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Abstract. Sanitizable signatures allow designated parties (the sanitizers) to apply
arbitrary modifications to some restricted parts of signed messages. A secure
scheme should not only be unforgeable, but also protect privacy and hold both
the signer and the sanitizer accountable. Two important security properties that
are seemingly difficult to achieve simultaneously and efficiently are invisibility
and unlinkability. While invisibility ensures that the admissible modifications are
hidden from external parties, unlinkability says that sanitized signatures cannot
be linked to their sources. Achieving both properties simultaneously is crucial for
applications where sensitive personal data is signed with respect to data-dependent
admissible modifications. The existence of an efficient construction achieving both
properties was recently posed as an open question by Camenisch et al. (PKC’17).
In this work, we propose a solution to this problem with a two-step construction.
First, we construct (non-accountable) invisible and unlinkable sanitizable signa-
tures from signatures on equivalence classes and other basic primitives. Second,
we put forth a generic transformation using verifiable ring signatures to turn any
non-accountable sanitizable signature into an accountable one while preserving all
other properties. When instantiating in the generic group and random oracle model,
the efficiency of our construction is comparable to that of prior constructions, while
providing stronger security guarantees.

1 Introduction

Sanitizable signature schemes introduced by Ateniese et al. [2] are signature schemes
that allow a certain degree of controlled malleability: The signer signs messages along
with some “admissible modifications” with respect to another party called the sanitizer.
The sanitizer can (only) convert a given message-signature pair into one that is admissible.
When necessary, the signer can (dis)prove the authorship of a given signature to the pub-
lic which is modelled by a party called the judge. Over the years, the originally informal
security properties [2] were formalized [6,7] and strengthened [28]. Beyond unforge-
ability, sanitizable signatures provide one with meaningful privacy guarantees, which
are important when signing and sanitizing sensitive data. Furthermore, accountability of
the signatures prevents the parties from misbehaving as they may eventually get caught.
New properties, such as invisibility, were recently proposed [10,3]. To summarize, we
recall the security properties which we consider in this work:

Immutability. The sanitizer cannot modify non-admissible messages.



Accountability. The signer cannot accuse the sanitizer (vice versa) of signing.
Transparency. Non-sanitized and sanitized signatures are indistinguishable.
Invisibility. The class of admissible modifications are hidden from external parties.
Unlinkability. Sanitized signatures cannot be linked to their sources.

Applications. Ateniese et al. [2] suggested a wide range of applications of sanitizable
signatures, including multicast transmission, database outsourcing, protecting health in-
formation, and secure routing. As an example, we highlight the importance of invisibility
and unlinkability of sanitizable signatures for signing medical records. Suppose that a
physician signs medical records of patients using a sanitizable signature scheme. The
patients can then sanitize the medical record for different purposes. For example, they
may 1) remove the personal information and delegate the anonymized record for analysis;
2) remove everything except for the personal information for financing purposes, in such
a way that the receivers are convinced of the authenticity of the record. As discussed
in [7], unlinkability ensures that colluding receivers cannot reconstruct the full medical
records since they cannot link records sanitized from the same source.

However, suppose that the admissible modifications chosen by the physician, are
data-dependent. For instance, patients suffering from certain sensitive medical condition
that might possibly lead them to be discriminated against, may be allowed to change
the fields corresponding to these conditions to NO, while other patients not suffering
from any of these conditions are not allowed to change any of the fields to YES. Such a
policy of assigning admissible modifications prevents the former patients from facing
discrimination when revealing such conditions is not necessary, while preventing the
latter patients from getting hold of drugs which are otherwise only issued to patients
suffering from those conditions. The security property invisibility is crucial for such
a scenario, since the receiver of a sanitized medical record can otherwise easily tell
whether the corresponding patient suffers from a sensitive condition by just checking
whether changing the corresponding field in the record is modifiable or not.

1.1 Open Problem

As discussed above, achieving both unlinkability and invisibility is desirable for certain
applications. Obviously, realizing both notions simultaneously is rather easy from a
theoretical point of view using common “encrypt and prove” techniques. Although the
feasibility is clear, doing so efficiently turns out to be challenging.

One obvious starting point to answer this question is the idea to lift an existing
invisible sanitizable signature scheme to an unlinkable one. Following this path does
not seem to be fruitful, because existing invisible constructions adopt the “chameleon-
hash-then-sign” paradigm: The main ingredients in this approach are a signature scheme
for which the signer has the secret key, and a chameleon hashing scheme4 for which the
sanitizer has the trapdoor. To sign a message, the signer first splits the message into `
message blocks, some of which are “admissible”, meaning that they are allowed to be

4 A chameleon hashing scheme allows to generate a probabilistic hash function H together with
a trapdoor. With the latter, one can efficiently compute a randomness r when given any message
m and hash value h such that h = H(m, r).
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changed by the sanitizer, while some are not. The signer then computes the chameleon
hashes of the individual message blocks, in such a way that the sanitizer can recover the
trapdoors corresponding to the admissible blocks, and sign the hash values. Later, the
sanitizer can change the admissible blocks by using the trapdoors to “explain” the hash
values with new messages.

Under the “chameleon-hash-then-sign” paradigm, we can see that signatures are
inherently linkable. This is because all signatures which are sanitized from a fresh
signature contain the same set of hash values. One can of course hide the hash values
by using generic non-interactive zero-knowledge arguments, but that would not yield a
practical scheme. Therefore, [10] and [3] posed the following open problem:

“How to construct (efficient) sanitizable signature schemes which are simulta-
neously unlinkable and invisible?”

In this work, we answer this question by constructing the first efficient invisible and
unlinkable sanitizable signature scheme.

1.2 Our Techniques

To solve the problem of constructing an efficient unlinkable and invisible sanitizable
signature scheme, we suggest a modular approach visualized with the help of Figure 1.

Weak Sanitizable Signatures
(Section 4.1)

Verifiable Ring Signatures

Sanitizable Signatures

Generic Transformation (Section 4.2)

Fig. 1: Outline of our approach.

First, we decouple the problem by presenting a generic transformation that turns
any non-accountable sanitizable signature into an accountable one while preserving or
upgrading all other properties. Our transformation is very efficient as it only requires a
verifiable [31] ring signature5. Recall that a ring signature scheme allows a signer to sign
messages on behalf of an ad-hoc group picked during signature generation. Verifiability
in this context means that a signer can (dis)prove the authorship of a given signature a
posteriori. The basic idea of our transformation is as follows.

To sign (resp. sanitize), the signer (resp. the sanitizer) runs the sign (resp. sanitize)
algorithm of the weak sanitizable signature scheme, and signs the whole output (ignoring
the underlying structure) with a verifiable ring signature scheme, where the ring is

5 We remark that verifiable ring signatures can be implemented from unique [18], linkable [30],
accountable [38], or traceable [22] ring signatures, so the transformation also works with these
kinds of signature.
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composed by the verification keys of the signer and the sanitizer. The resulting scheme is
accountable because the signer can (dis)prove the authorship of a certain signature using
the accountability property of the ring signature itself. Our transformation does not only
preserve the underlying properties of the (non-accountable) sanitizable signature scheme,
but it also strengthens some of them: If the underling scheme is weakly immutable (resp.
weakly unlinkable), then the resulting scheme is immutable (resp. unlinkable).

Next, we tackle the main problem of constructing an invisible and unlinkable (non-
accountable) sanitizable signature scheme. The (long-term) public and secret keys of
the signer are the verification and signing keys of a certain signature scheme, which we
refer to as the outer-layer scheme. To sign a message, the signer splits the message into `
message blocks, and generates ` pairs of signing and verification keys of an inner-layer
signature scheme. Naturally, the signer signs each message block with the corresponding
inner signing key, and signs the verification keys with its (long-term) outer secret key. To
allow sanitization, the signer additionally delegates the inner signing keys corresponding
to the admissible blocks by encrypting them under the sanitizer public key. Note that
all message blocks are treated equally, which is critical for invisibility, except for the
generation of the ciphertext. By the semantic security of the encryption scheme, the
signature is still invisible to the eyes of an external observer.

To generate signatures for sanitized messages, the sanitizer simply uses the delegated
inner signing keys to sign the modified message blocks. However, the resulting sanitized
signature is now linkable since the outer signature on the inner verification keys and
the keys themselves remain unchanged. To resolve this issue, we need to craft an inner
signature scheme with some special properties. Our inner signatures scheme is very
similar to the Boneh–Lynn–Shacham (BLS) signature scheme [4] and works as follows:
The public key consists of two group elements (Gx1 , G

xy
1 ) and the secret key y ∈ Zq can

be used to sign a message m by computing σ := H(m)y ∈ G2. The verification is done
using the pairing

e (Gx1 , σ) = e (Gxy1 ,H(m)) .
The difference with respect to BLS lies in the extra term of the public key whose role will
appear clear in a moment. The property that we need is that the keys and the signatures are
publicly re-randomizable, i.e., one can compute consistent scalings of both the signature
and the public key

(σ, (Gx1 , G
xy
1 )) 7→ (σ, (Gx1 , G

xy
1 ))r :=

(
σr,
(
Grx1 , Grx·y1

))
.

It is easy to see that the resulting key-signature pair is still consistent, i.e., the verification
checks out. Unfortunately, it turns out that the re-randomization strategy of above is too
simplistic and it is prone to mix-and-match attacks. We therefore devise a slightly more
sophisticated re-randomization procedure

(σ, (Gx1 , G
xy
1 )) 7→

(
σs,
(
Grx1 , Grx·sy1

))
.

which scales the two elements of the public keys by two different scalars r and rs
respectively. Fortunately, this does not affect the correctness of the scheme.

The last obstacle towards decorrelating signed and sanitized signatures is a mecha-
nism to publicly rerandomize the outer signature so that it is consistent with the reran-
domized inner verification keys. More concretely, the problem is to rerandomize signa-
tures of (Gx1

1 , . . . , Gx`1 ) and (Gx1y1
1 , . . . , Gx`y`1 ) to signatures of (Grx1

1 , . . . , Grx`1 ) and
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Sig. SK San. SK Sig. PK San. PK Signature Proof

(`+ 1) Z∗q 2 Z∗q
1 G1+
` G2

2 G1

(`+ 5) Z∗q+
(2`+ 11) G1+

(`+ 2) G2

2 Z∗q+
3 G1

Table 1: Size of the parameters.

Op. Signing Sanitizing Verifying Proving Judging

Exp.
(4`+ 11) G1+

(`+ 2) G2

(2`+ 14) G1+
(`+ 2) G2

8 G1 3 G1 4 G1

Pairing - - 4`+ 6 - -

Table 2: Dominating operations in algorithms.

(Grsx1y1
1 , . . . , Grsx`y`1 ) respectively. It turns out that equivalence class signatures (EQS)

provide exactly such functionality.

1.3 Our Results

To summarize, in this paper we present the following results:

– We present the first efficient sanitizable signature scheme which simultaneously
achieves unlinkability and invisibility. This resolves an open problem posed by
Camenisch et al. [10]. Our construction is over type-III pairing groups. It uses an
equivalence class signature (EQS) scheme, a public-key encryption (PKE) scheme,
a hash function (modeled as a random oracle) with images living in G2, and a
verifiable ring signature (VRS) scheme. We suggest to instantiate our construction
with the EQS scheme of Fuchsbauer, Hanser, and Slamanig [20], the PKE scheme
obtained by applying the Fujisaki-Okamoto transformation [21] to the ElGamal
encryption scheme [?], and the VRS scheme of Bultel and Lafourcade [9]. The
efficiency of such an instantiation is summarized in Table 1 and 2.

– We construct a weak sanitizable signatures from equivalence class signatures and
other basic primitives. The scheme is weak in the sense that it satisfies weak im-
mutability, weak unlinkability, strong proof-restricted transparency6, and strong
invisibility, but not accountability.

– We present a generic transformation from weak sanitizable signatures to fully-
fledged sanitizable signatures, using VRS. Fully-fledged sanitizable signatures sat-
isfy immutability, unlinkability, strong proof-restricted transparency, strong invisi-
bility, and strong accountability. The transformation is very efficient as it ignores
the structure of the underlying weak sanitizable signature scheme. This allows the
future design of sanitizable signatures to focus on achieving other properties while
not worrying about accountability.

6 Our construction actually achieves perfect strong (non-proof-restricted) transparency.

5



1.4 Related work

An alternative definition of accountability called non-interactive public accountability
was given by Brzuska et al. [8]. This variant of accountability is mutually exclusive
with transparency. Several existing works [7,17,29,9] proposed schemes that are both
transparent and unlinkable. Recently, Krenn et al. [28] propose the “strong” versions of
unforgeability, (non-interactive public) accountability, and transparency.

The notion of invisibility dates back to the original work by Ateniese et al. [2], and
was formalized by Camenisch et al. [10]. Beck et al. [3] refined the notion to strong
invisibility and proposed a scheme that is both strongly invisible and strongly accountable.
Recently Fischlin et al. [16] shows that an invisible (but not unlinkable nor transparent)
sanitizable signature scheme can be obtained from any public key encryption scheme.

Miyazaki et al. [32] also considered “invisible sanitizable signatures” which is actu-
ally a different primitive known as redactable signatures [15] as discussed in [10]. Exten-
sions of sanitizable signatures such as the multi-sanitizer setting [12] and a setting where
the modification capabilities of the sanitizer are limited [11] were considered. Other
primitives related to sanitizable signatures include homomorphic signatures [27,26],
redactable signatures [15,35,5], and proxy signatures [37,36,34].

