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An Unlinkable Sanitizable Signature scheme (USS) allows a sanitizer to modify some parts of a signed message in such away that nobody can link the modified signature to the original one. A Verifiable Ring Signature scheme (VRS) allows the users to sign messages anonymously within a group where a user can prove a posteriori to a verifier that it is the author of a given signature. In this paper, we first revisit the notion of VRS: we improve the proof capabilities of the users, we give a complete security model for VRS and we give an efficient and secure scheme called EVeR. Our main contribution is GUSS, a Generic USS based on a VRS scheme and an unforgeable signature scheme. We show that GUSS instantiated with EVeR and Schnorr's signature is twice as efficient as the best USS scheme of the literature. Moreover, we propose a stronger definition of accountability: an USS is accountable when the signer can prove whether a signature is sanitized. We formally define the notion of strong accountability where the sanitizer can also prove the origin of a signature. We show that the notion of strong accountability is important in practice. Finally, we prove the security properties of GUSS (including strong accountability) and EVeR under the Decisional Diffie-Hellman (DDH) assumption in the random oracle model.

Introduction

Sanitizable Signatures (SS) were introduced by Ateniese et al. [START_REF] Ateniese | Sanitizable Signatures[END_REF], but similar primitives were independently proposed in [START_REF] Steinfeld | Content Extraction Signatures[END_REF]. In this primitive, a signer allows a proxy (called the sanitizer) to modify some parts of a signed message. For example, a magistrate wishes to delegate the power to summon someone to the court to his secretary. He signs the message "Franz is summoned to court for an interrogation on Monday" and gives the signature to his secretary, where "Franz" and "Monday" are sanitizable and the other parts are fixed. Thus, in order to summon Joseph K. on Saturday in the name of the magistrate, the secretary can change the signed message into "Joseph K. is summoned to the court for an interrogation on Saturday".

Ateniese et al. in [START_REF] Ateniese | Sanitizable Signatures[END_REF] proposed some applications of this primitive in privacy of health data, authenticated media streams and reliable routing information. They also introduced five security properties formalized by Brzuska et al. in [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]: Unforgeability: no unauthorized user can generate a valid signature.

Immutability: the sanitizer cannot transform a signature from an unauthorized message. Privacy: no information about the original message is leaked by a sanitized signature. Transparency: nobody can say if a signature is sanitized or not. Accountability: the signer can prove whether a signature is sanitized.

Finally, in [START_REF] Brzuska | Unlinkability of sanitizable signatures[END_REF] the authors point out a non-studied but relevant property called unlinkability: a scheme is unlinkable when it is not possible to link a sanitized signature to the original one. The authors give a generic unlinkable scheme based on group signatures. In 2016, Fleischhacker et al. [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF] give a more efficient construction based on signatures with re-randomizable keys.

On the other hand, ring signature is a well-studied cryptographic primitive introduced by Rivest et al. in [START_REF] Rivest | How to leak a secret[END_REF], where some users can sign anonymously within a group of users. Such a scheme is verifiable [START_REF] Lv | Verifiable Ring Signature[END_REF] when any user can prove that he is the signer of a given message. In this paper, we improve the properties of VRS by increasing the proof capabilities of the users. We also give an efficient VRS scheme called EVeR and a generic unlinkable sanitizable signature scheme called GUSS that uses a verifiable ring signature. We also show that the definition of accountability is too weak for practical use and we propose a stronger definition.

Contributions: Existing VRS schemes allow any user to prove that he is the signer of a given message. We extend the definition of VRS to allow a user to prove that he is not the signer of a given message. We give a formal security model for VRS that takes into account this property. We first extend the classical security properties of ring signatures to verifiable ring signatures, namely the unforgeability (no unauthorized user can forge a valid signature) and the anonymity (nobody can distinguish who is the signer in the group). In addition we define the accountability (if a user signs a message then he cannot prove that he is not the signer) and the non-seizability (a user cannot prove that he is the signer of a message if it is not true, and a user cannot forge a message such that the other users cannot prove that they are not the signers). To the best of our knowledge, it is the first time that formal security models are proposed for VRS. We also design an efficient secure VRS scheme under the DDH assumption in the random oracle model.

The definition of accountability for SS given in [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF][START_REF] Brzuska | Unlinkability of sanitizable signatures[END_REF][START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF] considers that the signer can prove the origin of a signature (signer or sanitizer) by using a proof algorithm such that:

1. The signer cannot forge a signature and a proof that the signature has been forged by the sanitizer. 2. The sanitizer cannot forge a signature such that the proof algorithm blames the signer. The proof algorithm requires the secret key of the signer. To show that this definition is too weak, we consider a signer who cannot prove the origin of a litigious signature. The signer claims that he lost his secret key because of problems with his hard drive. There is no way to verify whether the signer is lying. Unfortunately, without his secret key, the signer cannot generate the proof for the litigious signature, hence nobody can judge whether the signature is sanitized or not. Depending on whether the signer is lying, there is a risk of accusing the signer or the sanitizer wrongly. To solve this problem, we add a second proof algorithm that allows the sanitizer to prove the origin of a signature. To achieve strong accountability, the two following additional properties are required:

1. The sanitizer cannot sanitize a signature σ and prove that σ is not sanitized. 2. The signer cannot forge a signature such that the sanitizer proof algorithm accuses the sanitizer.

The main contribution of this paper is to propose an efficient and generic unlinkable SS scheme called GUSS. This scheme is instantiated by a VRS and an unforgeable signature scheme. It is the first SS scheme that achieves strong accountability. We compare GUSS with the other schemes of the literature: Brzuska et al. [START_REF] Brzuska | Unlinkability of sanitizable signatures[END_REF]. This scheme is based on group signatures. Our scheme is built on the same model, but it uses ring signatures instead of group signatures. The main advantage of group signatures is that the size of the signature is not proportional to the size of the group. However, for small groups, ring signatures are much more efficient than group signatures. Since the scheme of Brzuska et al. and GUSS uses group/ring signatures for groups of two users, GUSS is much more practical for an equivalent level of genericity. Fleischhacker et al. [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF]. This scheme is based on signatures with re-randomizable keys. It is generic, however it uses different tools that must have special properties to be compatible with each other. To the best of our knowledge, it is the most efficient scheme of the literature. GUSS instantiated with EVeR and Schnorr's signature is twice as efficient as the best instantiation of this scheme. In Fig. A, we compare the efficiency of each algorithm of our scheme and the scheme of Fleischhacker et al.. Lai et al. [START_REF] Russell | Efficient Sanitizable Signatures Without Random Oracles[END_REF]. Recently, Lai et al. proposed a USS that is secure in the standard model. This scheme uses pairings and is much less efficient than the scheme of Fleischhacker et al., so this scheme is much less efficient than our scheme. In their paper [START_REF] Russell | Efficient Sanitizable Signatures Without Random Oracles[END_REF], Lai et al. give a comparison of the efficiency of the three schemes of the literature. The first six columns give the number of exponentiations of each algorithms of both schemes, namely the key generation algorithm of the signer (SiGen) and the sanitizer (SaGen), the signature algorithm (Sig), the verification algorithm (Ver), the sanitize algorithm (San), the proof algorithm (SiProof) and the judge algorithm (SiJudge). The last six columns give respectively the size of the public key of the signer (pk) and the sanitizer (spk), the size of the secret key of the signer (sk) and the sanitizer (ssk), the size of a signature (σ) and the size of a proof (π) outputted by SiProof. This size is measured in elements of a group G of prime order. As in [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF], for the sake of clarity, we do not distinguish between elements of G and elements of Z * p . We consider the best instantiation of the scheme of Fleischhacker et al. given in [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF]. In Appendix A, we give a detailed complexity evaluation of our schemes.

