 0 for all (t, a) ∈ T q2(t, a) = 0 for all (t, a) ∈ T c.

Therefore, using (3.29) we obtain∫ τ

η

∫ a2

a1

‖B∗q1(t, a)‖2U dadt =

∫
T c

‖B∗q1(t, a)‖2U dadt

=

∫
T c

‖B∗q(t, a)‖2U dadt 6
∫ τ

η

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.40)

Combining the above estimate together with (3.36) and (3.37) we have∫ a†

a1

‖q1(τ, a)‖2X da 6 CτC(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.41)

The above estimate together with (3.29) and (3.33) yields∫ a†

a1

‖q(τ, a)‖2X da 6 CτC(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (3.42)

Finally, combining the above estimate with (3.27) we obtain (3.4) with

κ2
τ = CτC

(
τ − (a1 + a† − a2)

2

)
. (3.43)

This complets the proof of the theorem. �

4. Applications

The aim of this section is to apply the controllability result obtained in Theorem 1.2 for different
class of operators A and B.

4.1. Finite dimensional diffusion. Let us take X = Rn and U = Rm with m 6 n. Let A be a real
n× n matrix and B be a real n×m matrix. Let us assume that

rank[B,AB, . . . An−1B] = n. (4.1)

In particular, we assume that the pair (A,B) is null-controllable for arbitrary time (i.e. τ0 = 0). Then
by Theorem 1.2, the system (1.6) is null controllable in time τ > a1 + a† − a2.

A Special Case: Let us choose:

n = m = 1, A = 0 and B = 1,

i.e., we consider the classical diffusion free Lotka-McKendrick system. This system has already been
studied in [7, 16, 20, 6]. By applying Theorem 1.2 to this particular case, we recover the result obtained
in [6, Theorem 1.1] (see also [16, 20]).
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4.2. Transport equation with age structure. Let Ω = (0, L). We consider the following control
problem 

∂p

∂t
+
∂p

∂a
+

∂

∂x
(v(x)p) + µ(a)p = 0, (t, a, x) ∈ (0, τ)× (0, a†)× Ω,

p(t, a, 0) = 1(a1,a2)u(t, a), (t, a) ∈ (0, τ)× (0, a†),

p(t, 0, x) =

∫ a†

0
β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ ×(0, a†)× Ω,

(4.2)

where v ∈ C1[0, L] and v(x) > v̄ > 0. We take X = L2(Ω) and U = R. The operator A is defined by

D(A) =
{
ϕ ∈ H1(0, L) | ϕ(0) = 0

}
, Aϕ = − ∂

∂x
(vϕ).

The control operator B is defined by,

Bu = uδ0,

where δ0 is the Dirac mass at 0. It is well known that, the pair (A,B) is null controllable in time

τ >
L

v̄
. Therefore, in order to apply Theorem 1.2, we choose L or v such that

L

v̄
< min{a2 − a1, ab − a1}. (4.3)

Thus the system (4.2) is null controllable in time τ > a† + a1 − a2 +
2L

v̄
.

4.3. Population dynamics models with spatial diffusion diffusion. Let Ω be a smooth bounded
domain in R3. Let us set X = L2(Ω). We consider the Lotka McKendrick system with spatial diffusion.
For (t, a, x) ∈ (0, τ) × (0, a†) × Ω, let p(t, a, x) be the distribution density of individuals with respect
to age a > 0 and spatial position x ∈ Ω at some time t > 0. The control problem we consider is :

∂p

∂t
+
∂p

∂a
−∆p+ µ(a)p = d11(a1,a2)1Ou1, (t, a, x) ∈ (0, τ)× (0, a†)× Ω

∂p

∂n
= d21(a1,a2)1Γu2, (t, a, x) ∈ (0, τ)× (0, a†)× ∂Ω

p(t, 0, x) =

∫ a†

0
β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ (0, a†)× Ω,

(4.4)

where O ⊂ Ω and Γ ⊂ ∂Ω.