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter and by poly(λ) any
function that is bounded by a polynomial in λ. We denote any function that is negligible
in the security parameter by negl(λ). We say that an algorithm is PPT if it is modelled
as a probabilistic Turing machine whose running time is bounded by some function
poly(λ). Given a set S, we denote by x← S the sampling of and element uniformly at
random from S, and we denote by x← A(in) the output of the algorithm A on input in.
The elements of the set {1, . . . , n} are succinctly represented as [n]. Next we define the
necessary notions for understanding our constructions.

2.1 Class-Hiding Groups

Let BG := (G1,G2,GT , g1, g2, gT , e, q) ← BGGen(1λ) be the description of a mul-
tiplicative bilinear group of prime order q generated by some efficient PPT algo-
rithm BGGen(1λ). Let X̄ = (X1, . . . , X`) ∈ G`1 and ρ ∈ Zq. We write X̄ :=
(X1, . . . , X`)ρ := (Xρ

1 , . . . , X
ρ
` ). We then define the equivalence relation

R := {(M̄, N̄) : ∃` > 1, ρ ∈ Z∗q s.t. (M̄, N̄) ∈ G`1 ×G`1 ∧ N̄ = M̄ρ}.

For a vector M̄ ∈ G`1 for some ` > 1, its equivalence class is defined by

[M̄ ]R := {N̄ ∈ G`1 : (M̄, N̄) ∈ R}.

Next we define the notion of class hiding for a relationR, which intuitively says that it
should be hard to distinguish elements from the same equivalence class from randomly
sampled group elements7.

7 Class-hiding was originally introduced [24] as a property of equivalence class signatures.
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Definition 1 (Class-Hiding). A relationR is said to be class-hiding if for all ` > 1 and
for all PPT adversaries A there exists a negligible function negl(λ) such that∣∣∣∣Pr

[
b′ = b : b← {0, 1};BG ← BGGen(1λ); (M,M0)← (G`1)2;

M1 ← [M ]R; b′ ← A(BG,M,Mb)

]
− 1

2

∣∣∣∣ ≤ negl(λ) .

The following lemma was proven (in different wordings) by Hanser and Slamanig [24]:

Lemma 1 ([24]).R is class-hiding if and only if the DDH assumption holds in G1.

2.2 Equivalence Class Signatures

Equivalence class signatures allow users to sign representatives of the equivalence classes
defined above, such that a representative and its corresponding signature can be adapted
to give a fresh signature of a random representative in the same class. Below, we recall
the formal definition of equivalence class signatures [24].

Definition 2 (EQS). An equivalence class signature (EQS) scheme is defined with
respect to a bilinear group description BG and a message length ` > 1. An EQS scheme
is a tuple of PPT algorithms (KGen,Sign,ChgRep,Vf,VfKey) defined as follows:

(pk, sk)← KGen(BG, 1`): The key generation algorithm inputs a group BG and the
message length 1`. It outputs a key pair (pk, sk).

σ ← Sign(sk, M̄): The signing algorithm inputs the secret key sk and a message M̄ ∈
G`1. It outputs a signature σ on the equivalence class [M̄ ]R.

σ′ ← ChgRep(pk, M̄ , σ, ρ): The change representation algorithm inputs the public key
pk, a message M̄ ∈ G`1, a signature σ on the equivalence class [M̄ ]R, and a scalar ρ. It
outputs a new signature σ′ on the (same) equivalence class [M̄ρ]R = [M̄ ]R.

b← Vf(pk, M̄ , σ): The signature verification algorithm inputs the public key pk, a
message M̄ ∈ G`1, and a signature σ. It returns b = 1 if σ is a valid signature under pk
on the equivalence class [M̄ ]R, and b = 0 otherwise.

b← VfKey(pk, sk): The key verification algorithm inputs a public key pk and a secret
key sk. It returns b = 1 if the keys are consistent and b = 0 otherwise.

We refer the reader to [24] for a formal treatment of correctness. We define existential
unforgeability under random message attacks (EUF-CMA) in the following.

Definition 3 (EUF-CMA). An EQS scheme is said to be existentially unforgeable under
chosen message attacks (EUF-CMA) if for all ` > 1, for all n ∈ poly(λ), and for all
PPT adversaries A,

Pr

1 = Vf(pk,M∗, σ∗) ∧
∀M ∈ Q : [M ]R 6= [M∗]R

:
BG ← BGGen(1λ);
(pk, sk)← KGen(BG, 1`);
(M∗, σ∗)← ASign(sk,·)(pk)

 ≤ negl(λ) .

Next we recall the notion of signature adaptation which captures the fact that signa-
tures output by ChgRep are distributed like fresh signatures on the new representative.
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Definition 4 (Perfect Signature Adaptation). An EQS scheme is said to perfectly
adapt signatures if for all tuples (sk, pk, M̄ , σ, ρ) such that VfKey(pk, sk) = 1,
Vf(pk, M̄ , σ) = 1, M̄ ∈ G`1 for some ` > 1, and ρ← Z∗q it holds that

ChgRep(pk, M̄ , σ, ρ) and Sign(sk, M̄ρ)

are identically distributed.

2.3 Verifiable Ring Signatures

Ring Signatures allow users to sign a message anonymously within a group of users,
where the group is chosen upon signature creation in an ad-hoc way. Verifiable Ring
Signatures (VRS) allow each user of the group to prove a posteriori whether he is the
signer of a given message or not. VRS was formally defined and constructed in [31].
Below, we recall the syntax of VRS.

Definition 5 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signature (VRS)
scheme is a tuple of six algorithms VRS = (Setup,KGen,Sign,Verify,Prove, Judge)
defined as follows:
pp← Setup(1λ): On input the security parameter 1λ, return the public parameters pp.
(pk, sk)← KGen(pp): On input the public parameters pp, return a pair of signer pub-
lic/private keys (pk, sk).
σ ← Sign(sk, L,m): On input the secret key sk, a ring L, and a message m, return a
signature σ on the message m under the set of public keys L.
b← Verify(L,m, σ): On input a ring L, a message m, and a signature σ, return a bit b
or the distinguished symbol ⊥.
π ← Prove(L,m, σ, pk, sk): On input a ring L, a message m, a signature σ, a public
key pk, and a secret key sk, return a proof π.
b← Judge(L,m, σ, pk, π): On input a ring L, a message m, a signature σ, a public key
pk, and a proof π, return a bit b or the distinguished symbol ⊥. By convention, if b = 1
(resp. 0) then π proves that σ was (resp. was not) generated by the signer corresponding
to the public key pk.

A VRS is required to be (strongly) unforgeable, (strongly) accountable, anonymous,
and (strongly) non-seizable. For their formal definitions we refer to Appendix A.2.

3 Definition of Sanitizable Signatures

In the following we recall the syntax of sanitizable signatures. Let the signer and the
sanitizer be denoted by S and Z respectively. Throughout this work we consider messages
m = (m1, . . . ,m`) to be tuples of ` parts for some ` > 1, where mk ∈ {0, 1}∗ for
all k ∈ `, and represent the admissible modification as a bit string α = α1‖ . . . ‖α` ∈
{0, 1}`. We write αk = 1 if and only if the k-th block is admissible. For ease of
exposition, we sometimes write k ∈ α instead of αk = 1.

Let δ be a function which maps a message m to another message m′ = δ(m). Also,
we say that δ is an admissible modification, denoted by α(δ) = 1, if and only if for all
messages m and m′ = δ(m), it holds that m′k = mk for all k ∈ α.
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Definition 6 (Sanitizable Signature Scheme). A sanitizable signature scheme consists
of the PPT algorithms (Setup,KGenS,KGenZ,Sign,San,Verify,Prove, Judge).
pp← Setup(1λ, 1`): The setup algorithm inputs the security parameter 1λ and the
(maximum) length 1` of the messages and creates a public parameter pp.
(pkS, skS)← KGenS(pp): The signer key generation algorithm inputs the public param-
eter pp and outputs (pkS, skS), the public and secret key of the signer respectively.
(pkZ, skZ)← KGenZ(pp): The sanitizer key generation algorithm inputs the public pa-
rameter pp and outputs (pkZ, skZ), the public and secret key of the sanitizer respectively.
σ ← Sign(skS, pkZ,m, α): The signing algorithm inputs a message m ∈ ({0, 1}∗)`,
a signer private key skS, a sanitizer public key pkZ, as well as a description α of the
admissible modifications to m by the sanitizer and outputs a signature σ.
σ′ ← San(pkS, skZ,m, δ, σ): The sanitizing algorithm takes as input a message m ∈
({0, 1}∗)`, a description δ of the desired modifications to m, a signature σ, the signer
public key pkS, and a sanitizer private key skZ. It outputs a new signature σ′ .
b← Verify(pkS, pkZ,m, σ): The verification algorithm inputs a message m, a signature
σ, a signer public key pkS, as well as a sanitizer public key pkZ and outputs a bit b.
π ← Prove(skS, pkZ,m, σ): The proof algorithm takes as input a signer private key skS,
a message m, a signature σ, and a sanitizer public key pkZ and outputs a proof π.
d← Judge(pkS, pkZ,m, σ, π): The judge algorithm inputs a message m, a signature σ,
signer and sanitizer public keys pkS, pkZ, and proof π. It outputs a decision d ∈ {S,Z}
indicating whether the message-signature pair was created by the signer or the sanitizer.

For a sanitizable signature scheme the usual correctness properties should hold, saying
that genuinely signed or sanitized messages are accepted and that a genuinely created
proof by the signer leads the judge to decide in favor of the signer. For a formal approach
to correctness see [6].

3.1 Unlinkability and Invisibility

In the original definition of unlinkability by Brzuska et al. [7], the property was modeled
using an experiment where the adversary gets access to, among other oracles, a “left-
or-right sanitize” oracle LoRSanitO, which inputs two message-modification-signature
tuples and outputs a sanitized signature produced from one of the tuples. The adversary’s
task is to decide which tuple is used for the sanitization.

To define LoRSanitO, Brzuska et al. assumed that the description of admissible
modifications α can be recovered from a valid signature, so that LoRSanitO can recover
the admissible modifications from both input signatures and check whether they are
equal. Note that if this check is omitted, then the adversary can trivially decide which
signature is used by querying the sanitize oracle SanO on the output of LoRSanitO.

Brzuska et al. did not explicitly state if such recovery can be done publicly or
requires a secret key. Indeed, in all existing constructions of unlinkable sanitizable
signatures [7], the recovery mechanism is public, which violates invisibility. Therefore,
to achieve unlinkability and invisibility simultaneously, we must explicitly state that the
admissible modifications can be recovered from a valid signature (hopefully only) with
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SignO(pkZ,m, α)

σ ← Sign(sk†S , pkZ,m, α)

L := L‖{(pk†S , pkZ,m, α, σ)}

return σ

ProveO(pkZ,m, σ)

if
{

pkZ = pk†Z
(m,σ) ∈ Q

then return⊥

// Only triggered in transparency experiment.

β := Vf(pk†S , pkZ,m, σ)

if β = 0 then return⊥

π ← Prove(sk†S , pkZ,m, σ)

return π

SanO′(pkS,m, δ, σ)

if pkS 6= pk†S then

(m′, σ′)← San(pkS, sk
†
Z,m, δ, σ)

return (m′, σ′)
elseif ∃α s.t. (m,σ, α) ∈ R ∧ δ ∈ α then

(m′, σ′)← San(pkS, sk
†
Z,m, δ, σ)

R ← R‖{(m′, σ′, α)}

return (m′, σ′)
endif
return⊥

wLoRSanitOb(i0, δ0, i1, δ1)

if L[i0] = ε ∨ L[i1] = ε then
return⊥

endif
(pkS,0, pkZ,0,m0, α0, σ0) := L[i0]

(pkS,1, pkZ,1,m1, α1, σ1) := L[i1]

foreach β ∈ {0, 1} do

σ
′
β ← San(pk†S , sk

†
Z,mβ , δβ , σβ)

endfor

if

{
α0 = α1
δ0 ∈ α0 ∧ δ1 ∈ α1
δ0(m0) = δ1(m1)

then

L := L‖{(pk†S , pk†Z,mb, αb, σb)}

return σb
endif
return⊥

SanO(pkS,m, δ, σ)

α← ExtAdm(pkS, sk
†
Z, σ)

if
{

Verify(pkS, pk†Z,m, σ) = 1
δ ∈ α

then

σ
′ ← San(pkS, sk

†
Z,m, δ, σ)

L := L‖{(pkS, pk†Z, δ(m), α, σ′)}

return σ′

endif
return⊥

LoRAdmOb(pkZ,m, α0, α1)

if
{
|α0| = |α1| = |m|
pkZ = pk†Z ∨ α0 = α1

then

σ ← Sign(sk†S , pkZ,m, αb)

if pkZ = pk†Z then

R := R‖{(m,σ, α0 ◦ α1)}
endif
return σ

endif
return⊥

Sign/SanOb(m, δ, α)

if δ /∈ α then return⊥

σ ← Sign(sk†S , pk†S ,m, α)

σ
′
β ←

{
Sign(sk†S , pk†S , δ(m), α) b = 0
San(pk†S , sk

†
Z,m, δ, α) b = 1

Q = Q‖(δ(m), σ′)

return σ′

LoRSanitOb(m0, δ0, σ0,m1, δ1, σ1)

bβ ← Verify(pk†S , pk†Z,mβ , σβ), ∀β ∈ {0, 1}

if b0 = 0 ∨ b1 = 0 then return⊥
foreach β ∈ {0, 1} do

αβ ← ExtAdm(pk†S , sk
†
Z, σβ)