Related works: Sanitizable Signatures (SS) was first introduced by Ateniese et al. [START_REF] Ateniese | Sanitizable Signatures[END_REF]. Later, Brzuska et al. gave formal security definitions [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF] for unforgeability, immutability, privacy, transparency and accountability. Unlinkability was introduced and formally defined by Brzuska et al. in [START_REF] Brzuska | Unlinkability of sanitizable signatures[END_REF]. In [START_REF] Brzuska | Non-interactive Public Accountability for Sanitizable Signatures[END_REF], Brzuska et al. introduce an alternative definition of accountability called non-interactive public accountability where the capability to prove the origin of a signature is given to a third party. One year later, the same authors propose a stronger definition of unlinkability [START_REF] Brzuska | Efficient and Perfectly Unlinkable Sanitizable Signatures without Group Signatures[END_REF] and design a scheme that is both strongly unlinkable and non-interactively public accountable. However, noninteractive public accountability is not compatible with transparency. In this paper, we focus on schemes that are unlinkable, transparent and interactively accountable. To the best of our knowledge, there are only 3 schemes with these 3 properties, i.e. [START_REF] Brzuska | Unlinkability of sanitizable signatures[END_REF][START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF][START_REF] Russell | Efficient Sanitizable Signatures Without Random Oracles[END_REF].

Some works focus on other properties of SS that we do not consider here, such as SS with multiple sanitizers [START_REF] Canard | Sanitizable Signatures with Several Signers and Sanitizers[END_REF], or SS where the power of the sanitizer is limited [START_REF] Canard | On Extended Sanitizable Signature Schemes[END_REF]. Finally, there exist other primitives that solve related but different problems such as homomorphic signatures [START_REF] Johnson | Homomorphic Signature Schemes[END_REF], redactable signatures [START_REF] Brzuska | Redactable Signatures for Tree-Structured Data: Definitions and Constructions[END_REF] or proxy signatures [START_REF] Fuchsbauer | Anonymous Proxy Signatures[END_REF]. The differences between these primitives and sanitizable signatures are detailed in [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF].

On the other hand, Ring Signatures (RS) [START_REF] Rivest | How to leak a secret[END_REF] were introduced by Rivest et al. in 2003. Security models of this primitive were defined in [START_REF] Bender | Ring signatures: Stronger definitions, and constructions without random oracles[END_REF]. Verifiable Ring Signatures (VRS) [START_REF] Lv | Verifiable Ring Signature[END_REF] were introduced in 2003 by Lv. RS allow the users to sign anonymously within a group, and VRS allow a user to prove that it is the signer of a given message. The authors of [START_REF] Lv | Verifiable Ring Signature[END_REF] give a VRS construction that is based on the discrete logarithm problem. Two other VRS schemes were proposed by Wand et al. [START_REF] Wang | Ring signature scheme based on multivariate public key cryptosystems[END_REF] and by Changlung et al. [START_REF] Changlun | A new verifiable ring signature scheme based on nyberg-rueppel scheme[END_REF]. The first one is based on the Nyberg-Rueppel signature scheme and the second one is a generic construction based on multivariate public key cryptosystems. In these three schemes, a user can prove that he is the signer of a given signature, however, he has no way to prove that he is not the signer, and it seems to be non-trivial to add this property to these schemes. Convertible ring signatures [START_REF] Lee | Convertible ring signature[END_REF] are very close to verifiable ring signatures: they allow the signer of an anonymous (ring) signature to transform it into a standard signature (i.e. a deanonymized signature). It can be used as a verifiable ring signature because the deanonymized signature can be viewed as a proof that the user is the signer of a given message. However, in this paper we propose a stronger definition of VRS where a user also can prove that he is not the signer of a message, and this property cannot be achieved using convertible signatures.

A Revocable-iff-Linked Ring Signature (RLRS) [START_REF] Ho Au | Event-Oriented k-Times Revocable-iff-Linked Group Signatures[END_REF] (also called List Signature [START_REF] Canard | List signature schemes[END_REF]) is a kind of RS that has the following property: if a user signs two messages for the same event-id, then it is possible to link these signatures and the user's identity is publicly revealed. It can be used to design a VRS in our model: to prove whether he is the signer of a given message, the user signs a second message using the same event-id. If the two signatures are linked, then the judge is convinced that the user is the signer, else he is convinced that the user is not the signer. However, RLRS requires security properties that are too strong for VRS (linkability and traceability) and it would result in less efficient schemes.

Outline: In Section 2, we recall the standard cryptographic tools used in this paper. In Section 3 and Section 4, we present the formal definition and the security models for verifiable ring signatures and unlinkable sanitizable signatures. In Section 5, we present our scheme EvER. Finally, in Section 6, we present our scheme GUSS, before concluding in Section 7.

Cryptographic Tools

We present the cryptographic tools used throughout this paper. We first recall the DDH assumption.

Definition 1 (DDH [START_REF] Boneh | The decision Diffie-Hellman problem[END_REF]). Let G be a multiplicative group of prime order p and g ∈ G be a generator. Given an instance h = (g a , g b , g z ) for unknown a, b, z $ ← Z * p , the Decisional Diffie-Hellman (DDH) problem is to decide whether z = a • b or not. The DDH assumption states that there exists no polynomial time algorithm that solves the DDH problem with a non-negligible advantage.

In the following, we recall some notions about digital signatures. S is said to be deterministic when the algorithm D.Sig is deterministic. S is said to be correct when for any security parameter k ∈ N, any message m ∈ {0, 1} * , any set ← D.Init(1 k ) and any (pk, sk) ← D.Gen(set), D.Ver(pk, m, D.Sig(m, sk)) = 1. Moreover, such a scheme is unforgeable when no polynomial adversary wins the following experiment with non-negligible probability where D.Sig(•, sk) is a signature oracle, q S is the number of queries to this oracle and σ i is the i th signature computed by the signature oracle:

Exp unf S,A (k): set ← D.Init(1 k ) (pk, sk) ← D.Gen(set) (m * , σ * ) ← A D.Sig(•,sk) (pk) if (D.Ver(pk, m * , σ * ) = 1) and (∀ i ∈ 1, q S , σ i = σ * ) then return 1, else return 0
As it is mentioned in [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF], any DS scheme can be changed into a deterministic scheme without loss of security using a pseudo random function, that can be simulated by a hash function in the random oracle model. The following scheme is the deterministic version of the well-known Schnorr's Signature scheme [START_REF] Schnorr | Efficient identification and signatures for smart cards[END_REF].