4.3.1. Interior control. We consider the case d2 = 0. In this case, we have

A = ∆, D(A) =

{
ϕ ∈ H2(Ω) | ∂ϕ

∂n
= 0

}
, (4.5)

and

B = 1O. (4.6)

It is well known that the pair (A,B) is null controllable in arbitrary time, where A and B are defined
as in (4.5) and (4.6) respectively (see for instance [14]). Therefore by Theorem 1.2 the system (4.4) is
null controllable in time τ > a1 + a† − a2 by interior controls u1 ∈ L2((0, τ)× (0, a†)×Ω). This result
was already obtained in [21].
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4.3.2. Boundary control with respect to the spatial variable. We consider the case d1 = 0. In this case

B∗w = 1Γw, w ∈ D(A).

It is well known that (A∗, B∗) is final state observable for any time ([26]). Thus applying Theorem
1.2, with τ0 = 0 we get that the system (4.4) is null controllable in time τ > a1 + a† − a2 by controls
u2 ∈ L2((0, τ)× (0, a†)× Γ).

4.4. Population dynamics models with degenerate diffusion: Let Ω = (0, 1) and O = (`1, `2) ⊂
Ω. We consider the following age structured model with degenerate diffusion :

∂p

∂t
+
∂p

∂a
− k(x)

∂2p

∂x2
+ µ(a)p = 1(a1,a2)1Ou, (t, a, x) ∈ (0, τ)× (0, a†)× Ω

p(t, a, 0) = p(t, a, 1) = 0, (t, a) ∈ (0, τ)× (0, a†),

p(t, 0, x) =

∫ a†

0
β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ (0, a†)× Ω,

(4.7)

where k is a non-negative continious function in [0, 1] and degenerate at the boundary, i.e.

k(0) = k(1) = 0. (4.8)

Let us set the state and the control space as follows:

X = L2
1/k(0, 1) =

{
ϕ ∈ L2(0, 1) |

∫ 1

0

ϕ2

k
dx <∞

}
and U = L2(0, 1). (4.9)

We consider the unbounded operator A on X defined by

D(A) =
{
ϕ ∈ L2

1/k(0, 1) ∩H1
0 (0, 1) | k∂xxϕ ∈ L2

1/k(0, 1)
}

and Aϕ = k∂xxϕ.

The operator B is defined by B = 1O. By [10, Theorem 2.3], the operator A generates a C0-semigroup
on X. We now make several assumptions on the degenerate coefficient k so that the pair (A,B) is null
controllable. Following, Cannarsa, Fragnelli and Rocchetti [10], we make the following assumptions
on k : The function k ∈ C0[0, 1]∩C3(0, 1) is such that, it satisfies (4.8) and k > 0 in (0, 1). Moreover,
there exists ε ∈ (0, 1) such that

1) The function
x∂xk

k
∈ L∞(0, ε) and there exists M1 ∈ (0, 2) and C1 > 0 such that

x∂xk

k
6M1

and

∣∣∣∣∂xx(x∂xkk
)∣∣∣∣ 6 C1

1

k(x)
for all x ∈ (0, ε);

2) The function
(x− 1)∂xk

k
∈ L∞(1 − ε, 1) and there exists M2 ∈ (0, 2) and C2 > 0 such that

(x− 1)∂xk

k
6M2 and

∣∣∣∣∂xx((x− 1)∂xk

k

)∣∣∣∣ 6 C2
1

k(x)
for all x ∈ (1− ε, 1).

Under the above assumptions, by [10, Theorem 4.5] the pair (A,B) is null controllable in any time.
Therefore by Theorem 1.2, the system (4.7) is null controllable in time τ > a† + a1 − a2.

Remark 4.1. Let us make the following remarks:

• Recently, similar controllability result for the system (4.7) was proved in [13]. Our result can
be seen as a improvement of the above mentioned result, as we are able to tackle the case of a
control which is active for small ages and we show that our global controllability result applies
to individuals of all ages, without needing to exclude ages in a neighbourhood of zero.
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• Our method also applies to the case when the spatial variable is multidimensional. Of course,
we need to make suitable assumptions on degeneracy. For instance, we can consider the case
studied by Cannarsa, Martinez and Vancostenoble [11, 12]. More precisely, let Ω be a smooth
bounded domain in R2. The operator A is defined by

Aϕ = div (M(x)∇ϕ) ,

with appropriate boundary conditions. The control operator B is defined by B = 1O, where
O ⊂ Ω. Under suitable assumptions on the degenerate matrix M(x), the pair (A,B) is null
controllable in arbitrary time (see for instance [11, Theorem 2.2]). Thus the corresponding age
structured model is also null controllable in time τ > a1 + a† − a2.