σ
′
β ← San(pk†S , sk

†
Z,mβ , δβ , σβ)

endfor

if

{
α0 = α1
δ0 ∈ α0 ∧ δ1 ∈ α1
δ0(m0) = δ1(m1)

then

L := L‖{(pk†S , pk†Z,mb, αb, σb)}

return σb
endif
return⊥

Fig. 2: Oracles for Sanitizable Signatures
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ExpImmutabilityA,Π(1λ)

L := ε, Q := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp)

(pk∗Z ,m
∗
, σ
∗)← ASignO,ProveO(pp, pk†S )

parse L as {(pkS,i, pkZ,i,mi, αi, σi)}
[|L|]
i=1

b0 := Verify(pk†S , pk∗Z ,m
∗
, σ
∗)

b1 :=

(∃i ∈ [|L|], δ ∈ αi s.t.{
pk∗Z = pkZ,i

m∗ = δ(mi)

)
return b0 ∧ ¬b1

w

ExpSanAccA,Π(1λ)

L := ε, Q := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp)

(pk∗Z ,m
∗
, σ
∗)← ASignO,ProveO(pp, pk†S )

π
∗ ← Prove(sk†S , pk∗Z ,m

∗
, σ
∗)

parse L as {(pkS,i, pkZ,i,mi, αi, σi)}
[|L|]
i=1

b0 := Verify(pk†S , pk∗Z ,m
∗
, σ
∗)

b1 :=
(

(pk∗Z ,m
∗
, σ
∗) /∈ {(pkZ,i,mi, σi)}

[|L|]
i=1

)
b2 := (Judge(pk†S , pk∗Z ,m

∗
, σ
∗
, π
∗) 6= Z)

return b0 ∧ b1 ∧ b2

ExpSigAccA,Π(1λ)

L := ε, Q := ε, R := ε, pp← Setup(1λ)

(pk†Z, sk
†
Z)← KGenZ(pp)

(pk∗S ,m
∗
, σ
∗
, π
∗)← ASanO(pp, pk†Z)

parse L as {(pkS,i, pkZ,i,mi, αi, σi)}
[|L|]
i=1

b0 := Verify(pk∗S , pk†Z,m
∗
, σ
∗)

b1 :=
(

(pk∗S ,m
∗
, σ
∗) /∈ {(pkS,i,mi, σi)}

[|L|]
i=1

)
b2 := (Judge(pk∗S , pk†Z,m

∗
, σ
∗
, π
∗) 6= S)

return b0 ∧ b1 ∧ b2

ExpTransparencybA,Π(1λ)

L := ε, Q := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp), (pk†Z, sk

†
Z)← KGenZ(pp)

O :=
{

SignO, SanO,
ProveO, Sign/SanOb

}
b
′ ← AO(pp, pk†S , pk†Z)

return b′

wExpUnlinkbA,Π(1λ)

L := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp), (pk†Z, sk

†
Z)← KGenZ(pp)

O :=
{

SignO, SanO,
ProveO,wLoRSanitOb

}
b
′ ← AO(pp, pk†S , pk†Z)

return b′

ExpUnlinkbA,Π(1λ)

L := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp), (pk†Z, sk

†
Z)← KGenZ(pp)

O :=
{

SignO, SanO,
ProveO, LoRSanitOb

}
b
′ ← AO(pp, pk†S , pk†Z)

return b′

ExpInvisibilitybA,Π(1λ)

L := ε, Q := ε, R := ε, pp← Setup(1λ)

(pk†S , sk
†
S )← KGenS(pp), (pk†Z, sk

†
Z)← KGenZ(pp)

O :=
{

SanO′,ProveO, LoRAdmOb
}

b
′ ← AO(pp, pk†S , pk†Z)

return b′

Fig. 3: Security Experiments for Sanitizable Signatures. Oracles are defined in Figure 2.
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the corresponding sanitizer secret key. We say that a sanitizable signature scheme has
privately extractable admissible modifications, if there exists a PPT algorithm ExtAdm
which performs the following:
α← ExtAdm(pkS, skZ, σ): The admissible modifications extraction algorithm inputs a
signer public key pkS, a sanitizer secret key skZ, and a signature. It outputs a description
α of the admissible modifications.

In what follows, we only consider sanitizable signature schemes which have privately
extractable admissible modifications.

3.2 Security of Sanitizable Signatures

We require a sanitizable signature scheme to be immutable, strongly accountable, strongly
invisible, strongly proof-restrictedly transparent, and unlinkable. Different variations of
these properties were defined in the literature [6,7,28,3]. We will recall the definitions
below for completeness. Additionally, we define the notions of weak immutability and
weak unlinkability, which are achieved by our first construction. Our second construction
then upgrades these properties to their regular counterparts.

We remark that (strong) unforgeability and privacy were considered in the literature. It
is known that (strong) signer accountability and (strong) sanitizer accountability together
imply (strong) unforgeability, while (strong) proof-restricted transparency implies proof-
restricted privacy [6,28]. Unlinkability is also shown to imply privacy [7]. We therefore
do not consider unforgeability and privacy explicitly.

Immutability. Immutability requires that a malicious sanitizer cannot change inadmissi-
ble blocks. That is, an adversary should not be able to produce a forgery (pk∗Z,m∗, σ∗),
such thatm∗ cannot be produced by any admissible modifications delegated to pk∗Z. Note
that the set of admissible modifications of a signature is bound to (the public key of)
the sanitizer to which the signature is issued. We also consider a relaxed notion called
weak immutability, where a forgery is not considered valid if m∗ can be produced by a
modification which is admissible for some (not necessarily pk∗Z) sanitizers.

Definition 7 (Immutability [6]). A sanitizable signature scheme Π is said to
be immutable if for all PPT adversaries A, the probability that the experiment
Pr
[
ExpImmutabilityA,Π(1λ) = 1

]
≤ negl (λ) where ExpImmutabilityA,Π(1λ) is

defined in Figure 3. Additionally, we say thatΠ is weakly immutable if, in the experiment
wExpImmutabilityA,Π(1λ), the condition pk∗Z = pkZ,i in the dashed box is dropped.

Strong Transparency. Transparency means that sanitized signatures look like non-
sanitized signatures. Rigorously speaking, transparency cannot be achieved if one is
given oracle access to a prove oracle, which distinguishes sanitized signatures from fresh
signatures. A relaxed notion, known as proof-restricted transparency is thus considered,
which requires that one cannot decide whether a signature is sanitized or fresh, without
the help of the prove oracle.

Definition 8 (Strong (Proof-Restricted) Transparency [28]). A sanitizable signature
scheme Π is strongly proof-restrictedly transparent if for all PPT adversaries A,

|Pr
[
ExpTransparency0

A,Π(1λ) = 1
]
−Pr

[
ExpTransparency1

A,Π(1λ) = 1
]
| ≤ negl(λ)
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where ExpTransparencybA,Π(1λ) is defined in Figure 3. If

Pr
[
ExpTransparency0

A,Π(1λ) = 1
]

= Pr
[
ExpTransparency1

A,Π(1λ) = 1
]

then we say Π is perfectly strongly proof-restrictedly transparent. Furthermore, if the
step Q = Q‖(δ(m), σ′) in the Sign/SanOb oracle (highlighted in the dashed box) is
dropped, so that Q remains empty throughout the experiment, then we simply say Π is
perfectly strongly transparent.

Strong Accountability. This property demands that the origin of a (possibly sanitized)
signature should be undeniable by the signer.
Definition 9 (Strong Sanitizer-Accountability [28]). A sanitizable signature scheme
Π is strongly sanitizer-accountable if for all PPT adversaries A,

Pr
[
ExpSanAccA,Π(1λ) = 1

]
≤ negl(λ)

where ExpSanAccA,Π(1λ) is defined in Figure 3.

Definition 10 (Strong Signer-Accountability [28]). A sanitizable signature scheme Π
is strongly signer-accountable if for all PPT adversaries A,

Pr
[
ExpSigAccA,Π(1λ) = 1

]
≤ negl(λ)

where ExpSigAccA,Π(1λ) is defined in Figure 3.

Invisibility. Invisibility requires that the admissible modifications of a signature are
hidden from an external observer.

Definition 11 (Strong Invisibility [3]). A sanitizable signature scheme Π is strongly
invisible if for all PPT adversaries A,

|Pr
[
ExpInvisibility0

A,Π(1λ) = 1
]
− Pr

[
ExpInvisibility1

A,Π(1λ) = 1
]
| ≤ negl(λ)

where ExpInvisibilitybA,Π(1λ) is defined in Figure 3.

Unlinkability. Unlinkability means that one cannot decide the source of a given san-
itized signature, unless it is revealed trivially by the message. The notion is modeled
by considering an experiment where the adversary is given a “left-or-right sanitize”
oracle LoRSanitO which, on input two signatures, sanitizes one of them and returns the
resulting signature. We also consider a relaxed notion called weak unlinkability, where
the adversary is only allowed to query LoRSanitO on honestly generated signatures.

Definition 12 (Weak Unlinkability). A sanitizable signature scheme SS is weakly
unlinkable if for all PPT adversaries A,

|Pr
[
wExpUnlink0

A,SS(1λ) = 1
]
− Pr

[
wExpUnlink1

A,SS(1λ) = 1
]
| ≤ negl(λ)

where wExpUnlinkbA,SS(1λ) is defined in Figure 3.

Definition 13 (Unlinkability [6]). A sanitizable signature scheme SS is unlinkable if
for all PPT adversaries A,

|Pr
[
ExpUnlink0

A,SS(1λ) = 1
]
− Pr

[
ExpUnlink1

A,SS(1λ) = 1
]
| ≤ negl(λ)

where ExpUnlinkbA,SS(1λ) is defined in Figure 3.
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4 Construction

We propose a two-step construction of sanitizable signatures with immutability, strong
accountability, strong proof-restricted transparency, strong invisibility, and unlinkability.
In the first step, using equivalence class signatures and other basic primitives, we con-
struct a scheme with weak immutability, perfect strong transparency, strong invisibility,
and weak unlinkability. This scheme does not achieve accountability. Next, we show how
one can transform any schemes with these properties one with all desirable properties,
using verifiable ring signatures.

4.1 Construction I: Achieving Unlinkability and Invisibility

Let ` > 1 be an integer. Let EQS be an equivalence class signature scheme, H :
{0, 1}∗ → G2 be a hash function (to be modeled as a random oracle), and PKE be
a public-key encryption scheme. We present in Figure 4 a construction of sanitizable
signatures Π1. The construction satisfies weak immutability, strong invisibility, perfect
strong transparency, and weak unlinkability, but not accountability.

Informally, the signer issues signatures as follows. On input a message m =
m1‖ . . . ‖m`, the signer samples ` fresh BLS-like public and secret keys, which are used
to sign the ` messages. Concretely, the i-th public key consists of a tuple (Xi, Yi) ∈ G2

1
with Yi = Xyi

i for some yi ∈ Zq, and the secret key is yi. It then signs the vectors
X̄ = (X1, . . . , X`) and Ȳ = (Y1, . . . , Y`) using EQS. Next, in the same way as in [3],
it encrypts the BLS-like secret keys yi corresponding to the admissible message blocks
using the PKE public key of the sanitizer. Finally, it outputs the signature which consists
of two EQS signatures, ` BLS-like signatures and public keys, and a PKE ciphertext.

To sanitize, the sanitizer decrypts the PKE ciphertext and obtains the BLS-like secret
keys corresponding to the admissible blocks, which are then used to sign the correspond-
ing modified messages. Using the homomorphic property of the BLS-like scheme, the
sanitizer can rerandomize X̄ and Ȳ to X̄r and Ȳ r·s respectively, and rerandomize the
signatures accordingly so that they are compatible with the new public keys. Using the
signature adaptation properties of EQS, it can also obtain fresh-looking EQS signatures
on X̄r and Ȳ r·s respectively. Finally, the sanitizer re-encrypts the new BLS-like secret
keys, and outputs the signature.

Since we do not aim to provide accountability, the prove algorithm always returns
the empty string ε and the judge algorithm always outputs S. The correctness of Π1
follows trivially from the correctness of the building blocks. Below, we state our main
theorem and we defer its proof to Section 5.

Theorem 1. Let q > 2λ. If EQS is EUF-CMA-secure, then Π1 is weakly immutable
in the generic group and random oracle model. If PKE is IND-CCA-secure, then Π1
is strongly invisible. If EQS perfectly adapts signatures, then Π1 is perfectly strongly
transparent (and hence also perfectly strongly proof-restrictedly transparent). If the
equivalence relation R is class-hiding, EQS perfectly adapt signatures, and PKE is
correct and is IND-CCA-secure, then Π1 is weakly unlinkable in the generic group
random oracle model.