Scheme 1 (Deterministic Schnorr's Signature [START_REF] Schnorr | Efficient identification and signatures for smart cards[END_REF]) This signature is defined by the following algorithms:

D.Init(1 k ): It returns a setup value set = (G, p, g, H) where G is a group of prime order p, g ∈ G and H : {0, 1} * → Z * p is a hash function. D.Gen(set): It picks sk $ ← Z *
p , computes pk = g sk and returns (pk, sk). D.Sig(m, sk):

It computes the r = H(m||sk), R = g r , z = r + sk • H(R||m) and returns σ = (R, z). D.Ver(pk, m, σ): It parses σ = (R, z), if g z = R • pk H(R||m) then it returns 1, else 0.
This DS scheme is deterministic and unforgeable under the DL assumption in the random oracle model.

A Zero-Knowledge Proof (ZKP) [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF] allows a prover knowing a witness w to convince a verifier that a statement s is in a given language without leaking any information. Such a proof is a Proof of Knowledge (PoK) [START_REF] Bellare | On defining proofs of knowledge[END_REF] when the verifier is also convinced that the prover knows the witness w. We recall the definition of a non-interactive zeroknowledge proof of knowledge.

Definition 3 (NIZKP).

Let R be a binary relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A non-interactive ZKP (NIZKP) for the language L is a couple of algorithms (Prove, Verify) such that:

Prove(s, w). This algorithm outputs a proof π. Verify(s, π). This algorithm outputs a bit b.

A NIZKP proof has the following properties:

Completeness. For any statement s ∈ L and the corresponding witness w, we have that Verify(s, Prove(s, w)) = 1. Soundness. There is no polynomial time adversary A such that A(L) outputs (s, π)

such that Verify(s, π) = 1 and s ∈ L with non-negligible probability. Zero-knowledge. A proof π leaks no information, i.e. there exists a polynomial time algorithm Sim (called the simulator) such that Prove(s, w) and Sim(s) follow the same probability distribution.

Moreover, such a proof is a proof of knowledge when for any s ∈ L and any algorithm A, there exists a polynomial time knowledge extractor E such that the probability that E A(s) (s) outputs a witness w such that (s, w) ∈ R given access to A(s) as an oracle is as high as the probability that A(s) outputs a proof π such that Verify(s, π) = 1.

Formal Model of Verifiable Ring Signatures

We formally define the Verifiable Ring Signatures (VRS) and the corresponding security notions. A VRS is a ring signature scheme where a user can prove to a judge whether he is the signer of a message or not. It is composed of six algorithms. V.Init, V.Gen, V.Sig and V.Ver are defined as in the usual ring signature definitions. V.Gen generates public and private keys. V.Sig anonymously signs a message according to a set of public keys. V.Ver verifies the soundness of a signature. A VRS has two additional algorithms: V.Proof allows a user to prove whether he is the signer of a message or not, and V.Judge allows anybody to verify the proofs outputted by V.Proof.

Definition 4 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signature scheme is a tuple of six algorithms defined by: V.Init then π proves that σ was (resp. was not) generated by the signer corresponding to the public key pk. It outputs ⊥ when the proof is not well formed.

Unforgeability: We first adapt the unforgeability property of ring signatures [START_REF] Bender | Ring signatures: Stronger definitions, and constructions without random oracles[END_REF] to VRS. Informally, a VRS is unforgeable when no adversary is able to forge a signature for a ring of public keys without any corresponding secret key. In this model, the adversary has access to a signature oracle V.Sig(•, •, •) (that outputs signatures of chosen messages for chosen users in the ring) and a proof oracle V.Proof(•, •, •, •, •) (that outputs proofs as the algorithm V.Proof for chosen signatures and chosen users). The adversary succeeds when it outputs a valid signature that was not already generated by the signature oracle.

Definition 5 (Unforgeability). Let P be a VRS and n be an integer. Let the two following oracles be:

V.Sig(•, •, •): On input (L, l, m), if 1 ≤ l ≤ n then it runs σ ← V.Sig(L, sk l , m) and returns σ, else it returns ⊥. V.Proof(•, •, •, •, •): On input (L, m, σ, l), if 1 ≤ l ≤ n then this proof oracle runs π ← V.
Proof(L, m, σ, pk l , sk l ) and returns π, else it returns ⊥. P is n-unf secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where q S is the number of calls to the oracle V.Sig(•, •, •) and σ i is the i th signature outputted by the oracle V.Sig(•, •, •):

Exp n-unf P,A (k): set ← V.Init(1 k ) ∀1 ≤ i ≤ n, (pk i , ski) ← V.Gen(set) (L * , σ * , m * ) ← A V.Sig(•,•,•),V.Proof(•,•,•,•,•) ({pk i } 1≤i≤n ) if V.Ver(L * , σ * , m * ) = 1 and L * ⊆ {pk i } 1≤i≤n and ∀ i ∈ 1, qS , σi = σ * then return 1, else return 0
P is unforgeable when it is t(k)-unf secure for any polynomial t.

Annonymity: We adapt the anonymity property of ring signatures [START_REF] Bender | Ring signatures: Stronger definitions, and constructions without random oracles[END_REF] to VRS. Informally, a VRS is anonymous when no adversary is able to link a signature to the corresponding user. The adversary has access to the signature oracle and the proof oracle. During a first phase, it chooses two honest users in the ring, and in the second phase, it has access to a challenge oracle LRSO b (d 0 , d 1 , •, •) that outputs signatures of chosen messages using the secret key of one of the two chosen users. The adversary succeeds if he guesses which user is chosen by the challenge oracle. Note that if the adversary uses the proof oracle on the signatures generated by the challenge oracle then he loses the experiment. Definition 6 (Anonymity). Let P be a VRS and let n be an integer. Let the following oracle be:

LRSO b (d 0 , d 1 , •, •): On input (m, L), if {pk d0 , pk d1 } ⊆ L then this oracle runs σ ← V.Sig(L, sk d b , m
) and returns σ, else it returns ⊥. P is n-ano secure when for any polynomial time adversary A = (A 1 , A 2 ), the probability that A wins the following experiment is negligibly close to 1/2, where V.Sig(•, •, •) and V.Proof(•, •, •, •, •) are defined as in Def. 5 and where q S (resp. q P ) is the number of calls to the oracle

V.Sig(•, •, •) (resp. V.Proof(•, •, •, •, •)), (L i , m i , σ i , l i ) is the i th query sent to oracle V.Proof(•, •, •, •, •) and σ j is the j th signature outputted by the oracle LRSO b (d 0 , d 1 , •, •): Exp n-ano P,A (k): set ← V.Init(1 k ) ∀1 ≤ i ≤ n, (pk i , ski) ← V.Gen(set) (d0, d1) ← A ({pk i } 1≤i≤n ) b $ ← {0, 1} b * ← A V.Sig(•,•,•),V.Proof(•,•,•,•,•),LRSO b (d 0 ,d 1 ,•,•) 2 ({pk i } 1≤i≤n ) if (b = b * ) and (∀ i, j ∈ 1, max(qS, qP ) , (σi = σ j ) or (li = d0 and li = d1))
then return 1, else return 0 P is anonymous when it is t(k)-ano secure for any polynomial t.

