
HAL Id: hal-01964491
https://hal.science/hal-01964491v1

Submitted on 22 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unlinkable and Strongly Accountable Sanitizable
Signatures from Verifiable Ring Signatures

Xavier Bultel, Pascal Lafourcade

To cite this version:
Xavier Bultel, Pascal Lafourcade. Unlinkable and Strongly Accountable Sanitizable Signatures from
Verifiable Ring Signatures. International Conference on Cryptology and Network Security, 2017, Hong
Kong, China. �hal-01964491�

https://hal.science/hal-01964491v1
https://hal.archives-ouvertes.fr


Unlinkable and Strongly Accountable Sanitizable
Signatures from Verifiable Ring Signatures?

Xavier Bultel1,2 and Pascal Lafourcade1,2

1 CNRS, UMR 6158, LIMOS, F-63173 Aubière, France
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Abstract. An Unlinkable Sanitizable Signature scheme (USS) allows a sanitizer
to modify some parts of a signed message in such away that nobody can link the
modified signature to the original one. A Verifiable Ring Signature scheme (VRS)
allows the users to sign messages anonymously within a group where a user can
prove a posteriori to a verifier that it is the author of a given signature. In this
paper, we first revisit the notion of VRS: we improve the proof capabilities of the
users, we give a complete security model for VRS and we give an efficient and
secure scheme called EVeR. Our main contribution is GUSS, a Generic USS
based on a VRS scheme and an unforgeable signature scheme. We show that
GUSS instantiated with EVeR and Schnorr’s signature is twice as efficient as
the best USS scheme of the literature. Moreover, we propose a stronger definition
of accountability: an USS is accountable when the signer can prove whether
a signature is sanitized. We formally define the notion of strong accountability
where the sanitizer can also prove the origin of a signature. We show that the
notion of strong accountability is important in practice. Finally, we prove the
security properties of GUSS (including strong accountability) and EVeR under
the Decisional Diffie-Hellman (DDH) assumption in the random oracle model.

1 Introduction

Sanitizable Signatures (SS) were introduced by Ateniese et al. [1], but similar primitives
were independently proposed in [31]. In this primitive, a signer allows a proxy (called
the sanitizer) to modify some parts of a signed message. For example, a magistrate
wishes to delegate the power to summon someone to the court to his secretary. He signs
the message “Franz is summoned to court for an interrogation on Monday” and gives the
signature to his secretary, where “Franz” and “Monday” are sanitizable and the other
parts are fixed. Thus, in order to summon Joseph K. on Saturday in the name of the
magistrate, the secretary can change the signed message into “Joseph K. is summoned
to the court for an interrogation on Saturday”.

Ateniese et al. in [1] proposed some applications of this primitive in privacy of
health data, authenticated media streams and reliable routing information. They also
introduced five security properties formalized by Brzuska et al. in [8]:
Unforgeability: no unauthorized user can generate a valid signature.
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Immutability: the sanitizer cannot transform a signature from an unauthorized mes-
sage.

Privacy: no information about the original message is leaked by a sanitized signature.
Transparency: nobody can say if a signature is sanitized or not.
Accountability: the signer can prove whether a signature is sanitized.

Finally, in [9] the authors point out a non-studied but relevant property called un-
linkability: a scheme is unlinkable when it is not possible to link a sanitized signature
to the original one. The authors give a generic unlinkable scheme based on group sig-
natures. In 2016, Fleischhacker et al. [21] give a more efficient construction based on
signatures with re-randomizable keys.

On the other hand, ring signature is a well-studied cryptographic primitive intro-
duced by Rivest et al. in [29], where some users can sign anonymously within a group
of users. Such a scheme is verifiable [28] when any user can prove that he is the signer
of a given message. In this paper, we improve the properties of VRS by increasing the
proof capabilities of the users. We also give an efficient VRS scheme called EVeR and a
generic unlinkable sanitizable signature scheme called GUSS that uses a verifiable ring
signature. We also show that the definition of accountability is too weak for practical
use and we propose a stronger definition.

Contributions: Existing VRS schemes allow any user to prove that he is the signer
of a given message. We extend the definition of VRS to allow a user to prove that he
is not the signer of a given message. We give a formal security model for VRS that
takes into account this property. We first extend the classical security properties of ring
signatures to verifiable ring signatures, namely the unforgeability (no unauthorized user
can forge a valid signature) and the anonymity (nobody can distinguish who is the signer
in the group). In addition we define the accountability (if a user signs a message then
he cannot prove that he is not the signer) and the non-seizability (a user cannot prove
that he is the signer of a message if it is not true, and a user cannot forge a message
such that the other users cannot prove that they are not the signers). To the best of our
knowledge, it is the first time that formal security models are proposed for VRS. We
also design an efficient secure VRS scheme under the DDH assumption in the random
oracle model.

The definition of accountability for SS given in [8, 9, 21] considers that the signer
can prove the origin of a signature (signer or sanitizer) by using a proof algorithm such
that:
1. The signer cannot forge a signature and a proof that the signature has been forged

by the sanitizer.
2. The sanitizer cannot forge a signature such that the proof algorithm blames the

signer.
The proof algorithm requires the secret key of the signer. To show that this definition is
too weak, we consider a signer who cannot prove the origin of a litigious signature. The
signer claims that he lost his secret key because of problems with his hard drive. There
is no way to verify whether the signer is lying. Unfortunately, without his secret key,
the signer cannot generate the proof for the litigious signature, hence nobody can judge
whether the signature is sanitized or not. Depending on whether the signer is lying,
there is a risk of accusing the signer or the sanitizer wrongly. To solve this problem, we
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add a second proof algorithm that allows the sanitizer to prove the origin of a signature.
To achieve strong accountability, the two following additional properties are required:

1. The sanitizer cannot sanitize a signature σ and prove that σ is not sanitized.
2. The signer cannot forge a signature such that the sanitizer proof algorithm accuses

the sanitizer.

The main contribution of this paper is to propose an efficient and generic unlinkable
SS scheme called GUSS. This scheme is instantiated by a VRS and an unforgeable sig-
nature scheme. It is the first SS scheme that achieves strong accountability. We compare
GUSS with the other schemes of the literature:

Brzuska et al. [9]. This scheme is based on group signatures. Our scheme is built on
the same model, but it uses ring signatures instead of group signatures. The main
advantage of group signatures is that the size of the signature is not proportional
to the size of the group. However, for small groups, ring signatures are much more
efficient than group signatures. Since the scheme of Brzuska et al. and GUSS uses
group/ring signatures for groups of two users, GUSS is much more practical for an
equivalent level of genericity.

Fleischhacker et al. [21]. This scheme is based on signatures with re-randomizable
keys. It is generic, however it uses different tools that must have special properties to
be compatible with each other. To the best of our knowledge, it is the most efficient
scheme of the literature. GUSS instantiated with EVeR and Schnorr’s signature is
twice as efficient as the best instantiation of this scheme. In Fig. A, we compare the
efficiency of each algorithm of our scheme and the scheme of Fleischhacker et al..

Lai et al. [26]. Recently, Lai et al. proposed a USS that is secure in the standard model.
This scheme uses pairings and is much less efficient than the scheme of Fleis-
chhacker et al., so this scheme is much less efficient than our scheme. In their
paper [26], Lai et al. give a comparison of the efficiency of the three schemes of
the literature.