Finally, we remark that it is trivial to extend the construction to the multi-sanitizer setting
by encrypting the (possibly different subsets of) BLS-like keys for different sanitizers.
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Setup(1λ, 1`)

(G1,G2,GT , G1, G2, GT , e, q)← BGGen(1λ)
BG := (G1,G2,GT , G1, G2, GT , e, q)

return pp := (BG, 1λ, 1`)

KGenS(pp)

return (pkS, skS)← EQS.KGen(BG, 1`)

KGenZ(pp)

return (pkZ, skZ)← PKE.KGen(1λ)

Sign(skS, pkZ,m, α)

if |α| 6= ` then return ⊥
xi, yi ← Z∗q , ∀i ∈ [`]
Xi := Gxi1 , Yi := Xyi

i , ∀i ∈ [`]
µ← EQS.Sign(skS, (X1, . . . , X`))
η ← EQS.Sign(skS, (Y1, . . . , Y`))
σi := H(i‖mi)yi , ∀i ∈ [`]

ζi :=
{
yi i ∈ α
0 otherwise

, ∀i ∈ [`]

c← PKE.Enc(pkZ, (α, {ζi}i∈[`]))

σ := (µ, η, {σi, Xi, Yi}`i=1, c)
return σ

Verify(pkS, pkZ,m, σ)

b−2 := (∀k ∈ [`], Yk 6= G1)
b−1 := EQS.Vf(pkS, (X1, . . . , X`), µ)
b0 := EQS.Vf(pkS, (Y1, . . . , Y`), η)
bi := (e(Xi, σi) = e(Yi,H(i‖mi))), ∀i ∈ [`]

return
`⋂

i=−2

bi

San(pkS, skZ,m, δ, σ)

(α, {ζi}i∈[`])← PKE.Dec(skZ, c)
if δ /∈ α then return ⊥
m′ := δ(m)
r, s← Z∗q
(X ′1, . . . , X ′`) := (X1, . . . , X`)r

(Y ′1 , . . . , Y ′` ) := (Y1, . . . , Y`)r·s

X̄ := (X1, . . . , X`)
Ȳ := (Y1, . . . , Y`)
µ′ ← EQS.ChgRep(pkS, X̄, µ, r)
η′ ← EQS.ChgRep(pkS, Ȳ , η, s)
foreach i ∈ [`] do
ζ′i := s · ζi

σ′i :=
{

H(i‖m′i)ζ
′
i i ∈ α

σsi otherwise

endfor
c′ ← PKE.Enc(pkZ, (α, {ζ

′
i}i∈[`]))

σ′ := (µ′, η′, {σ′i, X ′i, Y ′i }`i=1, c
′)

return σ′

ExtAdm(pkS, skZ, σ)

τ ← PKE.Dec(skZ, c)
parse τ as (α, {ζi}i∈[`])
return α

Fig. 4: Construction of Weak Sanitizable Signatures. Prove and Judge always output ε
(the empty string) and S (the signer) respectively, and are omitted.
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Π2.Setup(1λ, 1`)

ppSS ← Π1.Setup(1λ, 1`)

ppVRS ← VRS.Setup(1λ)
return pp := (ppSS, ppVRS)

Π2.KGenS(pp)

(spkS, sskS)← Π1.KGenS(ppSS)
(vpkS, vskS)← VRS.KGen(ppVRS)
(pkS, skS) := ((spkS, vpkS), (sskS, vskS))
return (pkS, skS)

Π2.KGenZ(pp)

(spkZ, sskZ)← Π1.KGenZ(ppSS)
(vpkZ, vskZ)← VRS.KGen(ppVRS)
(pkZ, skZ) := ((spkZ, vpkZ), (sskZ, vskZ))
return (pkZ, skZ)

Π2.Sign(skS, pkZ,m, α)

σSS ← Π1.Sign(sskS, spkZ, pkZ‖m, 0‖α)
t := pkS‖pkZ‖m‖σSS

σVRS ← VRS.Sign(vskS, {vpkS, vpkZ}, t)
return σ := (σSS, σVRS)

Π2.Verify(pkS, pkZ,m, σ)

t := pkS‖pkZ‖m‖σSS

b0 := Π1.Verify(spkS, spkZ, pkZ‖m,σSS)
b1 := VRS.Verify({pkZ, vpkS}, t, σVRS)
return b0 ∩ b1

Π2.San(pkS, skZ,m, δ, σ)

set δ′ such that δ′(pkZ‖m) = pkZ‖δ(m)
σ′SS ← Π1.San(spkS, sskZ, pkZ‖m, δ

′, σSS)
t := pkS‖pkZ‖δ(m)‖σ′SS

σ′VRS ← VRS.Sign(vskZ, {vpkS, vpkZ}, t)
σ′ := (σ′SS, σ

′
VRS)

return σ′

Π2.Prove(skS, pkZ,m, σ)

t := pkS‖pkZ‖m‖σSS

L := {vpkS, vpkZ}
π ← VRS.Prove(vskS, L, t, σVRS)
return π

Π2.Judge(pkS, pkZ,m, σ, π)

t := pkS‖pkZ‖m‖σSS

L := {vpkS, vpkZ}
b := VRS.Judge(L, t, σVRS, vpkS, π)

return
{

Z b = 0
S b = 1

Π2.ExtAdm(pkS, skZ, σ)

α← Π1.ExtAdm(spkS, sskZ, σSS)
return α

Fig. 5: Generic Transformation from Weak to Fully-Fledged Sanitizable Signatures.
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4.2 Construction II: Generic Transformation for Accountability

In this section, we show a generic transformation (Figure 5), from any weakly immutable,
non-accountable, strongly invisible, strongly proof-restricted transparent, and weakly un-
linkable schemes Π1, to an immutable, strongly accountable, strongly invisible, strongly
proof-restricted transparent, and unlinkable scheme Π2, using a verifiable ring signature
scheme VRS.

An overview of the transform follows. The signer signs the public key of the sanitizer
and the message in σSS using Π1, then signs σSS in σVRS using VRS, where the ring
contains the public key of the signer and the public key of the sanitizer. The signer
outputs the signature σ = (σSS, σVRS). To sanitize, the sanitizer sanitizes σSS using
Π1 to produce σ′SS, then signs σ′SS in σ′VRS using VRS. The sanitized signature is σ′ =
(σ′SS, σ

′
VRS). To verify any signature σ = (σSS, σVRS), the verifier uses the verification

algorithm of Π1 on σSS and the verification algorithm of VRS on σVRS. To prove that a
signature σ′ = (σ′SS, σ

′
VRS) is sanitized, the signer proves that he did not generate σ′VRS

using the prove algorithm of VRS, which gives accountability.
Next, we sketch why the other security properties are preserved. For conciseness,

we omit the qualitative attributes such as strong and proof-restricted in the following
discussion. First, since Π1 is weakly immutable, the sanitizer is not able to forge the
part σ′SS of a sanitized signature for a non-admissible message nor changing the sanitizer
public key (which is signed as a message of Π1). This implies that the resulting scheme
is immutable. Next, since Π1 is transparent, one cannot guess whether a signature
is sanitized or not from the part σSS. On the other hand, since VRS is anonymous,
one cannot guess whether the part σVRS was created by the signer or by the sanitizer.
Combining both properties, we conclude that one cannot guess whether the signature
was sanitized or not, i.e., Π2 is transparent. Thirdly, Π1 is invisible, so the part σSS hides
all information about the possible modifications of the message. Moreover, The signature
σVRS contains no information about the modifiable parts of the message. This implies
thatΠ2 is invisible. Finally,Π1 is unlinkable, so the first part σ′SS of a sanitized signature
hides any information about the original signature, and the second part σ′VRS does not
depend on the original signature, so our resulting schemeΠ2 is also unlinkable. Note that
Π1 is weakly unlinkable in the sense that it is no longer secure if the adversary is allowed
to send fresh signatures to the oracle LoRSanitO. This does not impact the security ofΠ2,
because σSS is signed in σVRS, so to produce a fresh signature (σ′SS, σ

′
VRS), the adversary

should be able to forge σ′VRS, which is supposed to be hard under the hypothesis that the
VRS scheme is unforgeable.

The correctness of Π2 follows trivially from the correctness of Π1 and VRS. Below,
we state the formal security results for the construction. Due to space constraints, we
refer to Appendix B for the formal security proofs.

Theorem 2. If Π1 is weakly immutable, then Π2 is immutable. If Π1 is weakly unlink-
able, and VRS is strongly unforgeable, then Π2 is unlinkable. If Π1 is strongly invisible
then Π2 is strongly invisible. If VRS is strongly accountable, then Π2 is strongly signer
accountable. If VRS is strongly non-seizable, thenΠ2 is strongly sanitizer accountable. If
VRS is anonymous and Π1 is strongly proof-restrictedly transparent, then Π2 is strongly
proof-restrictedly transparent.
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We remark that verifiable ring signatures can be constructed generically from linkable
ring signatures [30], which in turn can be generically constructed from unique ring
signatures [18]. It is also possible to use any stronger primitive such as traceable [22] or
accountable [38] ring signatures, as long as the signers are accountable. Furthermore,
the transform can be easily extended to a multi-sanitizer setting by signing with respect
to a ring which consists of the signer and multiple sanitizers. Depending on the variant
of ring signatures used, we obtain different flavors of accountability. As the implications
are straightforward, we do not elaborate further.

5 Security Proof for Construction I

The following proof uses the generic group model abstraction of Shoup [?] and we refer
the reader to [?] for a comprehensive introduction to the bilinear group model. Here we
state the central lemma useful for proving facts about generic attackers.

Lemma 2 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial of de-
gree d ≥ 0 over a field F. Then the probability that F (x1, . . . , xm) = 0 for randomly
chosen values (x1, . . . , xm) in Fn is bounded from above by d

|F| .

5.1 Weak Immutability

Proof (Weak Immutability). To prove that Π1 is weakly immutable, we first show the
generic hardness of the following problem.

Lemma 3. Let (G1,G2,GT , G1, G2, GT , e, q) ← BGGen(1λ) with q > 2λ, and
a, b, c ← Zq. For all generic group adversary A, the probability that A on input
(G1, G

a
1 , G

b
1, G2, G

b
2, G

c
2) outputs (Gu1 , Gv1, Gx1 , G

y
1, G

z
2) such that

au− x = 0
bv − y = 0
cy − xz = 0
v 6= 0

is negligible.

Proof. Let (Gu1 , Gv1, Gx1 , G
y
1, G

z
2) be the output of A. Since A is generic, it holds that

u = u1 + uaa+ ubb

v = v1 + vaa+ vbb

x = x1 + xaa+ xbb

y = y1 + yaa+ ybb

z = z1 + zbb+ zcc

for some coefficients u1, ua, ub, v1, va, vb, x1, xa, xb, y1, ya, yb, z1, zb, zc ∈ Zq. By the
relation au− x = 0, we have −x1 + (u1 − xa)a− xbb+ uaa

2 + ubab = 0. Note that
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f(A,B) := −x1 + (u1 − xa)A− xbB + uaA
2 + ubAB is a quadratic polynomial in

the variables A and B. Suppose f is not a zero polynomial, by the Schwartz-Zippel
lemma (Lemma 2), for a, b ← Zq, the probability that f(a, b) = 0 is upper bounded
by 2/q < 21−λ which is negligible. Therefore we can assume that f is always zero.
In particular, we have x1 = xb = 0. Similarly, by examining the relation bv − y = 0,
we can assume that v1 = yb, and y1 = ya = 0. We can therefore write x = xaa and
y = ybb. Next, we examine the relation cy − xz = 0, which implies

ybbc− xaz1a− xazbab− xazcac = 0.

Using the Schwartz-Zippel lemma again, we can assume that yb = 0. However, this
means that v = v1 = yb = 0, which contradicts with the fourth relation v 6= 0. ut

Now, suppose there exists a generic group adversaryA against the weak immutability
of Π1. We construct a generic group adversary C which solves the problem defined
in Lemma 3. C receives as challenge (G1, G

a
1 , G

b
1, G2, G

c
2) from its challenger. It then

simulates the ExpImmutability experiment for A by setting the public parameters and
the signer keys honestly. Without loss of generality, assume thatA makes Q1 = poly(λ)
signing oracle queries and Q2 = poly(λ) random oracle queries for H(). C additionally
samples i†, j† ← [Q1] as a guess of which Sign oracle queryA will attack against, k† ←
[`] as the index of the inadmissible block that will be modified in the forgery message,
l† ← [Q2] as a guess of which H() oracle query A will include as the inadmissible
modification in the forgery message.

Answering Random Oracle Queries Upon receiving (kl,ml) as the l-th distinct query
to the H() oracle, if l 6= l†, C answers the query by picking tl ← Z∗q and return
hl := Gtl2 ∈ G2 to A. If l = l†, then C sets hl = Gc2 where Gc2 was received as a
challenge as described above. If (kl,ml) was a message that was queried previously,
then reply with the same response as before.

Answering Sign Oracle Queries Upon receiving (pkZ,,mi, αi) as the i-th query to
the SignO oracle, if i 6= i† and i 6= j†, C answers the query honestly by running the
procedures as defined in the SignO oracle.

In the case i = i† or i = j†, C generates the signature honestly except for the
following changes:

1. If i = i†, then C picks the elementsXi†,1, . . . , Xi†,` as follows. C picksXi†,k† = Ga1
which it had received from its challenger in the beginning. For all other k ∈ [`]\{k†},
C generates the Xk honestly by picking xi†,k ← Z∗q and setting Xi†,k = G

x
i†,k

1 (as
done in the SignO oracle). The rest of the signature is generated as in the SignO
oracle.

2. Suppose i = j†. If k† ∈ αj† , or (k†,mj†,k†) = (kl† ,ml†), then abort. Otherwise, let
t† be such that H(k†‖mj†,k†) = Gt

†

2 . C first generates Xi†,1, . . . , Xi†,` by picking
xj†,k ← Z∗q and setting Xj†,k := G

x
j†,k

1 for all k ∈ [`]. Then C picks the elements
Yi†,1, . . . , Yi†,` as follows. C picks Yj†,k† = Gb1 which it had received from its

challenger in the beginning. It then generates σj†,k† as (Gb2)
t†

x
j†,k† . For all other
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k 6= k†, C generates the Yj†,k and the rest of the signature honestly as done in the
SignO oracle. Note that as we assume k† /∈ αj† in this case, the value yj†,k† is not
needed to generate the signature. Therefore the signature can be simulated faithfully.

Answering Prove Oracle Queries. The Prove oracle is trivially simulatable since the
Prove algorithm always returns ε.