Accountability:

We consider an adversary that has access to a proof oracle and a signature oracle. A VRS is accountable when no adversary is able to forge a signature σ (that was not outputted by the signature oracle) together with a proof that it is not the signer of σ. Note that the ring of σ must contain at most one public key that does not come from an honest user, thus the adversary knows at most one secret key that corresponds to a public key in the ring. Definition 7 (Accountability). Let P be a VRS and let n be an integer. P is n-acc secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where V.Sig(•, •, •) and V.Proof(•, •, •, •, •) are defined as in Def. 5 and where q S is the number of calls to the oracle V.Sig(•, •, •) and σ i is the i th signature outputted by the oracle V.Sig(•, •, •): P is accountable when it is t(k)-acc secure for any polynomial t.

Exp n-acc P,A (k): set ← V.Init(1 k ) ∀1 ≤ i ≤ n, (pk i , ski) ← V.Gen(set) (L * , m * , σ * , pk * , π * ) ← A V.Sig(•,•,•),V.Proof(•,•,•,•,•) ({pk i } 1≤i≤n ) if (L ⊆ {pk i } 1≤i≤n ∪ {pk * })
Non-seizability: We distinguish two experiments for this property: the first experiment, denoted non-sei-1, considers an adversary that has access to a proof oracle and a signature oracle. Its goal is to forge a valid signature with a proof that the signer is another user in the ring.

Definition 8 (n-non-sei-1 experiment). Let P be a SS. P is n-non-sei-1 secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where V.Sig(•, •, •) and V.Proof(•, •, •, •, •) and where q S is the number of calls to the oracle V.Sig(•, •, •) and (L i , l i , m i ) (resp. σ i ) is the i th query to the oracle V.Sig(•, •, •) (resp. signature outputted by this oracle):

Exp n-non-sei-1 P,A (k): set ← V.Init(1 k ) ∀1 ≤ i ≤ n, (pk i , sk i ) ← V.Gen(set) (L * , m * , σ * , l * , π * ) ← A V.Sig(•,•,•),V.Proof(•,•,•,•,•) ({pk i } 1≤i≤n ) π ← V.Proof(L * , m * , σ * , pk, sk) if (V.Ver(L * , σ * , m * ) = 1) and (V.Judge(L * , m * , σ * , pk l * , π * ) = 1)
and

(∀ i ∈ 1, q S , (L i , l i , m i , σ i ) = (L * , l * , m * , σ * )) then return 1, else return 0
The second experiment, denoted non-sei-2, considers an adversary that has access to a proof oracle and a signature oracle and that receives the public key of a honest user as input. The goal of the adversary is to forge a signature σ such that the proof algorithm ran by the honest user returns a proof that σ was computed by the honest user (i.e. the judge algorithm returns 1) or a non-valid proof (i.e. the judge algorithm returns ⊥). Moreover, the signature σ must not come from the signature orale.

Definition 9 (Non-seizability). Let P be a VRS and n be an integer. P is n-non-sei-2 secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where V.Sig(•, •, •) and V.Proof(•, •, •, •, •) are defined as in Def. 5 and where q S is the number of calls to the oracle V.Sig(•, •, •) and σ i is the i th signature outputted by the oracle V.Sig(•, •, •): P is non-seizable when it is both t(k)-non-sei-1 and t(k)-non-sei-2 secure for any polynomial t.

Exp n-non-sei-2 P,A (k): set ← V.Init(1 k ) (pk, sk) ← V.Gen(set) (L * , m * , σ * ) ← A V.Sig(•,•,•),V.Proof(•,•,•,•,•) (pk) π ← V.Proof(L * , m * , σ * , pk, sk) if (V.

Formal Model of Sanitizable Signature

We give the formal definition and security properties of the sanitizable signature primitive. Compared to the previous definitions where only the signer can prove the origin of a signature, our definition introduces algorithms that allow the sanitizer to prove the origin of a signature. Moreover, in addition to the usual security models of [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF], we present two new security experiments that improve the accountability definition.

A SS scheme contains 10 algorithms. Init outputs the setup values. SiGen and SaGen generate respectively the signer and the sanitizer public/private keys. As in classical signature schemes, the algorithms Sig and Ver allow the users to sign a message and to verify a signature. However, the signatures are computed using a sanitizer public key and an admissible function ADM. The algorithm San allows the sanitizer to transform a signature of a message m according to a modification function MOD: if MOD is admissible according to the admissible function (i.e. MOD(ADM) = 1) this algorithm returns a signature of the message m = MOD(m).

SiProof allows the signer to prove whether a signature is sanitized or not. Proofs outpoutted by this algorithm can be verified by anybody using the algorithm SiJudge. Finally, algorithms SaProof and SaJudge have the same functionalities as SiProof and SiJudge, but the proofs are computed from the secret parameters of the sanitizer instead of the signer.

Definition 10 (Sanitizable Signature (SS)). A Sanitizable Signature scheme is a tuple of 10 algorithms defined as follows:

Init(1 k ): It returns a setup value set. SiGen(set): It returns a pair of signer public/private keys (pk, sk). SaGen(set): It returns a pair of sanitizer public/private keys (spk, ssk). Sig(m, sk, spk, ADM): This algorithm computes a signature σ from the message m using the secret key sk, the sanitizer public key spk and the admissible function ADM. Note that we assume that ADM can be efficiently recovered from any signature as in the definition of Fleischhacker et al. [START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF]. San(m, MOD, σ, pk, ssk): Let the admissible function ADM according to the signature σ. If ADM(MOD) = 1 then this algorithm returns a signature σ of the message m = MOD(m) using the signature σ, the signer public key pk and the sanitizer secret key ssk. Else it returns ⊥. Ver(m, σ, pk, spk): It returns a bit b: if the signature σ of m is valid for the two public keys pk and spk then b = 1, else b = 0. SiProof(sk, m, σ, spk): It returns a signer proof π si for the signature σ of m using the signer secret key sk and the sanitizer public key spk. SaProof(ssk, m, σ, pk): It returns a sanitizer proof π sa for the signature σ of m using the sanitizer secret key ssk and the signer public key pk. SiJudge(m, σ, pk, spk, π si ): It returns a bit d or the bottom symbol ⊥: if π si proves that σ comes from the signer corresponding to the public key pk then d = 1, else if π si proves that σ comes from the sanitizer corresponding to the public key spk then d = 0, else the algorithm outputs ⊥. SaJudge(m, σ, pk, spk, π sa ): It returns a bit d or the bottom symbol ⊥: if π sa proves that σ comes from the signer corresponding to the public key pk then d = 1, else if π sa proves that σ comes from the sanitizer corresponding to the public key spk then d = 0, else the algorithm outputs ⊥.

