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Recent random block-coordinate fixed point algorithms are particularly well suited to large-scale optimization in signal and image processing. These algorithms feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. The present paper provides new linear convergence results. These convergence rates are compared to those of standard deterministic algorithms both theoretically and experimentally in an image recovery problem.

INTRODUCTION

Many algorithms used in applied mathematics and in signal processing rely on fixed point methods. Such a method typically generates a sequence (x n ) n∈N in some underlying real Hilbert space H via the iterative scheme for n = 0, 1, . . .

x n+1 = x n + λ n T n x n -x n , (1) 
where (λ n ) n∈N is a sequence of relaxation parameters in [0, +∞[ and (T n ) n∈N is a sequence of operators from H to H. Under suitable assumptions on the relaxation parameters and the operators, the sequence (x n ) n∈N converges to a point in the intersection F of the fixed point sets (Fix T n ) n∈N [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Quasinonexpansive iterations on the affine hull of orbits: From Mann's mean value algorithm to inertial methods[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

In recent years, an increasing challenge in data analysis has been to process massive data sets, especially in the field of inverse problems. In high dimensional applications, the implementation of (1) may raise serious computational issues. In particular, it may be too demanding in terms of memory requirements. An efficient strategy for overcoming this limitation consists of splitting the variables in [START_REF] Abboud | Dual block-coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF] into m blocks and to update only some of them at each iteration, while leaving the others unchanged. More specifically, let us assume that H is decomposed into the direct Hilbert sum

H = H 1 ⊕ • • • ⊕ H m (2) 
where, for every i ∈ {1, . . . , m}, H i is a real Hilbert space. Then, for every n ∈ N and every i ∈ {1, . . . , m}, the i-th block of x n , denoted by x i,n ∈ H i can be updated or remain unchanged. In this context, a block-coordinate approach aims at devising efficient block update rules while guaranteeing convergence. The extension of the convergence results existing for general fixed point algorithms to block-coordinate forms is however quite delicate. In [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF], a probabilistic framework was developed for designing block-coordinate fixed point algorithms that generate provably convergent sequences and in which the blocks are activated in a random manner.

Other block-coordinate methods focused on specialized minimization problems, and featuring possibly weaker types of convergence, include [START_REF] Abboud | Dual block-coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF][START_REF] Chouzenoux | A blockcoordinate variable metric forward-backward algorithm[END_REF][START_REF] Lu | On the complexity analysis of randomized block-coordinate descent methods[END_REF][START_REF] Necoara | A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints[END_REF][START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF].

In this paper, a block-coordinate extension of (1) is investigated, in which the blocks are activated randomly. Conditions ensuring the almost sure convergence of the iterates are provided. We also show that, under a strict quasinonexpansiveness assumption, mean square convergence is obtained. The same assumption allows us to derive linear convergence results. One important practical question in this context is to assess the impact of the block decomposition on the speed of convergence. Our work provides theoretical elements to answer this question.

In Section 2, we present our stochastic block-coordinate fixed point algorithm. In Section 3, we provide general convergence results for this algorithm. In Section 4, we further investigate the mean square behavior of the algorithm over a finite number of iterations. This allows us to compare blockcoordinate approaches and non-coordinate ones in terms of linear convergence rate. We also examine the impact of a stochastic error in the computation of the involved operators. In Section 5, we illustrate our theoretical results with experiments in multicomponent image recovery [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF].

BLOCK-COORDINATE FIXED POINT ALGORITHM

To avoid technicalities, the underlying space H is assumed to be finite dimensional throughout this paper. Our results can however be extended to the infinite dimensional case [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: Mean-square and linear convergence[END_REF].

For every n ∈ N, the operator T n : H → H is blockdecomposed as

(∀x ∈ H) T n x = (T i,n x) 1 i m (3) 
where, for every i ∈ {1, . . . , m}, T i,n : H → H i is measurable. The proposed block-coordinate algorithm is as follows.