Clearly, assuming that C did not abort, C simulates the wExpImmutability exper-
iment for A faithfully. Eventually, A outputs (pk∗Z,m∗, σ∗) as a forgery such that
Verify(pk†S, pk∗Z,m∗, σ∗) = 1, and m∗k 6= mi,k for some i, k such that k /∈ αi. Since
Q1, ` ∈ poly (λ), with non-negligible probability it holds that m∗k† 6= mj†,k† and
k† /∈ αj† . Moreover, since Q2 ∈ poly(λ), with non-negligible probability it holds
that (k†,m∗k†) = (kl† ,ml†). If that is the case, then the abort conditions in the above
procedures of answering sign oracle queries are never triggered.

Parse σ∗ as (µ∗, η∗, {σ∗j , X∗j , Y ∗j }`j=1, c
∗). By the EUF-CMA-security of EQS, with

overwhelming probability we have that [X∗1 , . . . , X∗` ]R = [Xi∗,1, . . . , Xi∗,`]R for some
i∗, and [Y ∗1 , . . . , Y ∗` ]R = [Yj∗,1, . . . , Y ∗j∗,`]R for some j∗ (otherwise we can construct
an adversary against the EUF-CMA-security of EQS by simply outputting µ or η).
Therefore, there exists r, s ∈ Zq such that (Xi∗,1, . . . , Xi∗,`)r = (X∗1 , . . . , X∗` ) and
(Yj∗,1, . . . , Y ∗j∗,`)r·s = (Y ∗1 , . . . , Y ∗` ).

Since Q1 ∈ poly(λ), it happens with non-negligible probability that (i†, j†) =
(i∗, j∗). Suppose this is the case. Let k′ be arbitrary with k′ 6= k†. C extracts Gr1 and
Grs1 by computing

(X∗k′)
1

x
i∗,k′ = G

r·(xi∗,k′)· 1
x
i∗,k′

1 = Gr1

(Y ∗k′)
1

(xj∗,k′)·(yj∗,k′) = (Gr·s1 )
(xj∗,k′)·(yj∗,k′)
(xj∗,k′)·(yj∗,k′) = Gr·s1 .

Since Verify(pkS, pk∗Z,m∗, σ∗) = 1, this implies that Y ∗k† = Gr·s·b1 6= G1. This means
that r · s 6= 0. Furthermore, we have

e(X∗k† , σ
∗
k†) = e(Y ∗k† ,H(k†‖m∗k†))

e(Xr
i†,k† , σ

∗
k†) = e(Y r·sj†,k† , G

c
2)

e(Gr·a1 , σ∗k†) = e(Gr·s·b1 , Gc2)

σ∗k† = G
s·b·c
a

2

Now, set C outputs (Gu1 , Gv1, Gx1 , G
y
1, G

z
2) := (Gr1, Gr·s1 , Gr·a1 , Gr·s·b1 , G

s·b·c
a

2 ). By a rou-
tine calculation, one can verify that au−x = 0, bv−y = 0, cy−xz = 0 and v 6= 0. Since
A only performs generic group operations, so does C, which contradicts with Lemma 3.

ut

5.2 Strong Invisibility

Proof (Strong Invisibility). We prove strong invisibility by hybrid argument. We define
an intermediate experiment Hybb which is identical to ExpInvisibilitybA,Π(1λ) for both
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b ∈ {0, 1}, except for the following changes: When answering LoRAdmOb oracle
queries, the challenger signs with respect to the policy α0 ◦ α1 instead of αb. We argue
that, in the view of the adversary, the experiments Hybb and ExpInvisibilitybA,Π(1λ)
are computationally indistinguishable for b ∈ {0, 1}. Suppose that is the case, since
obviously Hyb0 is functionally equivalent to Hyb1, it holds that ExpInvisibility0

A,Π(1λ)
is computationally indistinguishable to ExpInvisibility1

A,Π(1λ).

Before proving the claim above, we state two key observations. First, note that
the signatures returned by the LoRAdmOb oracle in the all experiments are identi-
cally distributed if pkZ 6= pk†Z (since now it must hold that α0 = α1 for the oracle
to not abort). In the case pkZ = pk†Z, the signatures returned by the oracle are al-
most identically distributed, except for the ciphertext c. In particular, in the experiment
ExpInvisibilitybA,Π(1λ), the ciphertext is an encryption of the message (αb, {ζb,i}`i=0),
where ζb,i = xi for all i ∈ αb, and is zero otherwise. On the other hand, in Hybb, the
ciphertext is an encryption of the message (α0 ◦ α1, {ζb,i}`i=0), where ζb,i = xi for all
i ∈ α0 ◦ α1, and is zero otherwise.

The second observation is that, due to the restriction imposed on the SanO′ oracle,
the values xi for all i ∈ (αb − (α0 ◦ α1)) are never used in any experiments.

With the above observations, we show how one can construct an algorithm C, which
breaks the IND-CCA-security of PKE, using a distinguisher which distinguishes Hybb
from ExpInvisibilitybA,Π(1λ). C receives a public key pkPKE from the IND-CCA chal-
lenger, and acts as the challenger of either the experiment ExpInvisibilitybA,Π(1λ) or
Hybb by setting pk†Z := pkPKE and generating other keys honestly.

Let (pkZ,mj , αj,0, αj,1) be thej-th query to the LoRAdmOb oracle. C answers
the query honestly if pkZ 6= pk†Z. In the case where pkZ = pk†Z, C generates the ci-
phertext cj in the following way. It samples yj,i←$ Z∗q for all i ∈ [`], and prepares

ζb,j,i :=
{
yj,i i ∈ αj,b
0 otherwise

, ∀i ∈ [`]

τb,j :=(αj,b, {ζb,j,i}`i=1)

ζ ′b,j,i :=
{
yj,i i ∈ αj,0 ◦ αj,1
0 otherwise

, ∀i ∈ [`]

τ ′b,j :=(αj,0 ◦ αj,1, {ζ ′b,j,i}`i=1)
and queries the EncOb oracle provided by the IND-CCA challenger on (τb,j , τ ′b,j) and
receive cj . C generates the rest of the signature honestly.

Upon receiving a query (pkS,m, δ, σ) to the SanO′ oracle, C parses σ as
(µ, η, {σi, Xi, Yi}`i=1, c) and checks if c = cj for some j. If so, it uses {yj,i}i∈αj,0∩αj,1
to answer the oracle query. If not, it queries the DecO oracle provided by the IND-CCA
challenger on c, receives τ = (α, {ζi}i∈`), and uses it to answer the oracle query.

Clearly, depending on the choice of the IND-CCA challenger, our adversary simulates
either the experiment ExpsInvisbΠ,A(1λ) or Hybb faithfully. Therefore, if there exists a
distinguisher which distinguishes the two experiments with a certain probability, then our
adversary can guess the choice of the IND-CCA challenger with the same probability.

ut
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5.3 Perfect Strong Transparency

Proof (Perfect Strong Transparency). We show that the construction is perfectly strongly
transparent through hybrid argument. First, observe that the Prove algorithm, and hence
also the ProveO oracle, always returns the empty string ε, it is safe to drop the step
Q = Q‖(δ(m), σ′) in the Sign/SanOb oracle.

Now, let Q = poly(λ) be the number of queries that the adversary A make to
the Sign/SanOb oracle. We define the hybrids Hyb0, . . . ,Hybq as follows. The hy-
brid Hyb0 is identical to ExpTrans0

Π,A(1λ). For j ∈ [Q], Hybj is almost identical to
Hybj−1, except that in the former the j-th query to the Sign/SanOb is answered as
in ExpTrans1

Π,A(1λ). That is, the first j signatures returned by Sign/SanOb are sani-
tized, while the last Q − j signatures are freshly signed. Note that HybQ is identical
to ExpTrans1

Π,A(1λ). Obviously, if Pr
[
Hybj−1 = 1

]
= Pr

[
Hybj = 1

]
for all j ∈ [Q],

then Pr
[
ExpTrans0

Π,A(1λ) = 1
]

= Pr
[
ExpTrans1

Π,A(1λ) = 1
]
.

Fix j ∈ [Q]. In the following, we show that Pr
[
Hybj−1 = 1

]
= Pr

[
Hybj = 1

]
.

Let (m, δ, α) be the j-th query of A to the Sign/SanOb oracle. If δ /∈ α, then the
oracle returns ⊥ in both experiments and thus the equality holds trivially. Otherwise, let
m′ := δ(m), and let σ′ be the response. In Hybj−1, the signature σ′ is drawn from a
distribution D where

D :=


σ :

xi, yi ← Z∗q , Xi := Gxi1 , Yi := Xyi
i , ∀i ∈ [`]

µ← EQS.Sign(sk†S, (X1, . . . , X`))
η ← EQS.Sign(sk†S, (Y1, . . . , Y`))
σi ← H(i‖m′i)yi , ∀i ∈ [`]

ζi :=
{
yi i ∈ α
0 otherwise

, ∀i ∈ [0, `]

τ := (α, {ζi}i∈[`])
c← PKE.Enc(pk†Z, τ)
σ := (µ, η, {σi, Xi, Yi}`i=1, c)


.

Replacing xi and yi with r · xi and s · yi respectively for some r, s← Z∗q , we obtain a
distribution D′ = D where

D′ :=



σ :

r, s← Z∗q
xi, yi ← Z∗q , Xi := Gxi1 , Yi := Xyi

i , ∀i ∈ [`]
µ← EQS.Sign(sk†S, (X1, . . . , X`)r)
η ← EQS.Sign(sk†S, (Y1, . . . , Y`)r·s)
σi ← H(i‖m′i)s·yi , ∀i ∈ [`]

ζi :=
{
s · yi i ∈ α
0 otherwise

, ∀i ∈ [`]

τ := (α, {ζi}i∈[`])
c← PKE.Enc(pk†Z, τ)
σ := (µ, η, {σi, Xr

i , Y
r·s
i }`i=1, c)



.
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By the perfect adaption of EQS, the distribution of EQS.Sign(sk†S, (X1, . . . , X`)r) and
EQS.Sign(sk†S, (Y1, . . . , Y`)r·s) is identical to that of ChgRep(pk†S, (X1, . . . , X`), µ′, r)
and ChgRep(pk†S, (Y1, . . . , Y`), η′, r·s), where µ′ ← EQS.Sign(sk†S, (X1, . . . , X`)) and
η′ ← EQS.Sign(sk†S, (Y1, . . . , Y`)). Therefore, we obtain a distribution D′′ = D′ with

D′′ :=



σ :

r, s← Z∗q
xi, yi ← Z∗q , Xi := Gxi1 , Yi := Xyi

i , ∀i ∈ [`]
µ′ ← EQS.Sign(sk†S, (X1, . . . , X`))
η′ ← EQS.Sign(sk†S, (Y1, . . . , Y`))
µ← ChgRep(pk†S, (X1, . . . , X`), µ′, r)
η ← ChgRep(pk†S, (Y1, . . . , Y`), η′, r · s)
σi ← H(i‖m′i)s·yi , ∀i ∈ [`]

ζi :=
{
s · yi i ∈ α
0 otherwise

, ∀i ∈ [`]

τ := (α, {ζi}i∈[`])
c← PKE.Enc(pk†Z, τ)
σ := (µ, η, {σi, Xr

i , Y
r·s
i }`i=1, c)



.

Note that in Hybj , the signature σ′ is drawn exactly fromD′′. Therefore we can conclude
that Hybj−1 and Hybj are functionally equivalent. ut

5.4 Weak Unlinkability

Proof (Weak Unlinkability). To show that the experiments wExpUnlinkbΠ,A(1λ), where
b ∈ {0, 1}, are computationally indistinguishable in the view of the adversary we define
the following sequence of hybrids.

Hybb0 : Defined as wExpUnlinkbΠ,A(1λ).
Hybb1 : Defined as Hybb0, except that an additional list L̃ is initialized empty at the begin-

ning of the experiment. Then, when a ciphertext c← PKE.Enc(pk†Z, τ) is generated
in the subroutine Sign of the oracle SignO, a new entry (c, τ, {xi, yi}i∈[`]) is added
to L̃. The wLoRSanit oracle runs the following modified version of the subroutine
˜San: On input a certain c̃, it first checks whether there is an entry (c̃, τ̃ , {x̃i, ỹi}i∈[`])

in L̃ and, if so, proceeds by setting τ = τ̃ . Otherwise the algorithm aborts.
Hybb2 : Defined as Hybb1, except that the ciphertext c is computed as c ←

PKE.Enc(pk†Z, (α, 0`)) in the SignO oracle. The suboutine ˜San also computes
c′ ← PKE.Enc(pk†Z, (α, 0`)).

Hybb3 : Defined as Hybb2, except that the subroutine ˜San is modified to com-
pute the signatures µ′ and η′ as µ′ ← EQS.Sign(sk†S, (X ′1, . . . , X ′`)) and
η′ ← EQS.Sign(sk†S, (Y ′1 , . . . , Y ′` )), respectively.

Hybb4 : Defined as Hybb3, except that the subroutine ˜San samples a fresh tuple
(Z1, . . . , Z`) ← G`1 is sampled and (X ′1, . . . , X ′`) := (Z1, . . . , Z`) and
(Y ′1 , . . . , Y ′` ) := (Z ỹ1

1 , . . . , Z ỹ`` )s.
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Hybb5 : Defined as Hybb4, except that the subroutine ˜San samples a tuple (w1, . . . , w`)←
Z`q and computes σ′i as H(m′i)wi and (Y ′1 , . . . , Y ′` ) as (Zw1

1 , . . . , Zw`` ).