As it is mentioned in Introduction, SS schemes have the following security properties: unforgeability, immutability, privacy, transparency and accountability. In [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF] authors show that if a scheme has the immutability, the transparency and the accountability properties, then it has the unforgeability and the privacy properties. Hence we do not need to prove these two properties, so we do not recall their formal definitions.

Immutability: A SS is immutable when no adversary is able to sanitize a signature without the corresponding sanitizer secret key or to sanitize a signature using a modification function that is not admissible (i.e. ADM(MOD) = 0). To help him, the adversary has access to a signature oracle Sig(., sk, ., .) and a proof oracle SiProof(sk, ., ., .).

Definition 11 (Immutability [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]). Let the following oracles be: Sig(., sk, ., .): On input (m, ADM, spk), this oracle returns Sig(m, sk, ADM, spk). SiProof(sk, ., ., .): On input (m, σ, spk), this oracle returns SiProof(sk, m, σ, spk). Let P be a SS. P is Immut secure (or immutable) when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where q Sig is the number of calls to the oracle Sig(., sk, ., .), (m i , ADM i , spk i ) is the i th query asked to the oracle Sig(., sk, ., .) and σ i is the corresponding response:

Exp Immut P,A (k): set ← Init(1 k ) (pk, sk) ← SiGen(set) (spk * , m * , σ * ) ← A Sig(.,
sk,.,.),SiProof(sk,.,.,.) (pk) if (Ver(m * , σ * , pk, spk * ) = 1) and (∀ i ∈ 1, q Sig , (spk * = spk i ) or (∀ MOD such that ADMi(MOD) = 1, m * = MOD(mi))) then return 1, else return 0 Transparency: The transparency property guarantees that no adversary is able to distinguish whether a signature is sanitized or not. In addition to the signature oracle and the signer proof oracle, the adversary has access to a sanitize oracle San(., ., ., ., ssk) that sanitizes chosen signatures and a sanitizer proof oracle SaProof(ssk, ., ., .) that computes sanitizer proofs for given signatures. Moreover the adversary has access to a challenge oracle Sa/Si(b, pk, spk, sk, ssk, ., ., .) that depends on a randomly chosen bit b: this oracle signs a given message and sanitizes it, if b = 0 then it outputs the original signature, otherwise it outputs the sanitized signature. The adversary cannot use the proof oracles on the signatures outputted by the challenge oracle. To succeed the experiment, the adversary must guess b. [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]). Let the following oracles be: San(., ., ., ., ssk): On input (m, MOD, σ, pk), it returns San(m, MOD, σ, pk, ssk). SaProof(ssk, ., ., .): On input (m, σ, pk), this oracle returns SaProof(ssk, m, σ, pk). Sa/Si(b, pk, spk, sk, ssk, ., ., .): On input (m, ADM, MOD), if ADM(MOD) = 0, this oracle returns ⊥. Else if b = 0, this oracle returns Sig(MOD(m), sk, spk, ADM), else if b = 1, this oracle returns San(m, MOD, Sig(m, sk, spk, ADM), pk, ssk). Let P be a SS. P is Trans secure (or transparent) when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Def. 11, and where S Sa/Si (resp. S SiProof and S SaProof ) corresponds to the set of all signatures outputted by the oracle Sa/Si (resp. sent to the oracles SiProof and SaProof):

Definition 12 (Transparency

Exp Trans P,A (k): set ← Init(1 k ) (pk, sk) ← SiGen(set) (spk, ssk) ← SaGen(set) b $ ← {0, 1} b ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk),SiProof(sk,.,.,.) SaProof(ssk,.,.,.),Sa/Si(b,pk,spk,sk,ssk,.,.,.) (pk, spk)

if (b = b ) and (S Sa/Si ∩ (S SiProof ∪ S SaProof ) = ∅)
then return 1, else return 0 Unlinkablility: The unlinkablility property ensures that a sanitized signature cannot be linked with the original one. We consider an adversary that has access to the signature oracle, the sanitize oracle, and both the signer and the sanitizer proof oracles. Moreover, the adversary has access to a challenge oracle LRSan(b, pk, ssk, ., .) that depends to a bit b: this oracle takes as input two signatures σ 0 and σ 1 , the two corresponding messages m 0 and m 1 and two modification functions MOD 0 and MOD 1 chosen by the adversary. If the two signatures have the same admissible function ADM, if MOD 0 and MOD 1 are admissible according to ADM and if MOD 0 (m 0 ) = MOD 1 (m 1 ) then the challenge oracle sanitizes σ b using MOD b and returns it. The goal of the adversary is to guess the bit b.

Definition 13 (Unlinkability [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]). Let the following oracles be: LRSan(b, pk, ssk, ., .):

On input ((m 0 , MOD 0 , σ 0 )(m 1 , MOD 1 , σ 1 )), if for i ∈ {0, 1},
Ver(m i , σ i , pk, spk) = 1 and ADM 0 = ADM 1 and ADM 0 (MOD 0 ) = 1 and ADM 1 (MOD 1 ) = 1 and MOD 0 (m 0 ) = MOD 1 (m 1 ), then this oracle returns San(m b , MOD b , σ b , pk, ssk), else it returns 0. Let P be a SS of security parameter k. P is Unlink secure (or unlinkable) when for any polynomial time adversary A, the probability that A wins the following experiment is negligibly close to 1/2, where Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Def. 11 and San(., ., ., ., ssk) and SaProof(ssk, ., ., .) are defined as in Def. 12:

Exp Unlink P,A (k): set ← Init(1 k ) (pk, sk) ← SiGen(set) (spk, ssk) ← SaGen(set) b $ ← {0, 1} b ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk) SiProof(sk,.,.,.),SaProof(ssk,.,.,.),LRSan(b,pk,spk,.,.) (pk, spk) if (b = b ) then return 1, else return 0 Accountability: Standard defintion of accountability is shared into two security experiments: the sanitizer accountability and the signer accountability. In the sanitizer accountability experiment, the adversary has access to the signature oracle and the signer proof oracle. Its goal is to forge a signature such that the signer proof algorithm returns a proof that this signature is not sanitized. To succeed the experiment, this signature must not come from the signature oracle. Definition 14 (Sanitizer Accountability [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]). Let P be a SS. P is SaAcc-1 secure (or sanitizer accountable) when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where the oracles Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Def. 11, q Sig is the number of calls to the oracle Sig(., sk, ., .), the tuple (m i , ADM i , spk i ) is the i th query asked to the oracle Sig(., sk, ., .) and σ i is the corresponding response:

Exp SaAcc-1 P,A (k): set ← Init(1 k ) (pk, sk) ← SiGen(set) (spk * , m * , σ * ) ← A Sig(.,
sk,.,.),SiProof(sk,.,.,.) (pk)

π * si ← SiProof(sk, m * , σ * , spk * ) if ∀ i ∈ 1, q Sig , (σ * = σi)
and (Ver(m * , σ * , pk, spk * ) = 1) and (SiJudge(m * , σ * , pk, spk * , π * si ) = 0) then return 1, else return 0

In the signer accountability experiment, the adversary knows the public key of the sanitizer and has access to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge a signature together with a proof that this signature is sanitized. To succeed the experiment, this signature must not come from the sanitize oracle.