SiGen SaGen Sig San Ver SiProof SiJudge Total pk spk sk ssk σ π Total
[21] 7 1 15 14 17 23 6 83 7 1 14 1 14 4 41

GUSS 2 1 8 7 10 3 4 35 2 1 2 1 12 5 23

Fig. 1. Comparison of GUSS and the scheme of Fleischhacker et al.: The first six columns give
the number of exponentiations of each algorithms of both schemes, namely the key generation
algorithm of the signer (SiGen) and the sanitizer (SaGen), the signature algorithm (Sig), the
verification algorithm (Ver), the sanitize algorithm (San), the proof algorithm (SiProof) and the
judge algorithm (SiJudge). The last six columns give respectively the size of the public key
of the signer (pk) and the sanitizer (spk), the size of the secret key of the signer (sk) and the
sanitizer (ssk), the size of a signature (σ) and the size of a proof (π) outputted by SiProof. This
size is measured in elements of a group G of prime order. As in [21], for the sake of clarity, we
do not distinguish between elements of G and elements of Z∗p. We consider the best instantiation
of the scheme of Fleischhacker et al. given in [21]. In Appendix A, we give a detailed complexity
evaluation of our schemes.
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Related works: Sanitizable Signatures (SS) was first introduced by Ateniese et
al. [1]. Later, Brzuska et al. gave formal security definitions [8] for unforgeability, im-
mutability, privacy, transparency and accountability. Unlinkability was introduced and
formally defined by Brzuska et al. in [9]. In [10], Brzuska et al. introduce an alternative
definition of accountability called non-interactive public accountability where the capa-
bility to prove the origin of a signature is given to a third party. One year later, the same
authors propose a stronger definition of unlinkability [11] and design a scheme that
is both strongly unlinkable and non-interactively public accountable. However, non-
interactive public accountability is not compatible with transparency. In this paper, we
focus on schemes that are unlinkable, transparent and interactively accountable. To the
best of our knowledge, there are only 3 schemes with these 3 properties, i.e. [9, 21, 26].

Some works focus on other properties of SS that we do not consider here, such as
SS with multiple sanitizers [14], or SS where the power of the sanitizer is limited [13].
Finally, there exist other primitives that solve related but different problems such as
homomorphic signatures [25], redactable signatures [7] or proxy signatures [22]. The
differences between these primitives and sanitizable signatures are detailed in [21].

On the other hand, Ring Signatures (RS) [29] were introduced by Rivest et al. in
2003. Security models of this primitive were defined in [4]. Verifiable Ring Signatures
(VRS) [28] were introduced in 2003 by Lv. RS allow the users to sign anonymously
within a group, and VRS allow a user to prove that it is the signer of a given message.
The authors of [28] give a VRS construction that is based on the discrete logarithm
problem. Two other VRS schemes were proposed by Wand et al. [32] and by Changlung
et al. [16]. The first one is based on the Nyberg-Rueppel signature scheme and the
second one is a generic construction based on multivariate public key cryptosystems. In
these three schemes, a user can prove that he is the signer of a given signature, however,
he has no way to prove that he is not the signer, and it seems to be non-trivial to add this
property to these schemes. Convertible ring signatures [27] are very close to verifiable
ring signatures: they allow the signer of an anonymous (ring) signature to transform it
into a standard signature (i.e. a deanonymized signature). It can be used as a verifiable
ring signature because the deanonymized signature can be viewed as a proof that the
user is the signer of a given message. However, in this paper we propose a stronger
definition of VRS where a user also can prove that he is not the signer of a message,
and this property cannot be achieved using convertible signatures.

A Revocable-iff-Linked Ring Signature (RLRS) [2] (also called List Signature [15])
is a kind of RS that has the following property: if a user signs two messages for the
same event-id, then it is possible to link these signatures and the user’s identity is pub-
licly revealed. It can be used to design a VRS in our model: to prove whether he is the
signer of a given message, the user signs a second message using the same event-id.
If the two signatures are linked, then the judge is convinced that the user is the signer,
else he is convinced that the user is not the signer. However, RLRS requires security
properties that are too strong for VRS (linkability and traceability) and it would result
in less efficient schemes.

Outline: In Section 2, we recall the standard cryptographic tools used in this paper.
In Section 3 and Section 4, we present the formal definition and the security models
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for verifiable ring signatures and unlinkable sanitizable signatures. In Section 5, we
present our scheme EvER. Finally, in Section 6, we present our scheme GUSS, before
concluding in Section 7.

2 Cryptographic Tools

We present the cryptographic tools used throughout this paper. We first recall the DDH
assumption.

Definition 1 (DDH [5]). Let G be a multiplicative group of prime order p and g ∈ G
be a generator. Given an instance h = (ga, gb, gz) for unknown a, b, z

$← Z∗p, the
Decisional Diffie-Hellman (DDH) problem is to decide whether z = a · b or not. The
DDH assumption states that there exists no polynomial time algorithm that solves the
DDH problem with a non-negligible advantage.

In the following, we recall some notions about digital signatures.

Definition 2 ((Deterministic) Digital Signature (DS)). A Digital Signature scheme
S = (D.Init,D.Gen,D.Sig,D.Ver) is a tuple of four algorithms defined as follows:

D.Init(1k): It returns a setup value set.
D.Gen(set): It returns a pair of signer public/private keys (pk, sk).
D.Sig(m, sk): It returns a signature σ of m using the key sk.
D.Ver(pk,m, σ): It returns a bit b.

S is said to be deterministic when the algorithm D.Sig is deterministic. S is said to
be correct when for any security parameter k ∈ N, any message m ∈ {0, 1}∗, any
set ← D.Init(1k) and any (pk, sk) ← D.Gen(set), D.Ver(pk,m,D.Sig(m, sk)) =
1. Moreover, such a scheme is unforgeable when no polynomial adversary wins the
following experiment with non-negligible probability where D.Sig(·, sk) is a signature
oracle, qS is the number of queries to this oracle and σi is the ith signature computed
by the signature oracle:

Expunf
S,A(k):

set← D.Init(1k)
(pk, sk)← D.Gen(set)
(m∗, σ∗)← AD.Sig(·,sk)(pk)
if (D.Ver(pk,m∗, σ∗) = 1) and (∀ i ∈ J1, qSK, σi 6= σ∗)
then return 1, else return 0

As it is mentioned in [21], any DS scheme can be changed into a deterministic
scheme without loss of security using a pseudo random function, that can be simulated
by a hash function in the random oracle model. The following scheme is the determin-
istic version of the well-known Schnorr’s Signature scheme [30].

Scheme 1 (Deterministic Schnorr’s Signature [30]) This signature is defined by the
following algorithms:
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D.Init(1k): It returns a setup value set = (G, p, g,H) where G is a group of prime
order p, g ∈ G and H : {0, 1}∗ → Z∗p is a hash function.

D.Gen(set): It picks sk $← Z∗p, computes pk = gsk and returns (pk, sk).
D.Sig(m, sk): It computes the r = H(m||sk), R = gr, z = r + sk · H(R||m) and

returns σ = (R, z).
D.Ver(pk,m, σ): It parses σ = (R, z), if gz = R · pkH(R||m) then it returns 1, else 0.