Observe that in the experiment Hybb5 the output of the wLoRSanit oracle in Hybb5 is
completely decorrelated from the random coin b. It follows that for all PPT adversaries
we have that ∣∣Pr

[
Hyb0

5 = 1
]
− Pr

[
Hyb1

5 = 1
]∣∣ ≤ negl(λ) .

We now proceed by showing the indistinguishability of each pair of hybrids.

Lemma 4. Suppose PKE is correct. Then for all PPT A and b ∈ {0, 1} it holds that∣∣∣Pr
[
Hybb0 = 1

]
− Pr

[
Hybb1 = 1

]∣∣∣ ≤ negl(λ) .

Proof (of Lemma 4). The experiments differ in the fact that in Hybb1 the LoRSanit oracle
aborts when queried on some c̃ such that no entry (c̃, ·) is present in L̃. This implies that
c̃ was not produced by the signing oracle SignO, therefore also Hybb0 aborts on the same
input. The indistinguishability follows by the correctness of the encryption scheme. ut

Lemma 5. Suppose PKE is IND-CCA secure. Then for all PPT A and b ∈ {0, 1},∣∣∣Pr
[
Hybb1 = 1

]
− Pr

[
Hybb2 = 1

]∣∣∣ ≤ negl(λ) .

Proof (of Lemma 5). The lemma follows by a simple reduction to the (multiple-message)
CCA-security of the encryption scheme. On input a public key pk†Z, the reduction
computes c by querying the challenger on (τ, (α, 0`)) and plugging in the corresponding
ciphertext c∗. The ciphertext c′ is computed analogously. The oracle SanO is simulated
by passing the input ciphertexts c̃ to the decryption oracle and setting τ to be the
corresponding output. It is easy to show that in the one case the reduction perfectly
simulates the distributions of Hybb1 and in the other case it is identical to Hybb2. By the
CCA-security of the encryption scheme the claim follows. ut

Lemma 6. If EQS perfectly adapts signatures, then for all PPT A and b ∈ {0, 1},∣∣∣Pr
[
Hybb2 = 1

]
− Pr

[
Hybb3 = 1

]∣∣∣ = 0.

Proof (of Lemma 6). Trivial. ut

Lemma 7. Let q > 2λ. For all generic group adversary A and b ∈ {0, 1} it holds that∣∣∣Pr
[
Hybb3 = 1

]
− Pr

[
Hybb4 = 1

]∣∣∣ ≤ negl(λ) .

Proof (of Lemma 7). First observe that in Hybb4 (with a slight notation abuse)

(Y ′1 , . . . , Y ′` ) = (Z ỹ1
1 , . . . , Z ỹ`` )s = (X ′1, . . . , X ′`)s(ỹ1,...,ỹ`)

whereas in Hybb3

(Y ′1 , . . . , Y ′` ) = (Y1, . . . , Y`)r·s = (X ỹ1
1 , . . . , X ỹ`

` )r·s = (X ′1, . . . , X ′`)s(ỹ1,...,ỹ`).
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Therefore if the tuple (X ′1, . . . , X ′`) has the same distribution in both experiments the
indistinguishability follows. It remains to show that(

G1,
X1, . . . , X`

Z1, . . . , Z`

)
≈
(
G1,

X1, . . . , X`

Xr
1 , . . . , X

r
`

)
over the random choice of (Z1, . . . , Z`, r). It is easy to show that the two distributions
are indistinguishable by the hardness of the decisional Diffie-Hellman problem [?]. For
completeness, and as a warm-up for the proof of the next lemma, we show that this holds
in the generic group model. For ease of exposition, we denote symbolically Xk := Gxk1
and Zk := Gzk1 for all k ∈ [`]. For the left distribution we can rewrite all equations that
the adversary learns as symbolic degree 1 polynomials

x1x1 + . . .+ x`x` + z1z1 + . . .+ z`z` + c = 0

for some coefficients (x1, . . . , x`, z1, . . . , z`, c). For the right distributions we have

x1x1 + . . .+ x`x` + z1x1r + . . .+ z`x`r + c = 0.

Since (x1, . . . , x`) and (z1, . . . , z`) are uniformly chosen, by Lemma 2 all coefficients in
the left distribution must be 0 with all but negligible probability. The same holds for the
right distribution, since r is uniformly sampled. It follows that a generic adversary cannot
learn any non-trivial relation when it is given either the left or the right distribution.
Therefore the left and right distributions look identical. ut

Lemma 8. Let q > 2λ. For all generic group adversary A and b ∈ {0, 1} it holds that∣∣∣Pr
[
Hybb4 = 1

]
− Pr

[
Hybb5 = 1

]∣∣∣ ≤ negl(λ) .

Proof (of Lemma 8). The two experiments differ in the way the variables (Y ′1 , . . . , Y ′` )
and (σ′1, . . . , σ′`) are computed. Suppose that H(i‖mi) and H(i‖m′i) are programed to

G
t0i
2 and Gt

1
i

2 respectively, where (t01, t11, . . . , t0` , t1`) is a randomly sampled vector in Z2`
q .

The indistinguishability of the two hybrids reduces to arguing about the proximity of the
following distributions

G1,
Gy1

1 , . . . , Gy`1 ,
Gz1

1 , . . . , Gz`1 ,
Gsy1z1

1 , . . . , Gsy`z`1 ,

G2,

G
t01y1
2 , . . . , G

t0`y`
2 ,

G
st11y1
2 , . . . , G

st1`y`
2 ,

G
t01
2 , . . . , G

t0`
2 ,

G
t11
2 , . . . , G

t1`
2


≈



G1,
Gy1

1 , . . . , Gy`1 ,
Gz1

1 , . . . , Gz`1 ,
Gw1z1

1 , . . . , Gw`z`1 ,

G2,

G
t01y1
2 , . . . , G

t0`y`
2 ,

G
t11w1
2 , . . . , G

t1`w`
2 ,

G
t01
2 , . . . , G

t0`
2 ,

G
t11
2 , . . . , G

t1`
2


where the LHS corresponds to the distributions in Hybb4 and the RHS corresponds to
the distributions in Hybb5. Note that all non-trivial relations that the generic attacker can
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learn are restricted to certain polynomials of degree at most 2. For illustration, we can
symbolically write the relations obtained from the RHS as∑

i∈[`],j∈[`]

ai,j
(
t1iwi · wjzj

)
+

∑
i∈[`],j∈[`]

bi,j
(
t1iwi · yj

)
+

∑
i∈[`],j∈[`]

ci,j
(
t0i yi · wjzj

)
+

∑
i∈[`],j∈[`]

di,j
(
t0i yi · yj

)
+

∑
i∈[`],j∈[`],b∈{0,1}

ebi,j
(
tbi · wjzj

)
+

∑
i∈[`],j∈[`],b∈{0,1}

fbi,j
(
tbi · yj

)
+

∑
i∈[`],j∈[`]

gi,j
(
t1iwi · zj

)
+
∑
i∈[`]

hi
(
t1iwi

)
+

∑
i∈[`],j∈[`]

ii,j
(
t01yi · zj

)
+
∑
i∈[`]

ji
(
t01yi

)
+

∑
i∈[`],j∈[`],b∈{0,1}

kbi,j
(
tbi · zj

)
+

∑
i∈[`],b∈{0,1}

lbi
(
tbi
)

+
∑
i∈[`]

mi(yi) +
∑
i∈[`]

ni(zi)

+
∑
i∈[`]

oi(wizi) +p

= 0.

whereas for the LHS the equation is identical except that all occurrences ofwi andwj are
replaced with yi · s and yj · s, respectively. Since all variables are uniformly distributed,
by Lemma 2 we have that the coefficient of each unique monomial must be 0 with all
but negligible probability. It is left to argue that each non-trivial relation obtained on
the RHS imply also a corresponding non-trivial relation on the LHS, and viceversa. By
inspection we isolate the pairs ∑

i∈[`],j∈[`],b∈{0,1}

ebi,j
(
tbi · wjzj

)
,
∑

i∈[`],j∈[`]

gi,j
(
t1iwi · zj

)
and  ∑

i∈[`],j∈[`],b∈{0,1}

fbi,j
(
tbi · yj

)
,
∑
i∈[`]

ji(t0i yi)


that have potentially common monomials. For the latter case it is enough to observe
that the monomials are identical for both the LHS and the RHS distributions as they are
independent of wi and s for all i ∈ [`]. Therefore if∑

i∈[`],j∈[`],b∈{0,1}

fi,j(tbi · yj) +
∑
i∈[`]

ji(t0i yi) = 0
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in the RHS then so it does in the LHS, and vice versa. For the former case we have that
collisions occur only when i = j and b = 1, as otherwise the monomials are distinct and
therefore any non trivial set of coefficients will not cancel out (with very high probability).
Setting i = j and b = 1, for the RHS we have the following constraint∑

i∈[`]

e1
i,i

(
t1iwizi

)
+
∑
i∈[`]

gi,i
(
t1iwizi

)
= 0

which implies that, with overwhelming probability, for all i ∈ [`] it holds that e1
i,i = −gi,i.

Applying this constraint to the LHS we obtain a corresponding non-trivial relation∑
i∈[`]

e1
i,i

(
st1i yizi

)
+
∑
i∈[`]

gi,i
(
st1i yizi

)
= 0.

The reverse direction holds with an identical argument. Since there is a bijection between
the non-trivial relations on the LHS and those on the RHS, we can conclude that the
view of A in the two cases are indistinguishable. ut
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35. Henrich Christopher Pöhls and Kai Samelin. On updatable redactable signatures. In Ioana
Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14, volume 8479 of LNCS,
pages 457–475, Lausanne, Switzerland, June 10–13, 2014. Springer, Heidelberg, Germany.

36. Kyung-Ah Shim. An identity-based proxy signature scheme from pairings. In Peng Ning,
Sihan Qing, and Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages 60–71, Raleigh,
NC, USA, December 4–7, 2006. Springer, Heidelberg, Germany.

37. Huaxiong Wang and Josef Pieprzyk. Efficient one-time proxy signatures. In Chi-Sung Laih,
editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 507–522, Taipei, Taiwan, Novem-
ber 30 – December 4, 2003. Springer, Heidelberg, Germany.

38. Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach. In Smart
Card Research and Advanced Applications VI, pages 271–286. Springer, 2004.

A More Preliminaries

A.1 Public-Key Encryption

Here we recall the notion of public key encryption together with the standard definition
of CCA-security.
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ExpCCAbA,PKE(1λ)

Q := ∅

(pk†, sk†)← KGenPKE(1λ)

b′ ← AEncOb,DecO(pk†)
return b′

EncOb(m0,m1)

if |m0| 6= |m1| then
return ⊥

endif

c← Enc(pk†,mb)
Q := Q∪ {c}
return c

DecO(c)

if c ∈ Q then
return ⊥

endif

m← Dec(sk†, c)
return m

Fig. 6: IND-CCA Experiment

Definition 14 (PKE). A public-key encryption scheme (PKE) is a tuple of PPT algo-
rithms (KGen,Enc,Dec) defined as follows:
(pk, sk) ← KGen(1λ): The probabilistic key generation algorithm takes as input the
security parameter 1λ and returns a key pair (pk, sk).
c← Enc(pk,m): The probabilistic encryption algorithm takes as input the public key
pk and a message m and returns a ciphertext c.
m ← Dec(sk, c): The decryption algorithm takes as input the secret key sk and a
ciphertext c and returns a message m.

Security of a public key encryption scheme is formalized as follows.

Definition 15 (CCA Security). A PKE scheme is said to have indistinguishability
against chosen-ciphertext attacks (IND-CCA) if for all PPT adversaries A,∣∣Pr

[
ExpCCA0

A,PKE(1λ) = 1
]
− Pr

[
ExpCCA1

A,PKE(1λ) = 1
]∣∣ ≤ negl(λ)

where ExpCCAbA,PKE is defined in Figure 6.

A.2 Properties of Verifiable Ring Signatures

We define slightly simplified and strengthened security definitions for VRS. We note that
the existing construction in [9] satisfies all properties defined below.

Unforgeability. A VRS is unforgeable when no adversary that has access to the signature
oracle and the proof oracle is able to forge a fresh message-signature pair (m,σ),
such that the corresponding ring contains public keys of honest users only. In the
following definition, the oracle VRS.SignO defined as in Def. 17 and Q is the set of
message-signature pairs associated to the queries to the oracle VRS.SignO. Additionally,
the adversary has access to the proof oracle VRS.ProveO that takes as input a tuple
(L,m, σ, `), returns VRS.Prove(L,m, σ, pk`, sk`) if 1 ≤ ` ≤ n and ⊥ otherwise.

Definition 16 (Unforgeability). A VRS scheme VRS is strongly unforgeable if for all
n ∈ poly(λ) and for all PPT adversary A,

Pr
[
ExpUnfnVRS,A(1λ) = 1

]
≤ negl(λ)

where ExpUnfnVRS,A(1λ) is defined in Figure 8.
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SignO(L, i,m)

return Sign(sk†i , L,m)

ProveO(L,m, σ, i)

if
{

pk†i ∈ L
(m,σ) /∈ Q

then

return Prove(sk†i , L,m, σ)
else

return ⊥
endif

LoRSignOb(L,m)

if {pk†0, pk†1} ⊆ L then

σ ← Sign(sk†b, L,m)
Q := Q∪ {(m,σ)}
return σ

else
return ⊥

endif

Fig. 7: Oracles for Verifiable Ring Signatures

Anonymity. A VRS is anonymous when no adversary is able to link a signature to the
public key of its signer. In the formal definition, the adversary has access to the oracles
defined in Figure 7.