Definition 15 (Signer Accountability [START_REF] Brzuska | Security of sanitizable signatures revisited[END_REF]). Let P be a SS. P is SiAcc-1 secure (or signer accountable) when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where the oracle San(., ., ., ., ssk) and SaProof(ssk, ., ., .) are defined as in Def. 12 and where q San is the number of calls to the oracle San(., ., ., ., ssk), (m i , MOD i , σ i , pk i ) is the i th query asked to the oracle San(., ., ., ., ssk) and σ i is the corresponding response:

Exp SiAcc-1 P,A (k): set ← Init(1 k ) (spk, ssk) ← SaGen(set) (pk * , m * , σ * , π *
si ) ← A San(.,.,.,.,ssk),SaProof(ssk,.,.,.) (spk)

if ∀ i ∈ 1, q San , (σ * = σ i )
and (Ver(m * , σ * , pk * , spk) = 1) and (SiJudge(m * , σ * , pk * , spk, π * si ) = 0) then return 1, else return 0 Strong Accountability: Since our definition of sanitizable signature provides a second proof algorithm for the sanitizer, we define two additional security experiments (for signer and sanitizer accountability) to ensure the soundness of the proofs computed by this algorithm. We say that a scheme is strongly accountable when it is signer and sanitizer accountable for both the signer and the sanitizer proof algorithms.

Thus, in our second signer accountability experiment, we consider an adversary that has access to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge a signature such that the sanitizer proof algorithm returns a proof that this signature is sanitized. To win the experiment, this signature must not come from the sanitize oracle.

Definition 16 (Strong Signer Accountability). Let P be a SS. P is SiAcc-2 secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, where q San is the number of calls to the oracle San(., ., ., ., ssk), (m i , MOD i , σ i , pk i ) is the i th query asked to the oracle San(., ., ., ., ssk) and σ i is the corresponding response:

Exp SiAcc-2 P,A (k): set ← Init(1 k ) (spk, ssk) ← SaGen(set)
(pk * , m * , σ * ) ← A San(.,.,.,.,ssk),SaProof(ssk,.,.,.) (spk)

π * sa ← SaProof(ssk, m * , σ * , pk * ) if ∀ i ∈ 1, q San , (σ * = σ i )
and (Ver(m * , σ * , pk * , spk) = 1) and (SaJudge(m * , σ * , pk * , spk, π * sa ) = 1) then return 1, else return 0 P is strong signer accountable when it is both SiAcc-1 and SiAcc-2 secure.

Finally, in our second sanitizer accountability experiment, we consider an adversary that knows the public key of the signer and has access to the signer oracle and the signer proof oracle. Its goal is to sanitize a signature with a proof that this signature is not sanitized. To win the experiment, this signature must not come from the signer oracle.

Definition 17 (Strong Sanitizer Accountability). Let P be a SS. P is SaAcc-2 secure when for any polynomial time adversary A, the probability that A wins the following experiment is negligible, Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Def. 11, q Sig is the number of calls to the oracle Sig(., sk, ., .), (m i , ADM i , spk i ) is the i th query asked to the oracle Sig(., sk, ., .) and σ i is the corresponding response:

Exp SaAcc-2 P,A (k): set ← Init(1 k ) (pk, sk) ← SaGen(set) (spk * , m * , σ * , π * sa ) ← A Sig(.,sk,.,.),SiProof(sk,.,.,.) (spk) if ∀ i ∈ 1, q Sig , (σ * = σi) and (Ver(m * , σ * , pk, spk * ) = 1) and (SaJudge(m * , σ * , pk, spk * , π * sa ) = 1) then return 1, else return 0 P is strong sanitizer accountable when it is both SaAcc-1 and SaAcc-2 secure.

An Efficient Verifiable Ring Signature: EVeR

We present our VRS scheme called EVeR (for Efficient VErifiable Ring signature). EVeR works as follows: the signer produces an anonymous commitment from his secret key and the message (i.e. a commitment that leaks no information about the secret key), then he proves that this commitment was produced with a secret key corresponding to one of the public keys of the group members using a zero-knowledge proof system. Note that the same methodology was used to design several ring signature schemes of the literature [START_REF] Ho Au | Event-Oriented k-Times Revocable-iff-Linked Group Signatures[END_REF][START_REF] Canard | List signature schemes[END_REF][START_REF] Chase | On Signatures of Knowledge[END_REF][START_REF] Hoshino | Anonymizable Signature and Its Construction from Pairings[END_REF]. Moreover, to prove that he is (resp. he is not) the signer of a message, the user proves that the commitment was (resp. was not) produced from the secret key that corresponds to his public key using a zero-knowledge proof system. Our scheme is based on the DDH assumption and uses a NIZKP of equality of two discrete logarithms out of n elements. We show how to build this NIZKP: Let G be a group of prime order p, n be an integer and let the following binary relation be:

R n =    (s, w) : s = {(h i , z i , g i , y i )} 1≤i≤n ; ∃i ∈ 1, n , (((h i , z i , g i , y i ) ∈ G 4 ) ∧(w = log gi (y i ) = log hi (z i )));    .
We denote by L n the language {s : ∃w, (s, w) ∈ R n }. Consider the case n = 1. In [START_REF] Chaum | Wallet databases with observers[END_REF], authors present an interactive zero-knowledge proof of knowledge system for the relation R 1 . It proves the equality of two discrete logarithms. For example using (h, z, g, y) ∈ L 1 , a prover convinces a verifier that log g (y) = log h (z). The witness used by the prover is w = log g (y). This proof system is a sigma protocol in the sense that there are only three interactions: the prover sends a commitment, the verifier sends a challenge, and the prover returns a response.

To transform the proof system of R 1 into a generic proof system of any R n , we use the generic transformation given in [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF]. For any integer n and any relation R, the authors show how to transform a zero-knowledge proof of knowledge of a witness w such that (s, w) ∈ R for a given statement s into a zero-knowledge proof of knowledge of a witness w such that there exists s ∈ S such that (s, w) ∈ R for a given set of n statements S, under the condition that the proof is a sigma protocol. Note that the resulting proof system is also a sigma protocol.

The final step is to transform it into a non-interactive proof system. We use the wellknown Fiat-Shamir transformation [START_REF] Fiat | Advances in Cryptology -CRYPTO' 86: Proceedings, chapter How To Prove Yourself: Practical Solutions to Identification and Signature Problems[END_REF]. This transformation changes any interactive proof system that is a sigma protocol into a non interactive one. The resulting proof system is complete, sound and zero-knowledge in the random oracle model. Finally, we obtain the following scheme.