This DS scheme is deterministic and unforgeable under the DL assumption in the ran-
dom oracle model.

A Zero-Knowledge Proof (ZKP) [23] allows a prover knowing a witness w to convince
a verifier that a statement s is in a given language without leaking any information.
Such a proof is a Proof of Knowledge (PoK) [3] when the verifier is also convinced
that the prover knows the witness w. We recall the definition of a non-interactive zero-
knowledge proof of knowledge.

Definition 3 (NIZKP). Let R be a binary relation and let L be a language such that
s ∈ L ⇔ (∃w, (s, w) ∈ R). A non-interactive ZKP (NIZKP) for the language L is a
couple of algorithms (Prove,Verify) such that:

Prove(s, w). This algorithm outputs a proof π.
Verify(s, π). This algorithm outputs a bit b.

A NIZKP proof has the following properties:

Completeness. For any statement s ∈ L and the corresponding witness w, we have
that Verify(s,Prove(s, w)) = 1.

Soundness. There is no polynomial time adversary A such that A(L) outputs (s, π)
such that Verify(s, π) = 1 and s 6∈ L with non-negligible probability.

Zero-knowledge. A proof π leaks no information, i.e. there exists a polynomial time
algorithm Sim (called the simulator) such that Prove(s, w) and Sim(s) follow the
same probability distribution.

Moreover, such a proof is a proof of knowledge when for any s ∈ L and any algorithm
A, there exists a polynomial time knowledge extractor E such that the probability that
EA(s)(s) outputs a witness w such that (s, w) ∈ R given access to A(s) as an oracle
is as high as the probability that A(s) outputs a proof π such that Verify(s, π) = 1.

3 Formal Model of Verifiable Ring Signatures

We formally define the Verifiable Ring Signatures (VRS) and the corresponding se-
curity notions. A VRS is a ring signature scheme where a user can prove to a judge
whether he is the signer of a message or not. It is composed of six algorithms. V.Init,
V.Gen, V.Sig and V.Ver are defined as in the usual ring signature definitions. V.Gen
generates public and private keys. V.Sig anonymously signs a message according to a
set of public keys. V.Ver verifies the soundness of a signature. A VRS has two addi-
tional algorithms: V.Proof allows a user to prove whether he is the signer of a message
or not, and V.Judge allows anybody to verify the proofs outputted by V.Proof.

6



Definition 4 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signature scheme
is a tuple of six algorithms defined by:
V.Init(1k): It returns a setup value set.
V.Gen(set): It returns a pair of signer public/private keys (pk, sk).
V.Sig(L,m, sk): This algorithm computes a signature σ using the key sk for the mes-

sage m according to the set of public keys L.
V.Ver(L,m, σ): It returns a bit b: if the signature σ of m is valid according to the set

of public key L then b = 1, else b = 0.
V.Proof(L,m, σ,pk, sk): It returns a proof π for the signature σ ofm according to the

set of public key L.
V.Judge(L,m, σ,pk, π): It returns a bit b or the bottom symbol ⊥: if b = 1 (resp. 0)

then π proves that σ was (resp. was not) generated by the signer corresponding to
the public key pk. It outputs ⊥ when the proof is not well formed.

Unforgeability: We first adapt the unforgeability property of ring signatures [4] to VRS.
Informally, a VRS is unforgeable when no adversary is able to forge a signature for a
ring of public keys without any corresponding secret key. In this model, the adversary
has access to a signature oracle V.Sig(·, ·, ·) (that outputs signatures of chosen messages
for chosen users in the ring) and a proof oracle V.Proof(·, ·, ·, ·, ·) (that outputs proofs as
the algorithm V.Proof for chosen signatures and chosen users). The adversary succeeds
when it outputs a valid signature that was not already generated by the signature oracle.

Definition 5 (Unforgeability). Let P be a VRS and n be an integer. Let the two follow-
ing oracles be:
V.Sig(·, ·, ·): On input (L, l,m), if 1 ≤ l ≤ n then it runs σ ← V.Sig(L, skl,m) and

returns σ, else it returns ⊥.
V.Proof(·, ·, ·, ·, ·): On input (L,m, σ, l), if 1 ≤ l ≤ n then this proof oracle runs

π ← V.Proof(L,m, σ,pkl, skl) and returns π, else it returns ⊥.
P is n-unf secure when for any polynomial time adversary A, the probability that A
wins the following experiment is negligible, where qS is the number of calls to the oracle
V.Sig(·, ·, ·) and σi is the ith signature outputted by the oracle V.Sig(·, ·, ·):

Expn-unf
P,A (k):

set← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski)← V.Gen(set)
(L∗, σ∗,m∗)← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
if V.Ver(L∗, σ∗,m∗) = 1 and L∗ ⊆ {pki}1≤i≤n and ∀ i ∈ J1, qSK, σi 6= σ∗
then return 1, else return 0

P is unforgeable when it is t(k)-unf secure for any polynomial t.

Annonymity: We adapt the anonymity property of ring signatures [4] to VRS. Infor-
mally, a VRS is anonymous when no adversary is able to link a signature to the cor-
responding user. The adversary has access to the signature oracle and the proof oracle.
During a first phase, it chooses two honest users in the ring, and in the second phase,
it has access to a challenge oracle LRSOb(d0, d1, ·, ·) that outputs signatures of chosen
messages using the secret key of one of the two chosen users. The adversary succeeds

7



if he guesses which user is chosen by the challenge oracle. Note that if the adversary
uses the proof oracle on the signatures generated by the challenge oracle then he loses
the experiment.

Definition 6 (Anonymity). Let P be a VRS and let n be an integer. Let the following
oracle be:
LRSOb(d0, d1, ·, ·): On input (m,L), if {pkd0 ,pkd1} ⊆ L then this oracle runs σ ←

V.Sig(L, skdb ,m) and returns σ, else it returns ⊥.
P is n-ano secure when for any polynomial time adversary A = (A1,A2), the proba-
bility thatA wins the following experiment is negligibly close to 1/2, where V.Sig(·, ·, ·)
and V.Proof(·, ·, ·, ·, ·) are defined as in Def. 5 and where qS (resp. qP ) is the number of
calls to the oracle V.Sig(·, ·, ·) (resp. V.Proof(·, ·, ·, ·, ·)), (Li,mi, σi, li) is the ith query
sent to oracle V.Proof(·, ·, ·, ·, ·) and σ′j is the jth signature outputted by the oracle
LRSOb(d0, d1, ·, ·):

Expn-ano
P,A (k):

set← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski)← V.Gen(set)
(d0, d1)← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)

1 ({pki}1≤i≤n)

b
$← {0, 1}

b∗ ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·),LRSOb(d0,d1,·,·)
2 ({pki}1≤i≤n)

if (b = b∗) and (∀ i, j ∈ J1,max(qS , qP )K, (σi 6= σ′j) or (li 6= d0 and li 6= d1))
then return 1, else return 0

P is anonymous when it is t(k)-ano secure for any polynomial t.

Accountability: We consider an adversary that has access to a proof oracle and a signa-
ture oracle. A VRS is accountable when no adversary is able to forge a signature σ (that
was not outputted by the signature oracle) together with a proof that it is not the signer
of σ. Note that the ring of σ must contain at most one public key that does not come
from an honest user, thus the adversary knows at most one secret key that corresponds
to a public key in the ring.