Algorithm 2.1 Let (λ n ) n∈N be a sequence in ]0, 1] and set

D = {0, 1} m {0}. Let x 0 and (a n ) n∈N = (a i,n ) 1 i n
be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Iterate

for n = 0, 1, . . .     for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i,n (x 1,n , . . . , x m,n ) +a i,n -x i,n . (4) 
For every n ∈ N and i ∈ {1, . . . , m}, ε i,n is a binary random variable that signals the activation of the i-th block T i,n of the operator T n and a i,n is an H i -valued random variable modeling some possible stochastic error. Such error may arise because of finite precision computations or approximations to the operator T i,n [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF]. For every n ∈ N, let ε n = (ε i,n ) 1 i n . Note that, as a special case of Algorithm 2.1, (1) is recovered if a n ≡ 0 and ε n ≡ (1, . . . , 1), almost surely.

ASYMPTOTIC ANALYSIS

Notation and assumptions

Given a sequence (x n ) n∈N of H-valued random variables in a probability space (Ω, F, P), the smallest σ-algebra generated by (x 0 , . . . , x n ) is denoted by σ(x 0 , . . . , x n ), and we denote by (F n ) n∈N a sequence of sigma-algebras such that

(∀n ∈ N) F n ⊂ F and σ(x 0 , . . . , x n ) ⊂ F n ⊂ F n+1 .
(5) Let • denote the norm of H (the same notation will be used also for other Hilbert spaces). L 2 (Ω, F, P; H) denotes the space of H-valued random variable x such that E x 2 < +∞.

In order to study the convergence of Algorithm 2.1, we make the following assumptions.

Assumption 3.1 (i) F = ∅. (ii) inf n∈N λ n > 0. (iii) There exists a sequence (α n ) n∈N in [0, +∞[ such that n∈N √ α n < +∞ and (∀n ∈ N) E( a n 2 | F n ) α n . (6) 
(iv) For every n ∈ N, E n = σ(ε n ) and F n are independent.

(v) For every i ∈ {1, . . . , m}, p i = P[ε i,0 = 1] > 0.

Convergence results

We first show that, under quasinonexpansiveness properties for the operators (T n ) n∈N , almost sure convergence results are obtained. Recall that an operator T : H → H with fixed point set Fix T is quasinonexpansive if

(∀z ∈ Fix T)(∀x ∈ H) Tx -z x -z . ( 7 
)
Theorem 3.2 [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] Let (x n ) n∈N be a sequence generated by Algorithm 2.1. Suppose that sup n∈N λ n < 1 and that, for every n ∈ N, T n is quasinonexpansive. Then, under Assumption 3.1, the following hold:

(i) (T n x n -x n ) n∈N converges to 0 almost surely.
(ii) Suppose that, almost surely, every sequential cluster point of (x n ) n∈N belongs to F. Then (x n ) n∈N converges almost surely to an F-valued random variable. In order to obtain more accurate convergence results, we make the strict contraction assumption

         F = {x} = {(x i ) 1 i m } (∀n ∈ N)(∀x = (x i ) 1 i m ∈ H) T n x -x 2 m i=1 τ i,n x i -x i 2 , (8) 
where, for every n ∈ N, (τ i,n ) 1 i m are strictly positive parameters such that (∀i ∈ {1, . . . , m}) sup n∈N τ i,n < 1.

Theorem 3.4 [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: Mean-square and linear convergence[END_REF] Let (x n ) n∈N be a sequence generated by Algorithm 2.1. Suppose that x 0 ∈ L 2 (Ω, F, P; H) and (T n ) n∈N satisfy [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Then, under Assumption 3.1, (x n ) n∈N converges to x both in the mean square and almost sure senses.