Definition 17 (Anonymity). A VRS scheme VRS is anonymous if for all PPT A,

|Pr
[
ExpAnon0

VRS,A(1λ) = 1
]
− Pr

[
ExpAnon1

VRS,A(1λ) = 1
]
| ≤ negl(λ)

where ExpAnonbVRS,A(1λ) is defined in Figure 8.

Strong Accountability. A VRS is strongly accountable when no adversary that has access
to the signature oracle and the proof oracle is able to forge a fresh message-signature pair
(m,σ) together with a proof that it is not the signer of σ, such that the corresponding
ring contains at most one public key of a non-honest user. In the following definition,
the oracle VRS.SignO defined as in Def. 17 and Q is the set of message-signature
pairs associated to the queries to the oracle VRS.SignO. Additionally, the adversary has
access to the proof oracle VRS.ProveO that takes as input a tuple (L,m, σ, `), returns
VRS.Prove(L,m, σ, pk`, sk`) if 1 ≤ ` ≤ n and ⊥ otherwise.

Definition 18 (Strong Accountability). A VRS scheme VRS is strongly accountable if
for all n ∈ poly(λ) and for all PPT adversary A,

Pr
[
ExpAccnVRS,A(1λ) = 1

]
≤ negl(λ)

where ExpAccnVRS,A(1λ) is defined in Figure 8.

It follows immediately that strong accountability implies strong unforgeability.

Strong Non-Seizability. A VRS is strongly non-seizable when no adversary that has
access to the signature and the proof oracle is able to forge a fresh message-signature
pair (m,σ), such that the proof algorithm ran by the honest user returns a proof that
σ was computed by the honest user. In the following definition, the oracles SignO and
ProveO and the list Q are defined as in Def. 18.
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ExpAnonbVRS,A(1λ)

Q := ε, pp← Setup(1λ)

(pk†0, sk
†
0)← KGen(pp)

(pk†1, sk
†
1)← KGen(pp)

O := {SignO,ProveO, LoRSignOb}

b′ ← AO(pp, pk†0, pk†1)
return b′

ExpUnfnVRS,A(1λ)

Q := ε, pp← Setup(1λ)

∀i ∈ [n], (pk†i , sk
†
i )← KGen(pp)

O := {SignO,ProveO}

(L∗,m∗, σ∗)← AO(pp, {pk†i}i∈[n])
b0 := Verify(L∗,m∗, σ∗)
b1 := L∗ ⊆ {pki}i∈[n]

b2 := (m∗, σ∗) /∈ Q
return b0 ∧ b1 ∧ b2

ExpAccnVRS,A(1λ)

Q := ε, pp← Setup(1λ)

∀i ∈ [n], (pk†i , sk
†
i )← KGen(pp)

O := {SignO,ProveO}

(L∗,m∗, σ∗, pk∗, π∗)← AO(pp, {pk†i}i∈[n])
b0 := Verify(L∗,m∗, σ∗)
b1 := (Judge(L∗,m∗, σ∗, pk∗, π∗) = 0)
b2 := L∗ ⊆ {pki}i∈[n] ∪ {pk∗}
b3 := (m∗, σ∗) /∈ Q
return b0 ∧ b1 ∧ b2 ∧ b3

ExpNonSeizVRS,A(1λ)

Q := ε, pp← Setup(1λ)

(pk†, sk†)← KGen(pp)
O := {SignO,ProveO}

(L∗,m∗, σ∗)← AO(pp, pk†)

π∗ ← Prove(L∗,m∗, pk†, sk†)
b0 := Verify(L∗,m∗, σ∗)

b1 := (Judge(L∗,m∗, σ∗, pk†, π∗) 6= 0)
b2 := (m∗, σ∗) /∈ Q
return b0 ∧ b1 ∧ b2

Fig. 8: Experiments for Verifiable Ring Signatures.

Definition 19 (Strong Non-Seizability). A VRS scheme VRS is strongly non-seizable
if for all PPT adversary A,

Pr
[
ExpNonSeizVRS,A(1λ) = 1

]
≤ negl(λ)

where ExpNonSeizVRS,A(1λ) is defined in Figure 8.

B Security Proofs for Construction II

B.1 Immutability

Proof (Immutability). Assume that there exists a polynomial time adversary A that
breaks the immutability of Π2. We show how to build an algorithm B that breaks
the weak immutability of Π1. The algorithm B receives (ppSS, spk‡S) as input, then it
runs ppVRS ← VRS.Setup(1λ), it sets pp := (ppSS, ppVRS), it runs (vpk†S, vsk†S) ←
VRS.KGen(ppVRS) and sets pk†S := (spk‡S, vpk†S). It runs (pk∗Z,m∗, σ∗)← A(pp, pk†S).
While A is running, B simulates the oracles Π2.SignO and Π2.ProveO as follows.
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Answering Sign Oracle Queries. On input (pkZ,m, α), it parses pkZ as (spkZ, vpkZ),
then it sets α′ := 0‖α and m′ := pkZ‖m. B sends (spkZ,m

′, α′) to the sign or-
acle Π1.SignO that answers σSS. It sets t := pk†S‖pkZ‖m‖σSS and runs σVRS ←
VRS.Sign(vsk†S, {vpk†S, vpkZ}, t) and returns σ = (σSS, σVRS) to A.

Answering Prove Oracle Queries. On input (pkZ,m, σ), it parses σ as (σSS, σVRS)
and pkZ as (spkZ, vpkZ), then it sets t := pk†S‖pkZ‖m‖σSS. It runs π ←
VRS.Prove(vsk†S, {vpk†S, vpkZ}, t, σVRS) and returns π.

B parses σ∗ as (σ∗SS, σ
∗
VRS) and pk∗Z as (spk∗Z, vpk∗Z). It returns (spk∗Z, pk∗Z‖m∗, σ∗SS).

Parse L as {(pkS,i, pkZ,i,mi, αi, σi)}[|L|]
i=1 . Assume that ExpImmutabilityA,Π2

(1λ) re-
turns 1, then the following holds:

– Π2.Verify(pk†S, pk∗Z,m∗, σ∗) = 1
– For all i ∈ [|L|], pk∗Z 6= pkZ,i ∨m∗ /∈ {δ(mi) | δ with αi(δ) = 1}.

The first condition implies that Π1.Verify(spk†S, spk∗Z, pk∗Z‖m∗, σ∗SS) = 1.
For the second condition, recall that given any δi, δ′i is defined so that

δ′i(pkZ,i‖mi) := pkZ,i‖δi(mi). Therefore if pk∗Z 6= pkZ,i or

m∗ /∈ {δ(mi) | δ with αi(δ) = 1} ,

then
pk∗Z‖m∗ /∈

{
δ′(pkZ,i‖mi) | δ′ with α′i(δ′) = 1

}
.

We therefore conclude that ExpImmutabilityB,Π1
(1λ) = 1. To summarize,

if ExpImmutabilityA,Π2
(1λ) returns 1 with non-negligible probability, then

wExpImmutabilityB,Π1
(1λ) also returns 1 with non-negligible probability, which

contradicts that Π1 is weakly immutable. ut

B.2 Unlinkability

Proof (Unlinkability). We define the following sequence of hybrid experiments:
Hybb0: is identical to ExpUnlinkbA,Π2

(1λ).
Hybb1: is identical to Hybb0 except for the following change. Let (m0, δ0, σ0,m1, δ1, σ1)
be a query from A to LoRSanitOb. Suppose that Π2.Vf(pk†S, pk†Z,mβ , σβ) = 1
for all β ∈ {0, 1}. Then if for some β ∈ {0, 1}, there is no αβ which satisfies
(pk†S, pk†Z,mβ , αβ , σSS,β) ∈ L, the challenger aborts.

Lemma 9. If VRS is strongly unforgeable, then the probability of the challenger aborting
is negligible, which implies∣∣∣Pr

[
Hybb0 = 1

]
− Pr

[
Hybb1 = 1

]∣∣∣ ≤ negl(λ) .
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Proof. Suppose that there exists a polynomial time adversaryA that forces the challenger
to abort in Hybb1 with non negligible probability, we show how to build a polynomial time
adversary B that breaks the unforgeability of the VRS scheme with non-negligible proba-
bility. B receives the set of public keys {vpk‡S, vsk‡S}. It runs ppSS ← Π1.Setup(1λ, 1`),
(spk†S, ssk

†
S) ← Π1.KGenS(ppSS) and (spk†Z, ssk

†
Z) ← Π1.KGenZ(ppSS); and it sets

pk†S := (spk†S, vpk‡S) and pk†Z := (spk†Z, vpk‡Z). It then runs A((ppSS, ppVRS), pk†S, pk†Z).
While A is running, B simulates the oracles Π2.SignO, Π2.SanO, Π2.ProveO and
Π2.LoRSanitOb as follows:

Answering SignO Queries. B simulates this oracle honestly except that it generates
σVRS by using the oracle VRS.SignO on the input ({vpkS, vpkZ}, 1, pkS‖pkZ‖m‖σSS).

Answering SanO Queries. B simulates this oracle honestly except that it generates σVRS
by calling VRS.SignO on ({vpkS, vpkZ}, 2, pkS‖pkZ‖δ(m)‖σSS).

Answering ProveO Queries. B simulates this oracle honestly except that it generates
the proof π by calling VRS.ProveO on ({vpkS, vpkZ}, 1, pkS‖pkZ‖m‖σSS, σVRS).

Answering LoRSanitOb Queries. Let (m0, δ0, σ0,m1, δ1, σ1) be a query from A. Sup-
pose that Π2.Vf(pk†S, pk†Z,mβ , σβ) = 1 for all β ∈ {0, 1} (otherwise the oracle outputs
⊥). This implies that VRS.Verify({vpkZ, vpkS}, pk†S‖pk†Z‖mβ‖σSS,β , σVRS,β) = 1.
Suppose further that for some β ∈ {0, 1}, there is no αβ which satisfies
(pk†S, pk†Z,mβ , αβ , σSS,β) ∈ L. Then B aborts the simulation and outputs
({vpkZ, vpkS}, pk†S‖pk†Z‖mβ‖σSS,β , σVRS,β) as a forgery. Otherwise, B simulates
this oracle honestly except that it generates σVRS by calling VRS.SignO on
({vpkS, vpkZ}, pk†S‖pk†Z‖δb(mb)‖σSS,b), where σb = (σSS,b, σVRS,b).

Clearly, if B aborts and returns a forgery, then it breaks the strong unforgeability of
VRS. We can therefore assume that B does not abort with overwhelming probability,
which implies our claim. ut

Lemma 10. If Π1 is weakly unlinkable, then

|Pr
[
Hyb0

1 = 1
]
− Pr

[
Hyb1

1 = 1
]
| ≤ negl(λ) .

Proof. Assume that there exists a polynomial time adversary A distinguishes between
the above hybrids with non-negligible probability. We show how to build an algorithm B
that breaks the weak unlinkability of Π1. The algorithm B receives (ppSS, spk‡S, spk‡Z)
as input, then it runs ppVRS ← VRS.Setup(1λ), it sets pp := (ppSS, ppVRS), it runs
(vpk†S, vsk†S)← VRS.KGen(ppVRS) and (vpk†Z, vsk†Z)← VRS.KGen(ppVRS), and it sets
pk†S := {spk‡S, vpk†S} and pkZ := {spk‡Z, vpk†Z}. It runs b∗ ← A(pp, pk†S, pk†Z). While
A is running, B answers to the sign and proof oracle queries as in proof of immutability,
and it simulates the other oracles Π2.SanO and Π2.LoRSanitOb to A as follows.

Answering SanO Queries. On input (pkS,m, δ, σ), it parses pkS as (spkS, vpkS) and σ
as (σSS, σVRS) and setsm′ := pk†Z‖m and δ′ such that δ′(m′) = pk†Z‖δ(m). B generates
σ′SS by callingΠ1.SanO on (spkS, pk†Z‖m′, δ′, σSS). It generates the rest of the signature
honestly.
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Answering LoRSanitOb Queries. Let ((m0, δ0, σ0), (m1, δ1, σ1)) be a query from A.
Note that the abort conditions in Hyb0

1 and Hyb1
1 are identical. Therefore if B aborts,

then Hyb0
1 = Hyb1

1. Suppose that B does not abort. Then it must be the case that for all
β ∈ {0, 1}, there exists iβ , αβ which satisfies L[iβ ] = (pk†S, pk†Z,mβ , αβ , σβ). B can
thus generate σ′b by calling Π1.wLoRSanitOb on (i0, δ0, i1, δ1).

Eventually, A returns b∗ which is also returned by B. Clearly, the game is perfectly
simulated for A, therefore∣∣Pr

[
Hyb0

1 = 1
]
− Pr

[
Hyb1

1 = 1
]∣∣

=
∣∣Pr
[
wExpUnlink0

B,Π1
(1λ) = 1

]
− Pr

[
wExpUnlink0

B,Π1
(1λ) = 1

]∣∣
≤negl(λ)

where the inequality is due to the weak unlinkability of Π1. ut

Combining the two lemmas, we conclude that Π2 is unlinkable. ut

B.3 Strong Invisibility

Proof (Strong Invisibility). Assume that there exists a polynomial time adversary A
that breaks the strong invisibility of Π2. We show how to build an algorithm B that
breaks the strong invisibility of Π1. The algorithm B receives (ppSS, spk‡S, spk‡Z) as
input, then it runs ppVRS ← VRS.Setup(1λ), it sets pp := (ppSS, ppVRS), it runs
(vpk†S, vsk†S) ← VRS.KGen(ppVRS) and (vpk†Z, vsk†Z) ← VRS.KGen(ppVRS), and it
sets pk†S := (spk‡S, vpk†S) and pk†Z := (spk‡Z, vpk†Z). It initializes Q := ∅, then it runs
b′ ← A(pp, pk†S, pk†Z). While A is running, B answers to the proof oracle queries as in
proof of immutability, and it simulates the other oracles Π2.SanO′ and Π2.LoRAdmOb
to A as follows.