Definition 7 (Accountability). Let P be a VRS and let n be an integer. P is n-acc
secure when for any polynomial time adversary A, the probability that A wins the fol-
lowing experiment is negligible, where V.Sig(·, ·, ·) and V.Proof(·, ·, ·, ·, ·) are defined
as in Def. 5 and where qS is the number of calls to the oracle V.Sig(·, ·, ·) and σi is the
ith signature outputted by the oracle V.Sig(·, ·, ·):

Expn-acc
P,A (k):

set← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski)← V.Gen(set)
(L∗,m∗, σ∗, pk∗, π∗)← A

V.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
if (L ⊆ {pki}1≤i≤n ∪ {pk∗}) and (V.Ver(L∗, σ∗,m∗) = 1) and

(V.Judge(L∗,m∗, σ∗, pk∗, π∗) = 0) and (∀ i ∈ J1, qSK, σi 6= σ∗)
then return 1, else return 0

P is accountable when it is t(k)-acc secure for any polynomial t.
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Non-seizability: We distinguish two experiments for this property: the first experiment,
denoted non-sei-1, considers an adversary that has access to a proof oracle and a sig-
nature oracle. Its goal is to forge a valid signature with a proof that the signer is another
user in the ring.

Definition 8 (n-non-sei-1 experiment). Let P be a SS. P is n-non-sei-1 secure
when for any polynomial time adversary A, the probability that A wins the following
experiment is negligible, where V.Sig(·, ·, ·) and V.Proof(·, ·, ·, ·, ·) and where qS is the
number of calls to the oracle V.Sig(·, ·, ·) and (Li, li,mi) (resp. σi) is the ith query to
the oracle V.Sig(·, ·, ·) (resp. signature outputted by this oracle):

Expn-non-sei-1
P,A (k):

set← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski)← V.Gen(set)
(L∗,m∗, σ∗, l∗, π∗)← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
π ← V.Proof(L∗,m∗, σ∗,pk, sk)
if (V.Ver(L∗, σ∗,m∗) = 1) and

(V.Judge(L∗,m∗, σ∗,pkl∗ , π∗) = 1) and
(∀ i ∈ J1, qSK, (Li, li,mi, σi) = (L∗, l∗,m∗, σ∗))

then return 1, else return 0

The second experiment, denoted non-sei-2, considers an adversary that has access
to a proof oracle and a signature oracle and that receives the public key of a honest
user as input. The goal of the adversary is to forge a signature σ such that the proof
algorithm ran by the honest user returns a proof that σ was computed by the honest user
(i.e. the judge algorithm returns 1) or a non-valid proof (i.e. the judge algorithm returns
⊥). Moreover, the signature σ must not come from the signature orale.

Definition 9 (Non-seizability). Let P be a VRS and n be an integer. P is n-non-sei-2
secure when for any polynomial time adversary A, the probability that A wins the fol-
lowing experiment is negligible, where V.Sig(·, ·, ·) and V.Proof(·, ·, ·, ·, ·) are defined
as in Def. 5 and where qS is the number of calls to the oracle V.Sig(·, ·, ·) and σi is the
ith signature outputted by the oracle V.Sig(·, ·, ·):

Expn-non-sei-2
P,A (k):

set← V.Init(1k)
(pk, sk)← V.Gen(set)
(L∗,m∗, σ∗)← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)(pk)
π ← V.Proof(L∗,m∗, σ∗, pk, sk)
if (V.Ver(L∗, σ∗,m∗) = 1) and

(V.Judge(L∗,m∗, σ∗, pk∗, π∗) 6= 0) and (∀ i ∈ J1, qSK, σi 6= σ∗)
then return 1, else return 0

P is non-seizable when it is both t(k)-non-sei-1 and t(k)-non-sei-2 secure for any
polynomial t.

4 Formal Model of Sanitizable Signature

We give the formal definition and security properties of the sanitizable signature primi-
tive. Compared to the previous definitions where only the signer can prove the origin of
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a signature, our definition introduces algorithms that allow the sanitizer to prove the ori-
gin of a signature. Moreover, in addition to the usual security models of [8], we present
two new security experiments that improve the accountability definition.

A SS scheme contains 10 algorithms. Init outputs the setup values. SiGen and
SaGen generate respectively the signer and the sanitizer public/private keys. As in
classical signature schemes, the algorithms Sig and Ver allow the users to sign a mes-
sage and to verify a signature. However, the signatures are computed using a sanitizer
public key and an admissible function ADM. The algorithm San allows the sanitizer
to transform a signature of a message m according to a modification function MOD:
if MOD is admissible according to the admissible function (i.e. MOD(ADM) = 1) this
algorithm returns a signature of the message m′ = MOD(m).

SiProof allows the signer to prove whether a signature is sanitized or not. Proofs
outpoutted by this algorithm can be verified by anybody using the algorithm SiJudge.
Finally, algorithms SaProof and SaJudge have the same functionalities as SiProof
and SiJudge, but the proofs are computed from the secret parameters of the sanitizer
instead of the signer.

Definition 10 (Sanitizable Signature (SS)). A Sanitizable Signature scheme is a tuple
of 10 algorithms defined as follows:

Init(1k): It returns a setup value set.
SiGen(set): It returns a pair of signer public/private keys (pk, sk).
SaGen(set): It returns a pair of sanitizer public/private keys (spk, ssk).
Sig(m, sk, spk,ADM): This algorithm computes a signature σ from the message m

using the secret key sk, the sanitizer public key spk and the admissible function
ADM. Note that we assume that ADM can be efficiently recovered from any signa-
ture as in the definition of Fleischhacker et al. [21].

San(m,MOD, σ,pk, ssk): Let the admissible function ADM according to the signa-
ture σ. If ADM(MOD) = 1 then this algorithm returns a signature σ′ of the message
m′ = MOD(m) using the signature σ, the signer public key pk and the sanitizer
secret key ssk. Else it returns ⊥.

Ver(m,σ,pk, spk): It returns a bit b: if the signature σ of m is valid for the two public
keys pk and spk then b = 1, else b = 0.

SiProof(sk,m, σ, spk): It returns a signer proof πsi for the signature σ of m using the
signer secret key sk and the sanitizer public key spk.

SaProof(ssk,m, σ,pk): It returns a sanitizer proof πsa for the signature σ of m using
the sanitizer secret key ssk and the signer public key pk.

SiJudge(m,σ,pk, spk, πsi): It returns a bit d or the bottom symbol ⊥: if πsi proves
that σ comes from the signer corresponding to the public key pk then d = 1, else if
πsi proves that σ comes from the sanitizer corresponding to the public key spk then
d = 0, else the algorithm outputs ⊥.

SaJudge(m,σ,pk, spk, πsa): It returns a bit d or the bottom symbol ⊥: if πsa proves
that σ comes from the signer corresponding to the public key pk then d = 1, else
if πsa proves that σ comes from the sanitizer corresponding to the public key spk
then d = 0, else the algorithm outputs ⊥.