MEAN SQUARE BEHAVIOR

Mean square error bound

Let us assume in this section that Assumption 3.1 holds and that the sequence (T n ) n∈N satisfies [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. In order to provide non asymptotic bounds on the mean square estimation error, introduce a few parameters, namely

(∀n ∈ N)                      ξ n = α n min 1 i m p i µ n = 1 -min 1 i m p i 1 -τ i,n χ n = 1 -λ n (1 -µ n ) + √ ξ n λ n (1 -λ n + λ n √ µ n ) η n = n k=0 n =k+1 χ λ k (1 -λ k + λ k √ µ k ) ξ k + λ k ξ k .
We are now ready to state our main result:

Theorem 4.1 Under the same assumptions as in Theorem 3.4,

(∀n ∈ N) E x n+1 -x 2 max 1 i m p i min 1 i m p i n k=0 χ k E x 0 -x 2 + η n . (9) 
The proof of this result is given in [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: Mean-square and linear convergence[END_REF].

Behavior in the absence of stochastic errors

Let us consider the case when there are no errors, i.e., when α n ≡ 0. Set

(∀n ∈ N) χ = 1 -inf n∈N λ n min 1 i m p i (1 -τ i,n ) ∈ [0, 1[. (10 
) Then we derive from Theorem 4.1 that

(∀n ∈ N) E x n -x 2 C χ n , (11) 
where

C = max 1 i m p i min 1 i m p i E x 0 -x 2 . ( 12 
)
This shows that a linear convergence rate is obtained. Let us now assess the impact of the activation probabilities of the blocks. For simplicity, let us further assume that the blocks are processed uniformly in the sense that (∀i ∈ {1, . . . , m})

p i = p. Set χ = 1 -inf n∈N λ n 1 -max 1 i m τ i,n ∈ [0, 1[. (13) 
Then

χ = 1 -(1 -χ)p. (14) 
When p = 1, the upper bound in ( 14) on the convergence rate is minimal and equal to χ. This is consistent with the intuition that frequently activating the coordinates should favor the convergence speed as a function of the iteration number.

On the other hand, activating the blocks less frequently induces a reduction of the computational load per iteration. In Algorithm 2.1, the cost of computing T i,n (x 1,n , . . . , x m,n ), here assumed to be independent of i and the iteration number n, is on the average p times lower than in the standard non block-coordinate approach. Let us introduce the quantity

(p) = - ln 1 -(1 -χ)p p ( 15 
)
to evaluate the convergence rate normalized by the probability p accounting for computational cost. Then ( 14) yields

χ n = exp -(p)pn . ( 16 
)
As n iterations of the block-coordinate algorithm have the same computational cost as pn iterations of a non blockcoordinate approach, (p) appears to be a relevant quantity to evaluate the convergence rate normalized by the computational cost. The ratio ρ(p)/ (1) can thus be used to provide a fair comparison of a block-coordinate approach versus a non block-coordinate one. Fig. 1 shows that, for values of χ not too small, the decrease in the normalized convergence rate remains limited with respect to a deterministic approach in which all the blocks are activated. For example, if χ > 0. 

Influence of stochastic errors

Since α n → 0, there exists n 0 ∈ N such that χ = sup n n0 χ n < 1. Without loss of generality, we assume that n 0 = 0. Using standard majorizations, we obtain

(∀n ∈ N) η n 1 + sup k∈N ξ k n k=0 ξ k χ n-k . ( 17 
)
Let us now assume that α n = O(n -θ ) with θ ∈ ]2, +∞[, which is a choice compatible with Assumption 3.1(iii) and consistent with standard stochastic approximation techniques. It then follows from (17) that η n = O(n -θ/2 ) and, consequently, Theorem 4.1, yields E x n -x 2 = O(n -θ/2 ). We thus lose the linear convergence property. This illustrates the fact that care should be taken in order to control the stochastic error term in Algorithm 2.1.