Scheme 2 (LogEq n ) Let G be a group of prime order p, H : {0, 1} → Z * p be a hash function and n be an integer. We define the NIZKP LogEq n = (LEprove n , LEverif n ) for R n by: LEprove n ({(h i , z i , g i , y i )} 1≤i≤n , x). Let x = log gj (y j ) = log hj (z j ), this algorithm picks r j

$ ← Z * p , computes R j = g rj j and S j = h rj j . For all i ∈ 1, n and i = j, it picks c i $ ← Z * p and γ i $ ← Z * p , and computes R i = g γi i /y ci i and S i = h γi i /z ci i . It computes c = H(R 1 ||S 1 || . . . ||R n ||S n ). It then computes c j = c/( n i=1;i =j c i ) and γ j = r j + c j • x. It outputs π = {(R i , S i , c i , γ i )} 1≤i≤n . LEverif n ({(h i , z i , g i , y i )} 1≤i≤n , π). It parses π = {(R i , S i , c i , γ i )} 1≤i≤n . If H(R 1 || S 1 || . . . ||R n ||S n ) = n i=1;i =j c i then it returns 0. Else if there exists i ∈ 1, n such that g γi i = R i • y ci i or h γi i = S i • z ci i then it returns 0, else 1.
Theorem 1. The NIZKP LogEq n is a proof of knowledge, moreover it is complete, sound, and zero-knowledge in the random oracle model.

The proof of this theorem is a direct implication of [START_REF] Chaum | Wallet databases with observers[END_REF], [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] and [START_REF] Fiat | Advances in Cryptology -CRYPTO' 86: Proceedings, chapter How To Prove Yourself: Practical Solutions to Identification and Signature Problems[END_REF]. Using this proof system, we build our VRS scheme called EVeR: Theorem 2. EVeR is unforgeable, anonymous, accountable and non-seizable under the DDH assumption in the random oracle model.

We give the intuition of these properties, the proof of the theorem is given in the full version of this paper [START_REF] Bultel | Unlinkable and strongly accountable sanitizable signatures from verifiable ring signatures[END_REF]: Unforgeability: The scheme is unforgeable since nobody can prove that log g (pk l ) = log h (z) without the knowledge of sk = log h (z). Anonymity: Breaking the anonymity of such a signature is equivalent to breaking the DDH assumption. Indeed, to link a signature z = h sk with the corresponding public key of Alice pk = g sk , an attacker must solve the DDH problem on the instance (pk, h, z). Moreover, note that since the value r randomizes the signature, it is not possible to link two signatures of the same message produced by Alice. Accountability: To break the accountability, an adversary must forge a valid signature (i.e. to prove that there exists pk l in the group such that log g (pk l ) = log h (z)) and to prove that he is not the signer (i.e. log g (pk) = log h (z) where pk is the public key chosen by the adversary). However, since the adversary does not know the secret keys of the other members of the group, he would have to break the soundness of LogEq to win the experiment, which is not possible. Non-seizable: (non-sei-1) no adversary is able to forge a proof that it is the signer of a signature produced by another user since it is equivalent to proving a false statement using a sound NIZKP. (non-sei-2) the proof algorithm run by a honest user with the public key pk returns a proof that this user is the signer of a given signature only if log g (pk) = log h (z). Since no adversary is able to compute z such that log g (pk) = log h (z) without the corresponding secret key, no adversary is able to break the non-seizability of EvER.

To sanitize this signature σ = (σ 1 , σ 2 ), the sanitizer chooses an admissible message m according to ADM (i.e. m and m have the same fixed part). Then he anonymously signs m together with σ 1 using the VRS for the group L = {pk v , spk} using the secret key ssk. We denote by σ 2 this signature. The final sanitized signature is σ = (σ 1 , σ 2 ). Theorem 3. For any deterministic and unforgeable DS scheme D and any unforgeable, anonymous, accountable and non-seizable VRS scheme V , GUSS instantiated with (D, V ) is immutable, transparent, strongly accountable and unlinkable.

We give the intuition of these properties, the proof of the theorem is given in the full version of this paper [START_REF] Bultel | Unlinkable and strongly accountable sanitizable signatures from verifiable ring signatures[END_REF]: Transparency: According to the anonymity of σ 2 and σ 2 , nobody can guess if a signature comes from the signer or the sanitizer, and since both signatures have the same structure, nobody can guess whether a signature is sanitized or not. Immutability: Since it is produced by a unforgeable DS scheme, nobody can forge the signature σ 1 of the fixed part M without the signer secret key. Thus the sanitizer cannot change the fixed part of the signatures. Moreover, since σ 1 signs the public key of the sanitizer in addition to M , the other users cannot forge a signature of an admissible message using σ 1 . Unlinkability: An adversary knows (i) two signatures σ 0 and σ 1 that have the same fixed part M according to the same function ADM for the same sanitizer and (ii) the sanitized signature σ = (σ 1 , σ 2 ) computed from σ b for a given admissible message m and an unknown bit b. To achieve unlinkability, it must be hard to guess b. Since the DS scheme is deterministic, the two signatures σ 0 = (σ 0 1 , σ 0 2 ) and σ 1 = (σ 1 1 , σ 1 2 ) have the same first part (i.e. σ 0 1 = σ 1 1 ). As it was shown before, the σ has the same first part σ 1 as the original one, thus σ 1 = σ 0 1 = σ 1 1 and σ 1 leaks no information about b. On the other hand, the second part of the sanitized signature σ 2 is computed from the modified message m and the first part of the original signature. Since σ 0 1 = σ 1 1 , we deduce that σ 2 leaks no information about b. Finally, the best strategy of the adversary is to randomly guess b. (Strong) Accountability: the signer must be able to prove the provenance of a signature.

It is equivalent to breaking the anonymity of the second parts σ 2 of this signature: if it was created by the signer then it is the original signature, else it was created by the sanitizer and it is a sanitized signature. By definition, the VRS scheme used to generate σ 2 provides a way to prove whether a user is the author of a signature or not. GUSS uses it in its proof algorithm to achieve accountability. Note that since the sanitizer uses the same VRS scheme to sanitize a signature, he also can prove the origin of a given signature to achieve the strong accountability.

Conclusion

In this paper, we revisit the notion of verifiable ring signatures. We improve its properties of verifiability, we give a security model for this primitive and we design a simple, efficient and secure scheme named EvER. We extend the security model of sanitizable signatures in order to allow the sanitizer to prove the origin of a signature. Finally, we design a generic unlinkable sanitizable signature scheme named GUSS based on verifiable ring signatures. This scheme is twice as efficient as the best scheme of the literature. In the future, we aim at finding other applications for the verifiable ring signatures that require our security properties.
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We acknowledge Dominique Schröder for his helpful comments and feedback on our paper. the signer and the sanitize sk, pk, ssk and spk, the size of a signature σ and the size of a proof π (second table). We ommit the complexity of the algorithms SaProof and SaJudge since these algorithms are similar to SiProof and SiJudge. The first line corresponds to the generic case, where the values depend on the chosen signature scheme and the chosen verifiable ring signature scheme. The second line corresponds to the case where GUSS is instantiated with Schnorr and EVeR.