As it is mentioned in Introduction, SS schemes have the following security prop-
erties: unforgeability, immutability, privacy, transparency and accountability. In [8]
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authors show that if a scheme has the immutability, the transparency and the account-
ability properties, then it has the unforgeability and the privacy properties. Hence we
do not need to prove these two properties, so we do not recall their formal definitions.

Immutability: A SS is immutable when no adversary is able to sanitize a signature with-
out the corresponding sanitizer secret key or to sanitize a signature using a modification
function that is not admissible (i.e. ADM(MOD) = 0). To help him, the adversary has
access to a signature oracle Sig(., sk, ., .) and a proof oracle SiProof(sk, ., ., .).

Definition 11 (Immutability [8]). Let the following oracles be:
Sig(., sk, ., .): On input (m,ADM, spk), this oracle returns Sig(m, sk,ADM, spk).
SiProof(sk, ., ., .): On input (m,σ, spk), this oracle returns SiProof(sk,m, σ, spk).
Let P be a SS. P is Immut secure (or immutable) when for any polynomial time adver-
saryA, the probability thatA wins the following experiment is negligible, where qSig is
the number of calls to the oracle Sig(., sk, ., .), (mi,ADMi, spki) is the ith query asked
to the oracle Sig(., sk, ., .) and σi is the corresponding response:

ExpImmut
P,A (k):

set← Init(1k)
(pk, sk)← SiGen(set)
(spk∗,m∗, σ∗)← A

Sig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
if (Ver(m∗, σ∗, pk, spk∗) = 1) and (∀ i ∈ J1, qSigK, (spk∗ 6= spki) or

(∀ MOD such that ADMi(MOD) = 1,m∗ 6= MOD(mi)))
then return 1, else return 0

Transparency: The transparency property guarantees that no adversary is able to dis-
tinguish whether a signature is sanitized or not. In addition to the signature oracle and
the signer proof oracle, the adversary has access to a sanitize oracle San(., ., ., ., ssk)
that sanitizes chosen signatures and a sanitizer proof oracle SaProof(ssk, ., ., .) that
computes sanitizer proofs for given signatures. Moreover the adversary has access to
a challenge oracle Sa/Si(b,pk, spk, sk, ssk, ., ., .) that depends on a randomly chosen
bit b: this oracle signs a given message and sanitizes it, if b = 0 then it outputs the
original signature, otherwise it outputs the sanitized signature. The adversary cannot
use the proof oracles on the signatures outputted by the challenge oracle. To succeed
the experiment, the adversary must guess b.

Definition 12 (Transparency [8]). Let the following oracles be:
San(., ., ., ., ssk): On input (m,MOD, σ,pk), it returns San(m,MOD, σ,pk, ssk).
SaProof(ssk, ., ., .): On input (m,σ,pk), this oracle returns SaProof(ssk,m, σ,pk).
Sa/Si(b,pk, spk, sk, ssk, ., ., .): On input (m,ADM,MOD), if ADM(MOD) = 0, this

oracle returns ⊥. Else if b = 0, this oracle returns Sig(MOD(m), sk, spk,ADM),
else if b = 1, this oracle returns San(m,MOD,Sig(m, sk, spk,ADM),pk, ssk).

Let P be a SS. P is Trans secure (or transparent) when for any polynomial time ad-
versary A, the probability that A wins the following experiment is negligible, where
Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Def. 11, and where SSa/Si (resp.
SSiProof and SSaProof) corresponds to the set of all signatures outputted by the oracle
Sa/Si (resp. sent to the oracles SiProof and SaProof):
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ExpTrans
P,A (k):

set← Init(1k)
(pk, sk)← SiGen(set)
(spk, ssk)← SaGen(set)
b

$← {0, 1}

b′ ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk),SiProof(sk,.,.,.)

SaProof(ssk,.,.,.),Sa/Si(b,pk,spk,sk,ssk,.,.,.) (pk, spk)
if (b = b′) and (SSa/Si ∩ (SSiProof ∪ SSaProof) = ∅)
then return 1, else return 0

Unlinkablility: The unlinkablility property ensures that a sanitized signature cannot be
linked with the original one. We consider an adversary that has access to the signature
oracle, the sanitize oracle, and both the signer and the sanitizer proof oracles. Moreover,
the adversary has access to a challenge oracle LRSan(b,pk, ssk, ., .) that depends to
a bit b: this oracle takes as input two signatures σ0 and σ1, the two corresponding
messages m0 and m1 and two modification functions MOD0 and MOD1 chosen by the
adversary. If the two signatures have the same admissible function ADM, if MOD0 and
MOD1 are admissible according to ADM and if MOD0(m0) = MOD1(m1) then the
challenge oracle sanitizes σb using MODb and returns it. The goal of the adversary is to
guess the bit b.

Definition 13 (Unlinkability [8]). Let the following oracles be:
LRSan(b,pk, ssk, ., .): On input ((m0,MOD0, σ0)(m1,MOD1, σ1)), if for i ∈ {0, 1},

Ver(mi, σi,pk, spk) = 1 and ADM0 = ADM1 and ADM0(MOD0) = 1 and
ADM1(MOD1) = 1 and MOD0(m0) = MOD1(m1), then this oracle returns
San(mb,MODb, σb,pk, ssk), else it returns 0.

Let P be a SS of security parameter k. P is Unlink secure (or unlinkable) when for
any polynomial time adversaryA, the probability thatA wins the following experiment
is negligibly close to 1/2, where Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in
Def. 11 and San(., ., ., ., ssk) and SaProof(ssk, ., ., .) are defined as in Def. 12:

ExpUnlink
P,A (k):

set← Init(1k)
(pk, sk)← SiGen(set)
(spk, ssk)← SaGen(set)
b

$← {0, 1}

b′ ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk)

SiProof(sk,.,.,.),SaProof(ssk,.,.,.),LRSan(b,pk,spk,.,.) (pk, spk)
if (b = b′) then return 1, else return 0

Accountability: Standard defintion of accountability is shared into two security exper-
iments: the sanitizer accountability and the signer accountability. In the sanitizer ac-
countability experiment, the adversary has access to the signature oracle and the signer
proof oracle. Its goal is to forge a signature such that the signer proof algorithm returns
a proof that this signature is not sanitized. To succeed the experiment, this signature
must not come from the signature oracle.
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Definition 14 (Sanitizer Accountability [8]). Let P be a SS. P is SaAcc-1 secure
(or sanitizer accountable) when for any polynomial time adversary A, the probability
that A wins the following experiment is negligible, where the oracles Sig(., sk, ., .)
and SiProof(sk, ., ., .) are defined as in Def. 11, qSig is the number of calls to the
oracle Sig(., sk, ., .), the tuple (mi,ADMi, spki) is the ith query asked to the oracle
Sig(., sk, ., .) and σi is the corresponding response:

ExpSaAcc-1
P,A (k):

set← Init(1k)
(pk, sk)← SiGen(set)
(spk∗,m∗, σ∗)← A

Sig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
π∗si ← SiProof(sk,m∗, σ∗, spk∗)
if ∀ i ∈ J1, qSigK, (σ∗ 6= σi)

and (Ver(m∗, σ∗, pk, spk∗) = 1)
and (SiJudge(m∗, σ∗, pk, spk∗, π

∗
si) 6= 0)

then return 1, else return 0

In the signer accountability experiment, the adversary knows the public key of the
sanitizer and has access to the sanitize oracle and the sanitizer proof oracle. Its goal is
to forge a signature together with a proof that this signature is sanitized. To succeed the
experiment, this signature must not come from the sanitize oracle.