SIMULATION EXAMPLE

We consider the problem of denoising a sequence of m = 4 color images of size 512 × 512 acquired in burst mode. Each color component of these images has been corrupted with a zero-mean white Gaussian noise with standard deviation 60, leading to an initial signal-to-noise ratio equal to 8.00 dB (see top row of Fig. 2). We denote by x = ( x i ) 1 i m the original image and by y = (y i ) 1 i m the noisy one. In this application, for every i ∈ {1, . . . , m},

H i = R K with K = 512 2 .
Given y, we want to generate an estimate x of x by solving the variational problem

minimize x∈H m i=1 f i (x i ) + m-1 i=1 g(x i+1 -x i ) (18) 
where, for every i ∈ {1, . . . , m}, f i is the proper lowersemicontinuous convex function defined by

(∀x i ∈ H i ) f i (x i ) = 1 2 x i -y i 2 + κh(Wx i ). ( 19 
)
κ ∈ ]0, +∞[ is an intra-image regularization parameter, W ∈ R N ×N is an orthogonal wavelet decomposition performed over 4 resolution levels using Symlet-4 Daubechies wavelets, and h is an 1 -norm applied on the wavelet detail coefficients. On the other hand, g is an 1/δ-Lipschitz differentiable convex function serving to perform an inter-image regularization, which is defined as

(∀u = (υ k ) 1 k K ∈ R K ) g(u) = ζ K k=1 |υ k | 2 + δ 2 (20)
where 18) is solved by a blockcoordinate forward-backward algorithm [9, Section 5.2], which is a special case of Algorithm (4) with, for every i ∈ {1, . . . , m}, n ∈ N, and x ∈ H,

(ζ, δ) ∈ ]0, +∞[ 2 . Problem (
T i,n (x 1 , . . . , x m ) = prox γfi x i -γ m j=1 |j-i|=1 ∇g(x i -x j ) , (21) 
where γ ∈ ]0, +∞[. Since (f i ) 1 i m are 1-strongly convex, (8) is satisfied with (∀i ∈ {1, . . . , m}) τ i,n ≡ 1/(1 + γ) 2 . In our experiments, we set κ = 84, ζ = 5, δ = 0.5, γ = 5.83 × 10 -2 , and λ n ≡ 1. The denoised images x obtained after running the algorithm for a large number of iterations with all the blocks activated (i.e. (∀i ∈ {1, . . . , m}) p i = 1) is displayed on the bottom row of Fig. 2, resulting in an improved signal-to-noise ratio equal to 17.54 dB.

We also show in Fig. 3 the variations of E x n -x 2 as a function of the iteration number n, in three cases. The first corresponds to the non block-coordinate case, whereas the second (resp. third) corresponds to the stochastic case when (∀i ∈ {1, . . . , m}) p i = 0.8 (resp. 0.46). In the latter two cases, the estimation of the mean square estimation error is performed over 10 realizations. In all the cases, the algorithm is initialized with the noisy images. The experimental plots are consistent with the upper bound expressions derived in [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF]. In particular, we observe that these ones provide good estimates of the asymptotic convergence rate. As expected, this rate value is lower when the probability of activation decays. In Fig. 4, we compare the same simulation scenarios, by plotting now the mean square estimation error as a function of the computation time. We observe then that the algorithm has a similar convergence behavior in all cases. This is in agreement with our discussion in Section 4.2 since, in our experimental setting, the parameter χ is close to 1. 

Remark 3. 3 (

 3 i) The condition required in (ii) is actually met for many fixed point algorithms for solving monotone inclusion problems, e.g., the forward-backward algorithm or the Douglas-Rachford algorithm [9, Section 5]. (ii) This convergence result can be extended to the more general case when the operators (T n ) n∈N are averaged operators [9, Corollary 3.8].
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 111 Fig. 1. Variations of (p)/ (1) as a function of p for various values of χ.
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 2 Fig. 2. Top: noisy images y1, y2, y3, y4. Bottom: denoised images x1, x2, x3, x4.
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 3 Fig.3. E xnx 2 /E x0 -x 2 (in dB) versus iteration number n: in blue when the blocks are always activated, in black (resp. red) when their probability of activation is 0.8 (resp. 0.46). The upper bound in[START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] is shown in dashed lines for each case.
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 4 Fig.[START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF]. E xnx 2 /E x0 -x 2 (in dB) versus computation time in seconds (using Matlab R2018 with a 3.3 GHz Intel i7 processor): in blue when the blocks are always activated, in black (resp. red) when their probability of activation is 0.8 (resp. 0.46).
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