GUSS

Fig. 1 .

 1 Fig. 1. Comparison of GUSS and the scheme of Fleischhacker et al.:The first six columns give the number of exponentiations of each algorithms of both schemes, namely the key generation algorithm of the signer (SiGen) and the sanitizer (SaGen), the signature algorithm (Sig), the verification algorithm (Ver), the sanitize algorithm (San), the proof algorithm (SiProof) and the judge algorithm (SiJudge). The last six columns give respectively the size of the public key of the signer (pk) and the sanitizer (spk), the size of the secret key of the signer (sk) and the sanitizer (ssk), the size of a signature (σ) and the size of a proof (π) outputted by SiProof. This size is measured in elements of a group G of prime order. As in[START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF], for the sake of clarity, we do not distinguish between elements of G and elements of Z * p . We consider the best instantiation of the scheme of Fleischhacker et al. given in[START_REF] Fleischhacker | Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys[END_REF]. In Appendix A, we give a detailed complexity evaluation of our schemes.

Definition 2 (

 2 (Deterministic) Digital Signature (DS)). A Digital Signature scheme S = (D.Init, D.Gen, D.Sig, D.Ver) is a tuple of four algorithms defined as follows: D.Init(1 k ): It returns a setup value set. D.Gen(set): It returns a pair of signer public/private keys (pk, sk). D.Sig(m, sk): It returns a signature σ of m using the key sk. D.Ver(pk, m, σ): It returns a bit b.

  (1 k ): It returns a setup value set. V.Gen(set): It returns a pair of signer public/private keys (pk, sk). V.Sig(L, m, sk): This algorithm computes a signature σ using the key sk for the message m according to the set of public keys L. V.Ver(L, m, σ): It returns a bit b: if the signature σ of m is valid according to the set of public key L then b = 1, else b = 0. V.Proof(L, m, σ, pk, sk): It returns a proof π for the signature σ of m according to the set of public key L. V.Judge(L, m, σ, pk, π): It returns a bit b or the bottom symbol ⊥: if b = 1 (resp. 0)

  and (V.Ver(L * , σ * , m * ) = 1) and (V.Judge(L * , m * , σ * , pk * , π * ) = 0) and (∀ i ∈ 1, qS , σi = σ * ) then return 1, else return 0

  Ver(L * , σ * , m * ) = 1) and (V.Judge(L * , m * , σ * , pk * , π * ) = 0) and (∀ i ∈ 1, qS , σi = σ * ) then return 1, else return 0

Scheme 3 (

 3 Scheme 3 (Efficient Verifiable Ring Signature (EVeR)) EVeR is a VRS defined by: V.Init(1 k ): It generates a prime order group setup (G, p, g) and a hash function H : {0, 1} * → G. It returns the setup set = (G, p, g, H). V.Gen(set): It picks sk $ ← Z * p , computes pk = g sk and returns a pair of signer public/private keys (pk, sk). V.Sig(L, m, sk): It picks r $ ← Z * p , it computes h = H(m||r) and z = h sk , it runs P ← LEprove |L| ({(h, z, g, pk l )} pk l ∈L , sk) and returns σ = (r, z, P ). V.Ver(L, m, σ): It parses σ = (r, z, P ), computes h = H(m||r) and returns b ← LEverif |L| ({(h, z, g, pk l )} pk l ∈L , P ). V.Proof(L, m, σ, pk, sk): It parses σ = (r, z, P ), computes h = H(m||r) and z = h sk , runs P ← LEprove 1 ({(h, z, g, pk)}, sk) and returns π = (z, P ). V.Judge(L, m, σ, pk, π): It parses σ = (r, z, P ) and π = (z, P ), computes h = H(m||r) and runs b ← LEverif 1 ({(h, z, g, pk)}, π). If b = 1 then it returns ⊥. Else, if z = z then it returns 1, else it returns 0.
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6 Our Unlinkable Sanitizable Signature Scheme: GUSS We present our USS instantiated by a digital signature (DS) scheme and a VRS. Scheme 4 (Generic Unlinkable Sanitizable Signature (GUSS)) Let D be a deterministic digital signature scheme such that D = (D.Init, D.Gen, D.Sig, D.Ver) and V be a verifiable ring signature scheme such that V = (V.Init, V.Gen, V.Sig, V.Ver, V.Proof, V.Judge). GUSS instantiated with (D, V ) is a sanitizable signature scheme defined by the following algorithms: The signer secret key sk = (sk d , sk v ) contains a secret key sk d compatible with the DS scheme and a secret key sk v compatible with the VRS scheme. The signer public key pk = (pk d , pk v ) contains the two corresponding public keys. The sanitizer public/secret key pair (spk, ssk) is generated as in the VRS scheme.

Let m be a message and M be the fixed part chosen by the signer according to the admissible function ADM. To sign m, the signer first signs M together with the public key of the sanitizer spk and the admissible function ADM using the DS scheme. We denote this signature by σ 1 . The signer then signs in σ 2 the full message m together with σ 1 using the VRS scheme for the set of public keys L = {pk v , spk}. Informally, he anonymously signs (σ 1 ||m) within a group of two users: the signer and the sanitizer. The final sanitizable signature is σ = (σ 1 , σ 2 ). The verification algorithm works in two steps: it verifies the signature σ 1 and it verifies the anonymous signature σ 2 .

A Algorithms Complexity

In this section, we detail the complexity of the algorithms of our schemes. More precisely, we give the number of exponentiations in a prime order group for each algorithm. Since our schemes are pairing free, this is the main operation. Moreover, we give the size of some values outputted by these algorithms (keys, signatures and proofs). This size is given in the number of elements of a group of prime order p. For the sake of clarity, we do not distinguish between elements of a group G of prime order p where the DDH assumption is hard and elements of Z * p . In Figure 2, we give the number of exponentiations of each algorithm of Schnorr's signature, and we give the size of the secret/public keys sk Sh and pk Sh and the size of a signature σ Sh . In Figure 3, we give the number of exponentiations of each algorithm of the LogEq n proof system and the size of a proof π LE n depending to the number n. The first line corresponds to the general case, the two other lines correspond to the case where n = 1 and n = 2.

Fig. 3. Complexity analysis of LogEq (Scheme 2).

Fig. 4. Complexity analysis of EVeR (Scheme 3).

In Figure 4, we give the number of exponentiations of each algorithm of the EVeR verifiable ring signature scheme (first table) and the size the secret/public keys sk EV and pk EV , the size of a signature σ EV n and the size of a proof π EV n (second table ). These values depend on the size of the ring n. The first line corresponds to the generic case, where the values depend on the chosen proof system. The second line corresponds to the case where n = 2 and where the proof system is LogEq 2 .

In Figure 5, we give the number of exponentiations of each algorithm of the GUSS verifiable ring signature scheme (first table) and the size of the secret/public keys of