4.5. Fractional diffusion equation with age structure: Let X = L2(Ω) and let A := (−∆D)α or
A := (−∆N )α, where −∆D and −∆N are the Dirichlet and the Neumann Laplacian in Ω and α > 1/2.
Let B be defined by (4.6). Then (A,B) is null controllable in any time (see for instance [23, 24, 27]).
Therefore the conclusion of Theorem 1.2 also holds with the above choice of (A,B).

4.6. Schrödinger equation with age structure: Let Ω be a square in R2 and we consider the
Schrödinger operator as diffusion operator. More precisely, we take X = L2(Ω)

A = −i∆, D(A) = H2(Ω) ∩H1
0 (Ω).

Let B is defined by (4.6). Then the pair (A,B) is null controllable in any time (see Jaffard [18]). Thus
the conclusion of Theorem 1.2 holds with τ0 = 0.

Alternatively, we can take Ω be a unit disc in R2 and O ⊂ Ω be an open set such that O ∩ ∂Ω 6= ∅.
The operators A and B are defined as above. The pair (A,B) is null controllable in any time, which
was proved by Anantharaman, Léautaud and Macià in [5, Theorem 1.2]. Therefore 1.2 also holds in
this setup.

5. Controllability with regular controls

In Theorem 1.2, we have shown that the age structured system (1.6) is null controllable by controls
u ∈ L2((0, τ)× (0, a†);U). However, in many practical applications, we may need to choose controls in
more regular spaces. For instance, while proving positivity of the controlled trajectory of the system
(4.4) one need to choose control u1 ∈ L∞((0, τ)× (0, a†)×Ω) (see [21, Theorem 4.6]). The aim of this
section is to show that null controllability by “smooth” controls of the pair (A,B) is also inherited by
the pair (A,B).

To this aim, let us fix s ∈ N ∪ {0} and a Hilbert space V so that V ↪→ U. Following, Pighin and
Zuazua [25] we introduce the notion of smooth controllability.

Definition 5.1. We say that a pair (A,B) is smoothly null controllable in time τ, if for every z0 ∈
D(As) there exists a control u ∈ L∞(0, τ, V ) such that, the solution of the system

ż(t) = Az(t) +Bu(t) t ∈ [0, τ ], z(0) = z0,

satisfies z(τ) = 0.

The smooth controllability property of the system (1.6) can be stated as follows:

Theorem 5.2. Let us assume the hypothesis of Theorem 1.2. Let us also assume that the pair (A,B)
is smoothly null controllable in any time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (5.1)
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Then for every τ > a1 + a† − a2 + 2τ0 and for every p0 ∈ L∞(0, a†;D(As)) there exists a control
v ∈ L∞((0, τ)× (0, a†)× V ) such that the solution p of (1.6) satisfies

p(τ, a) = 0 for all a ∈ (0, a†). (5.2)

The proof the above theorem is a consequence of a suitable observability inequality. Let us briefly
describe the main steps. The main idea is the same, i.e, to use observability property of the pair (A,B)
along the characteristics. The smooth controllability in time τ of the pair (A,B) is equivalent to the
following final state observability inequality (see for instance [25, Section 2]): there exists a constant
kτ > 0 such that for any z0 ∈ D(A∗)

‖S∗τz0‖D(As)∗ 6 kτ

∫ τ

0
‖i∗B∗S∗t z0‖V ∗dt, (5.3)

where D(As)∗ and V ∗ are the dual of D(As)∗ and V respectively, with respect to the pivot spaces X
and U and i : V → U is the inclusion map. Applying the above observability property of the pair
(A,B) along the characteristics one can prove that: for every τ > a1 + a† − a2 + 2τ0 and q0 ∈ D(A∗),
the solution q of (3.1) satisfies∫ a†

0
‖q(τ, a)‖D(As)∗ da 6 κ2

τ

∫ τ

0

∫ a2

a1

‖i∗B∗q(t, a)‖V ∗ dadt. (5.4)

Next, using a classical duality argument (see for instance [21, Theorem 4.6] or [22, Proposition 2.5])
we can easily prove Theorem 5.2.
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[2] B. Ainseba and S. Aniţa, Local exact controllability of the age-dependent population dynamics with diffusion,
Abstr. Appl. Anal., 6 (2001), pp. 357–368.
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