Definition 15 (Signer Accountability [8]). Let P be a SS. P is SiAcc-1 secure (or
signer accountable) when for any polynomial time adversary A, the probability that
A wins the following experiment is negligible, where the oracle San(., ., ., ., ssk) and
SaProof(ssk, ., ., .) are defined as in Def. 12 and where qSan is the number of calls to
the oracle San(., ., ., ., ssk), (mi,MODi, σi,pki) is the ith query asked to the oracle
San(., ., ., ., ssk) and σ′i is the corresponding response:

ExpSiAcc-1
P,A (k):

set← Init(1k)
(spk, ssk)← SaGen(set)
(pk∗,m∗, σ∗, π

∗
si)← ASan(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)

if ∀ i ∈ J1, qSanK, (σ∗ 6= σ′i)
and (Ver(m∗, σ∗, pk∗, spk) = 1)
and (SiJudge(m∗, σ∗, pk∗, spk, π∗si) = 0)

then return 1, else return 0

Strong Accountability: Since our definition of sanitizable signature provides a second
proof algorithm for the sanitizer, we define two additional security experiments (for
signer and sanitizer accountability) to ensure the soundness of the proofs computed
by this algorithm. We say that a scheme is strongly accountable when it is signer and
sanitizer accountable for both the signer and the sanitizer proof algorithms.

Thus, in our second signer accountability experiment, we consider an adversary
that has access to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge
a signature such that the sanitizer proof algorithm returns a proof that this signature is
sanitized. To win the experiment, this signature must not come from the sanitize oracle.
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Definition 16 (Strong Signer Accountability). Let P be a SS. P is SiAcc-2 secure
when for any polynomial time adversaryA, the probability thatAwins the following ex-
periment is negligible, where qSan is the number of calls to the oracle San(., ., ., ., ssk),
(mi,MODi, σi,pki) is the ith query asked to the oracle San(., ., ., ., ssk) and σ′i is the
corresponding response:

ExpSiAcc-2
P,A (k):

set← Init(1k)
(spk, ssk)← SaGen(set)
(pk∗,m∗, σ∗)← A

San(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)
π∗sa ← SaProof(ssk,m∗, σ∗, pk∗)
if ∀ i ∈ J1, qSanK, (σ∗ 6= σ′i)

and (Ver(m∗, σ∗, pk∗, spk) = 1)
and (SaJudge(m∗, σ∗, pk∗, spk, π∗sa) 6= 1)

then return 1, else return 0

P is strong signer accountable when it is both SiAcc-1 and SiAcc-2 secure.

Finally, in our second sanitizer accountability experiment, we consider an adversary that
knows the public key of the signer and has access to the signer oracle and the signer
proof oracle. Its goal is to sanitize a signature with a proof that this signature is not
sanitized. To win the experiment, this signature must not come from the signer oracle.

Definition 17 (Strong Sanitizer Accountability). Let P be a SS. P is SaAcc-2 se-
cure when for any polynomial time adversary A, the probability that A wins the fol-
lowing experiment is negligible, Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in
Def. 11, qSig is the number of calls to the oracle Sig(., sk, ., .), (mi,ADMi, spki) is the
ith query asked to the oracle Sig(., sk, ., .) and σi is the corresponding response:

ExpSaAcc-2
P,A (k):

set← Init(1k)
(pk, sk)← SaGen(set)
(spk∗,m∗, σ∗, π

∗
sa)← ASig(.,sk,.,.),SiProof(sk,.,.,.)(spk)

if ∀ i ∈ J1, qSigK, (σ∗ 6= σi)
and (Ver(m∗, σ∗, pk, spk∗) = 1)
and (SaJudge(m∗, σ∗, pk, spk∗, π

∗
sa) = 1)

then return 1, else return 0

P is strong sanitizer accountable when it is both SaAcc-1 and SaAcc-2 secure.

5 An Efficient Verifiable Ring Signature: EVeR

We present our VRS scheme called EVeR (for Efficient VErifiable Ring signature).
EVeR works as follows: the signer produces an anonymous commitment from his secret
key and the message (i.e. a commitment that leaks no information about the secret key),
then he proves that this commitment was produced with a secret key corresponding to
one of the public keys of the group members using a zero-knowledge proof system.
Note that the same methodology was used to design several ring signature schemes of
the literature [2, 15, 17, 24]. Moreover, to prove that he is (resp. he is not) the signer of
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a message, the user proves that the commitment was (resp. was not) produced from the
secret key that corresponds to his public key using a zero-knowledge proof system. Our
scheme is based on the DDH assumption and uses a NIZKP of equality of two discrete
logarithms out of n elements. We show how to build this NIZKP: Let G be a group of
prime order p, n be an integer and let the following binary relation be:

Rn =

(s, w) :
s = {(hi, zi, gi, yi)}1≤i≤n;
∃i ∈ J1, nK, (((hi, zi, gi, yi) ∈ G4)
∧(w = loggi(yi) = loghi

(zi)));

 .

We denote by Ln the language {s : ∃w, (s, w) ∈ Rn}. Consider the case n = 1.
In [18], authors present an interactive zero-knowledge proof of knowledge system for
the relation R1. It proves the equality of two discrete logarithms. For example using
(h, z, g, y) ∈ L1, a prover convinces a verifier that logg(y) = logh(z). The witness
used by the prover is w = logg(y). This proof system is a sigma protocol in the sense
that there are only three interactions: the prover sends a commitment, the verifier sends
a challenge, and the prover returns a response.

To transform the proof system of R1 into a generic proof system of any Rn, we
use the generic transformation given in [19]. For any integer n and any relation R, the
authors show how to transform a zero-knowledge proof of knowledge of a witness w
such that (s, w) ∈ R for a given statement s into a zero-knowledge proof of knowledge
of a witness w such that there exists s ∈ S such that (s, w) ∈ R for a given set of
n statements S, under the condition that the proof is a sigma protocol. Note that the
resulting proof system is also a sigma protocol.

The final step is to transform it into a non-interactive proof system. We use the well-
known Fiat-Shamir transformation [20]. This transformation changes any interactive
proof system that is a sigma protocol into a non interactive one. The resulting proof
system is complete, sound and zero-knowledge in the random oracle model. Finally, we
obtain the following scheme.

Scheme 2 (LogEqn) Let G be a group of prime order p, H : {0, 1} → Z∗p be a hash
function and n be an integer. We define the NIZKP LogEqn = (LEproven, LEverifn) for
Rn by:
LEproven({(hi, zi, gi, yi)}1≤i≤n, x). Let x = loggj (yj) = loghj

(zj), this algorithm

picks rj
$← Z∗p, computes Rj = g

rj
j and Sj = h

rj
j . For all i ∈ J1, nK and i 6= j,

it picks ci
$← Z∗p and γi

$← Z∗p, and computes Ri = gγii /y
ci
i and Si = hγii /z

ci
i .