Answering SanO′ Queries. On input a tuple (pkS,i,mi, δi, σi), the oracle returns
⊥ if pkS,i = pk†S ∧ (@(mi, σi, α) ∈ R s.t. ∀j /∈ α, δi(mi)j = (mi)j), other-
wise it parses σi as (σSS,i, σVRS,i) and pkS,i as {spkS,i, vpkS,i}, sets m′i := pk†Z‖mi

and δ′ such that δ′i(m′i) = pk†Z‖δi(mi), and sends (spkS,i,m
′
i, δ
′
i, σSS,i) to the ora-

cle Π1.San′O and receives σ′SS,i. It then sets t := pkS,i‖pk†Z‖δi(mi)‖σ′SS,i and runs
σ′VRS,i ← VRS.Sign(vsk†Z, {vpkS,i, vpk†Z}, t) and sets σi := (σ′SS,i, σ

′
VRS,i). If pkS,i =

pk†S ∧ (∃(mi, σi, α
′) ∈ R s.t. ∀j /∈ α′, δi(mi)j = (mi)j), then the oracle sets

R ← R‖{(δi(mi), σ′i, α′)}.

Answering LoRAdmOb Queries. On input a tuple (pkZ,m, α0, α1), it returns ⊥ if
¬(|α0| = |α1| = |m|) or pk†Z 6= pkZ∧α0 6= α1, otherwise it parses pkZ as {spkZ, vpkZ}
and sets for all i ∈ {0, 1}, α′i := 0‖αi and m′ := pkZ‖m. B sends (spkZ,m

′, α′0, α
′
1) to

the oracle Π1.LoRAdmOb that answers σSS,b. It sets t := pk†S‖pkZ‖m‖σSS,b and runs
σVRS,b ← VRS.Sign(vsk†S, {vpk†S, vpkZ}, t) and returns σb := (σSS,b, σVRS,b) to A. It
setsR ← R‖{(m,σb, α0 ◦ α1)} if pk†Z = pkZ.
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At the end of the experiment, B returns b′. Clearly, the experiment is perfectly sim-
ulated for A, so ExpInvisibilitybB,Π1

(1λ) returns 1 with at least the probability that
ExpInvisibilitybA,Π2

(1λ) returns 1, which is a contradiction. This concludes the proof.
ut

B.4 Strong Accountability

Proof (Strong Signer accountability). Assume that there exists a polynomial time
adversary A that breaks the strong signer accountability of Π2. We show how to
build an algorithm B that breaks the strong accountability of VRS for n = 1. The
algorithm B receives (ppVRS, vpk‡Z) as input, then it runs ppSS ← Π1.Setup(1λ)
and (spk†Z, ssk

†
Z) ← Π1.KGenZ(ppSS). It sets pp := (ppSS, ppVRS) and and

pk†Z := (spk†Z, vpk‡Z). It runs (pk∗S,m∗, σ∗, π∗) ← A(pp, pk†Z). While A is running, B
runs the sanitize oracle Π2.SanO as follows.

Answering Sanitize Oracle Queries. On input a tuple (pkS,i,mi, δi, σi), the oracle parses
σi as (σSS,i, σVRS,i) and pkS,i as {spkS,i, vpkS,i}, and sets m′i = pk†Z‖mi and δ′i such
that δ′i(m′i) = pk†Z‖δi(mi). The oracle computes σ′SS,i ← Π1.San(ssk†Z, spkS,i,m

′
i, δ
′
i,

σSS,i) and sends ({vpkS,i, vpk‡Z}, 1, pkS,i‖pk†Z‖δi(mi)‖ σ′SS,i) to the oracle VRS.SignO
and receives σ′VRS,i. It sets σ′i := (σ′SS,i, σ

′
VRS,i) and returns it to A.

B parses σ∗ as (σ∗SS, σ
∗
VRS) and pk∗S as {spk∗S, vpkS

∗}. It sets L∗∗ := {vpkS
∗, vpk‡Z},

m∗∗ := σ∗SS, σ∗∗ := σ∗VRS, pk∗∗ := vpkS
∗ and π∗∗ := π∗. Finally, B returns

(L∗∗,m∗∗, σ∗∗, pk∗∗, π∗∗).
Clearly, the experiment is perfectly simulated for A. Assume that A wins its experi-

ment, then for all i the following holds:

– (pk∗S,m∗, σ∗) 6= (pkS,i, δi(mi), σ′i). Parse σ∗ as (σ∗SS, σ
∗
VRS). By rearranging the

terms, we have ((pk∗S, pk†Z,m∗, σ∗SS), σ∗VRS) 6= ((pkS,i, pk†Z, δi(mi), σ′SS,i), σ′VRS,i).

– Π2.Verify(pk∗S, pk†Z,m∗, σ∗) = 1. It implies that VRS.Verify(L∗∗, σ∗∗,m∗∗) = 1.
– Π2.Judge(pk∗S, pk†Z,m∗, σ∗, π∗) 6= S. So VRS.Judge(L∗∗,m∗∗, σ∗∗, pk∗∗, π∗∗) =

0.

Finally, note that L∗∗ ⊆ ({vpk‡Z}∪{pk∗∗}). Therefore, ExpAccVRS,B(1λ) returns 1 with
at least the probability that ExpSigAccA,Π2

(1λ) returns 1, which is a contradiction. This
concludes the proof.

Proof (Sanitizer accountability). Assume that there exists a polynomial time adversaryA
that breaks the strong sanitizer accountability of Π2. We show how to build an algorithm
B that breaks the strong non-seizability of VRS. The algorithm B receives (ppVRS, vpk‡S)
as input, then it runs ppSS ← Π1.Setup(1λ) and (spk†S, ssk

†
S) ← VRS.KGen(ppSS). It

sets pp := (ppSS, ppVRS) and pk†S := (spk†S, vpk‡S). It runs (pk∗Z,m∗, σ∗)← A(pp, pk†S).
While A is running, B simulates the oracles Π2.SignO and Π2.ProveO as follows.
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Answering SignO Oracle Queries. On input a tuple (pkZ,i,mi, αi), the oracle parses
pkZ,i as {spkZ,i, vpkZ,i}. The oracle computes σSS,i ← Π1.Sign(ssk†S, spkZ,i, pkZ,i‖mi,

0‖αi) and sends ({vpk‡S, vpkZ,i}, 1, pkS
†‖pkZ,i‖mi‖σSS,i) to the oracle VRS.SignO and

receives σVRS,i. It sets σi := (σSS,i, σVRS,i) and returns it to A.

Answering ProveO Oracle Queries. On input a tuple (p̃kZ,i, m̃i, σ̃i), the ora-
cle parses p̃kZ,i as { ˜spkZ,i,

˜vpkZ,i} and σ̃i as (σ̃SS,i, σ̃VRS,i). The oracle sends
({vpk‡S, ˜vpkZ,i}, 1, pkS

†‖p̃kZ,i‖m̃i‖σ̃SS,i) to the oracle VRS.ProveO and receives πi,
then it returns it to A.

B parses σ∗ as (σ∗SS, σ
∗
VRS) and pk∗Z as {spk∗Z, vpkZ

∗}. It sets L∗∗ := {vpk‡S, vpkZ
∗},

m∗∗ := σ∗SS, σ∗∗ := σ∗VRS. Finally, B returns (L∗∗,m∗∗, σ∗∗).
Clearly, the experiment is perfectly simulated for A. Assume that A wins its ex-

periment, then for all i, and for any π ← Π2.Prove(sk†S, pk∗Z,m∗, σ∗), the following
holds:

– (pk∗Z,m∗, σ∗) 6= (pkZ,i,mi, σi). Parse σ∗ as (σ∗SS, σ
∗
VRS). By rearranging the terms,

we have ((pk†S, pk∗Z,m∗, σ∗SS), σ∗VRS) 6= ((pk†S, pkZ,i,mi, σSS,i), σVRS,i).
– Verify(pk†S, pk∗Z,m∗, σ∗) = 1. It implies that VRS.Verify(L∗∗, σ∗∗,m∗∗) = 1.
– Judge(pk†S, pk∗Z,m∗, σ∗, π∗) 6= Z. So VRS.Judge(L∗∗,m∗∗, σ∗∗, pk∗∗, π∗∗) 6= 0.

Therefore, ExpNonSeizVRS,B(1λ) returns 1 with at least the probability that
ExpSanAccA,Π2

(1λ) returns 1, which is a contradiction. This concludes the
proof.

B.5 Strong Proof-Restricted Transparency

Proof (Strong Proof-Restricted Transparency). We prove by hybrid argu-
ment. For any polynomial time algorithm A, we define the hybrid experiment
ExpHTransparencyA,Π2

(1λ) as the same experiment as ExpTransparency0
A,Π2

(1λ)
except that, on input (mi, δi, αi) the oracle Π2.Sign/SanOb returns σi = (σSS,i, σVRS,i)
where σVRS,i is a signature generated by the signer instead of the sanitizer. Concretely,
σVRS,i is generated as σVRS,i ← VRS.Sign(vskS, {vpkS, vpkZ}, pkS‖pkZ‖δi(mi)‖σSS,i).

We first argue that for any PPT adversary A, the probabilities that the experiments
ExpHTransparencyA,Π2

(1λ) and ExpTransparency0
A,Π2

(1λ) output 1 are negligibly
close if VRS is anonymous. Suppose not, we construct a PPT adversary B against
the anonymity of VRS.
B receives (ppVRS, {vpk‡Z, vpk‡S}) as input, then it runs ppSS ← SetupSS(1λ),

(spk†S, ssk
†
S) ← Π1.KGenS(ppSS) and (spk†Z, ssk

†
Z) ← Π1.KGenZ(ppSS), and it sets

pp := (ppSS, ppVRS), pk†S := (spk†S, vpk‡S) and pk†Z := (spk†Z, vpk‡Z). B then simulates
the Π2.SignO, Π2.SanO, Π2.ProveO, and Π2.Sign/SanOb oracles of Π2 for A
honestly, except that whenever the VRS.SignO and VRS.ProveO algorithms are to be
called, it queries the corresponding oracles provided by the anonymity challenger of
VRS instead.

More specifically, we pay special attention to how B answers Π2.Sign/SanOb and
Π2.ProveO oracle queries:
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– When A queries Π2.Sign/SanOb on input (mi, δi, αi), B computes σSS,i as
specified in ExpTransparency0

A,Π2
(1λ), and queries the LoRSignOb oracle

on ({vpk‡S, vpk‡Z}, pk†S‖pk†Z‖δi(mi)‖σSS,i) and obtains σVRS,i. B then outputs
σi := (σSS,i, σVRS,i).

– When A queries Π2.ProveO on input (pk′Z,j ,m′j , σ′j), B parses σ′j as
(σ′SS,j , σ

′
VRS,j) and queries the VRS.ProveO oracle on ({vpk‡S, vpk‡Z}, pk†S‖pk†Z‖

m′j‖σ′SS,j , σ
′
VRS,j , 1), where 1 specifies the signer. In return, B receives a bit d and

outputs Z if d = 0 and S otherwise.

Clearly, depending on the choice of the anonymity challenger of VRS, B simu-
lates either ExpHTransparencyA,Π2

(1λ) or ExpTransparency0
A,Π2

(1λ) perfectly.
Therefore, if the probabilities that the experiments ExpHTransparencyA,Π2

(1λ) and
ExpTransparencybA,Π2

(1λ) output 1 differ in non-negligible probability, then the
probabilities that ExpAnon0

VRS,B(1λ) and ExpAnon1
VRS,B(1λ) output 1 differ by the

same non-negligible probability, which contracts the assumption that VRS is anonymous.
Next, we argue that for any PPT adversary A, the probabilities that the experi-

ments ExpHTransparencyA,Π2
(1λ) and ExpTransparency1

A,Π2
(1λ) output 1 are negli-

gibly close if Π1 is strongly proof-restricted transparent. Suppose not, we construct a
PPT adversary B against the strongly proof-restricted transparency of Π1.
B receives (ppSS, spk‡Z, spk‡S), then it runs ppVRS ← VRS.Setup(1λ), (vpk†Z, vsk†Z)←

VRS.KGen(ppVRS) and (vpk†S, vsk†S) ← VRS.KGen(ppVRS), and it sets pp :=
(ppSS, ppVRS), pk†S := (spk‡S, vpk†S) and pk†Z := (spk‡Z, vpk†Z). B then simulates the
Π2.SignO, Π2.SanO, Π2.ProveO, and Π2.Sign/SanOb oracles of Π2 for A by
querying the corresponding oracles of Π1 and, when appropriate, signing their outputs
using the honestly generated VRS secret keys.

Clearly, depending on the choice of the transparency challenger of Π1, B simulates
either the experiment ExpHTransparencyA,Π2

(1λ) or ExpTransparency1
A,Π2

(1λ) per-
fectly. Therefore, if the probabilities that the experiments ExpHTransparencyA,Π2

(1λ)
and ExpTransparency1

A,Π2
(1λ) output 1 differ in non-negligible probability, then the

probabilities that ExpTransparency0
B,Π1

(1λ) and ExpTransparency1
B,Π1

(1λ) output 1
differ by the same non-negligible probability, which contracts the assumption that Π1 is
strongly proof-restricted transparent.
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