It computes c = H(R1||S1|| . . . ||Rn||Sn). It then computes cj = c/(
∏n
i=1;i 6=j ci)

and γj = rj + cj · x. It outputs π = {(Ri, Si, ci, γi)}1≤i≤n.
LEverifn({(hi, zi, gi, yi)}1≤i≤n, π). It parses π = {(Ri, Si, ci, γi)}1≤i≤n. If H(R1||

S1|| . . . ||Rn||Sn) 6=
∏n
i=1;i 6=j ci then it returns 0. Else if there exists i ∈ J1, nK

such that gγii 6= Ri · ycii or hγii 6= Si · zcii then it returns 0, else 1.

Theorem 1. The NIZKP LogEqn is a proof of knowledge, moreover it is complete,
sound, and zero-knowledge in the random oracle model.
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The proof of this theorem is a direct implication of [18], [19] and [20]. Using this proof
system, we build our VRS scheme called EVeR:

Scheme 3 (Efficient Verifiable Ring Signature (EVeR)) EVeR is a VRS defined by:

V.Init(1k): It generates a prime order group setup (G, p, g) and a hash function H :
{0, 1}∗ → G. It returns the setup set = (G, p, g,H).

V.Gen(set): It picks sk $← Z∗p, computes pk = gsk and returns a pair of signer pub-
lic/private keys (pk, sk).

V.Sig(L,m, sk): It picks r $← Z∗p, it computes h = H(m||r) and z = hsk, it runs
P ← LEprove|L|({(h, z, g,pkl)}pkl∈L, sk) and returns σ = (r, z, P ).

V.Ver(L,m, σ): It parses σ = (r, z, P ), computes h = H(m||r) and returns b ←
LEverif|L|({(h, z, g,pkl)}pkl∈L, P ).

V.Proof(L,m, σ,pk, sk): It parses σ = (r, z, P ), computes h = H(m||r) and z̄ =
hsk, runs P̄ ← LEprove1({(h, z̄, g, pk)}, sk) and returns π = (z̄, P̄ ).

V.Judge(L,m, σ,pk, π): It parses σ = (r, z, P ) and π = (z̄, P̄ ), computes h =
H(m||r) and runs b ← LEverif1({(h, z̄, g, pk)}, π). If b 6= 1 then it returns ⊥.
Else, if z = z̄ then it returns 1, else it returns 0.

Theorem 2. EVeR is unforgeable, anonymous, accountable and non-seizable under
the DDH assumption in the random oracle model.

We give the intuition of these properties, the proof of the theorem is given in the full
version of this paper [12]:
Unforgeability: The scheme is unforgeable since nobody can prove that logg(pkl) =

logh(z) without the knowledge of sk = logh(z).
Anonymity: Breaking the anonymity of such a signature is equivalent to breaking the

DDH assumption. Indeed, to link a signature z = hsk with the corresponding public
key of Alice pk = gsk, an attacker must solve the DDH problem on the instance
(pk, h, z). Moreover, note that since the value r randomizes the signature, it is not
possible to link two signatures of the same message produced by Alice.

Accountability: To break the accountability, an adversary must forge a valid signature
(i.e. to prove that there exists pkl in the group such that logg(pkl) 6= logh(z)) and
to prove that he is not the signer (i.e. logg(pk) 6= logh(z) where pk is the public key
chosen by the adversary). However, since the adversary does not know the secret
keys of the other members of the group, he would have to break the soundness of
LogEq to win the experiment, which is not possible.

Non-seizable: (non-sei-1) no adversary is able to forge a proof that it is the signer
of a signature produced by another user since it is equivalent to proving a false
statement using a sound NIZKP. (non-sei-2) the proof algorithm run by a honest
user with the public key pk returns a proof that this user is the signer of a given
signature only if logg(pk) = logh(z). Since no adversary is able to compute z such
that logg(pk) = logh(z) without the corresponding secret key, no adversary is able
to break the non-seizability of EvER.
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6 Our Unlinkable Sanitizable Signature Scheme: GUSS

We present our USS instantiated by a digital signature (DS) scheme and a VRS.

Scheme 4 (Generic Unlinkable Sanitizable Signature (GUSS)) LetD be a determin-
istic digital signature scheme such that D = (D.Init, D.Gen, D.Sig, D.Ver) and V be a
verifiable ring signature scheme such that V = (V.Init,V.Gen,V.Sig, V.Ver,V.Proof,
V.Judge). GUSS instantiated with (D,V ) is a sanitizable signature scheme defined by
the following algorithms:
Init(1k): It runs setd ← D.Init(1k) and setv ← V.Init(1k). Then it returns the setup

set = (setd, setv).
SiGen(set): It parses set = (setd, setv), runs (pkd, skd)← D.Gen(setd) and (pkv,

skv) ← V.Gen(setv). Then it returns (pk, sk) where pk = (pkd,pkv) and sk =
(skd, skv).

SaGen(set): It parses set = (setd, setv) and runs (spk, ssk) ← V.Gen(setv). It
returns (spk, ssk).

Sig(m, sk, spk,ADM): It parses sk = (skd, skv). It first computes the fixed message
part M ← FIXADM(m) and runs σ1 ← D.Sig(skd, (M ||ADM||pk||spk)) and
σ2 ← V.Sig({pkv, spk}, skv, (σ1||m))). It returns σ = (σ1, σ2,ADM).

San(m,MOD, σ,pk, ssk): It parses σ = (σ1, σ2,ADM) and pk = (pkd,pkv). This
algorithm first computes the modified message m′ ← MOD(m) and it runs σ′2 ←
V.Sig({pkv, spk}, ssk, (σ1||m′)). It returns σ′ = (σ1, σ

′
2,ADM).

Ver(m,σ,pk, spk): It parses σ = (σ1, σ2,ADM) and it computes the fixed message
part M ← FIXADM(m). Then it runs b1 ← D.Ver(pkd, (M ||ADM||pk||spk), σ1)
and b2 ← V.Ver({pkd, spk}, (σ1||m), σ2). It returns b = (b1 ∧ b2).

SiProof(sk,m, σ, spk): It parses σ = (σ1, σ2,ADM) and the key sk = (skd, skv). It
runs πsi ← V.Proof({pkv, spk}, (m||σ1), σ2,pkv, skv) and returns it.

SaProof(ssk,m, σ,pk): It parses the signature σ = (σ1, σ2,ADM). It runs πsa ←
V.Proof({pkv, spk}, (m||σ1), σ2, spk, ssk) and returns it.

SiJudge(m,σ,pk, spk, πsi): It parses σ = (σ1, σ2,ADM) and pk = (pkd,pkv). It
runs b← V.Judge({pkv, spk}, (m||σ1), σ2,pkv, πsi) and returns it.

SaJudge(m,σ,pk, spk, πsa): It parses σ = (σ1, σ2,ADM) and pk = (pkd,pkv). It
runs b← V.Judge({pkv, spk}, (m||σ1), σ2, spk, πsa) and returns (1− b).

The signer secret key sk = (skd, skv) contains a secret key skd compatible with
the DS scheme and a secret key skv compatible with the VRS scheme. The signer
public key pk = (pkd,pkv) contains the two corresponding public keys. The sanitizer
public/secret key pair (spk, ssk) is generated as in the VRS scheme.

Let m be a message and M be the fixed part chosen by the signer according to the
admissible function ADM. To sign m, the signer first signs M together with the public
key of the sanitizer spk and the admissible function ADM using the DS scheme. We
denote this signature by σ1. The signer then signs in σ2 the full message m together
with σ1 using the VRS scheme for the set of public keys L = {pkv, spk}. Informally,
he anonymously signs (σ1||m) within a group of two users: the signer and the sanitizer.
The final sanitizable signature is σ = (σ1, σ2). The verification algorithm works in two
steps: it verifies the signature σ1 and it verifies the anonymous signature σ2.
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To sanitize this signature σ = (σ1, σ2), the sanitizer chooses an admissible message
m′ according to ADM (i.e. m and m′ have the same fixed part). Then he anonymously
signsm′ together with σ1 using the VRS for the group L = {pkv, spk} using the secret
key ssk. We denote by σ′2 this signature. The final sanitized signature is σ′ = (σ1, σ

′
2).

Theorem 3. For any deterministic and unforgeable DS scheme D and any unforge-
able, anonymous, accountable and non-seizable VRS scheme V , GUSS instantiated
with (D,V ) is immutable, transparent, strongly accountable and unlinkable.

We give the intuition of these properties, the proof of the theorem is given in the full
version of this paper [12]:
Transparency: According to the anonymity of σ2 and σ′2, nobody can guess if a signa-

ture comes from the signer or the sanitizer, and since both signatures have the same
structure, nobody can guess whether a signature is sanitized or not.

Immutability: Since it is produced by a unforgeable DS scheme, nobody can forge the
signature σ1 of the fixed part M without the signer secret key. Thus the sanitizer
cannot change the fixed part of the signatures. Moreover, since σ1 signs the public
key of the sanitizer in addition to M , the other users cannot forge a signature of an
admissible message using σ1.

Unlinkability: An adversary knows (i) two signatures σ0 and σ1 that have the same
fixed part M according to the same function ADM for the same sanitizer and (ii)
the sanitized signature σ′ = (σ′1, σ

′
2) computed from σb for a given admissible

message m′ and an unknown bit b. To achieve unlinkability, it must be hard to
guess b. Since the DS scheme is deterministic, the two signatures σ0 = (σ0

1 , σ
0
2)

and σ1 = (σ1
1 , σ

1
2) have the same first part (i.e. σ0

1 = σ1
1). As it was shown before,

the σ′ has the same first part σ′1 as the original one, thus σ′1 = σ0
1 = σ1

1 and σ′1
leaks no information about b. On the other hand, the second part of the sanitized
signature σ′2 is computed from the modified message m′ and the first part of the
original signature. Since σ0

1 = σ1
1 , we deduce that σ′2 leaks no information about b.

Finally, the best strategy of the adversary is to randomly guess b.
(Strong) Accountability: the signer must be able to prove the provenance of a signature.

It is equivalent to breaking the anonymity of the second parts σ2 of this signature:
if it was created by the signer then it is the original signature, else it was created by
the sanitizer and it is a sanitized signature. By definition, the VRS scheme used to
generate σ2 provides a way to prove whether a user is the author of a signature or
not. GUSS uses it in its proof algorithm to achieve accountability. Note that since
the sanitizer uses the same VRS scheme to sanitize a signature, he also can prove
the origin of a given signature to achieve the strong accountability.

7 Conclusion

In this paper, we revisit the notion of verifiable ring signatures. We improve its proper-
ties of verifiability, we give a security model for this primitive and we design a simple,
efficient and secure scheme named EvER. We extend the security model of sanitiz-
able signatures in order to allow the sanitizer to prove the origin of a signature. Finally,
we design a generic unlinkable sanitizable signature scheme named GUSS based on
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verifiable ring signatures. This scheme is twice as efficient as the best scheme of the
literature. In the future, we aim at finding other applications for the verifiable ring sig-
natures that require our security properties.
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minique Schröder. Redactable Signatures for Tree-Structured Data: Definitions and Con-
structions. Springer Berlin Heidelberg, 2010.

8. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
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A Algorithms Complexity

In this section, we detail the complexity of the algorithms of our schemes. More pre-
cisely, we give the number of exponentiations in a prime order group for each algorithm.
Since our schemes are pairing free, this is the main operation. Moreover, we give the
size of some values outputted by these algorithms (keys, signatures and proofs). This

20



size is given in the number of elements of a group of prime order p. For the sake of
clarity, we do not distinguish between elements of a group G of prime order p where
the DDH assumption is hard and elements of Z∗p.

In Figure 2, we give the number of exponentiations of each algorithm of Schnorr’s
signature, and we give the size of the secret/public keys skSh and pkSh and the size of a
signature σSh.

Schnorr D.Gen D.Sig D.Ver skSh pkSh σSh

exp/size 1 1 2 1 1 2

Fig. 2. Complexity analysis of Schnorr (Scheme 1).

In Figure 3, we give the number of exponentiations of each algorithm of the LogEqn
proof system and the size of a proof πLE

n depending to the number n. The first line
corresponds to the general case, the two other lines correspond to the case where n = 1
and n = 2.

LogEqn LEproven LEverifn πLE
n

n 2 + 4 · (n− 1) 4 · n 4 · n
n = 1 2 4 4

n = 2 6 8 8

Fig. 3. Complexity analysis of LogEq (Scheme 2).

EVeR V.Gen V.Sign V.Vern V.Proof V.Judge
n (generic) 1 1 + LEproven LEverifn 1 + LEprove1 LEverif1

n = 2 (with LogEqn ) 1 7 8 3 4

EVeR skEV pkEV σEV
n πEV

n

n (generic) 1 1 2 + πLE
n 1 + πLE

1

n = 2 (with LogEqn ) 1 1 10 5

Fig. 4. Complexity analysis of EVeR (Scheme 3).

In Figure 4, we give the number of exponentiations of each algorithm of the EVeR
verifiable ring signature scheme (first table) and the size the secret/public keys skEV

and pkEV, the size of a signature σEV
n and the size of a proof πEV

n (second table). These
values depend on the size of the ring n. The first line corresponds to the generic case,
where the values depend on the chosen proof system. The second line corresponds to
the case where n = 2 and where the proof system is LogEq2.

In Figure 5, we give the number of exponentiations of each algorithm of the GUSS
verifiable ring signature scheme (first table) and the size of the secret/public keys of
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GUSS SiGen SaGen Sig San Ver SiProof
generic D.Gen + V.Gen V.Gen D.Sig + V.Sig2 V.Sig2 D.Ver + V.Ver2 V.Proof

EvER and Schnorr 2 1 8 7 10 3

GUSS SiJudge sk pk ssk spk σ π

generic V.Judge skEV + skSh pkEV + pkSh skEV pkEV σEV
2 + σSc πEV

2

EvER and Schnorr 4 2 2 1 1 12 5

Fig. 5. Complexity analysis of GUSS (Scheme 4).

the signer and the sanitize sk, pk, ssk and spk, the size of a signature σ and the size
of a proof π (second table). We ommit the complexity of the algorithms SaProof and
SaJudge since these algorithms are similar to SiProof and SiJudge. The first line cor-
responds to the generic case, where the values depend on the chosen signature scheme
and the chosen verifiable ring signature scheme. The second line corresponds to the
case where GUSS is instantiated with Schnorr and EVeR.
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