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GLOBAL RIGID INNER FORMS VS ISOCRYSTALS

Tasho Kaletha and Olivier Taibi

Abstract

We compare the cohomology of the global Galois gerbes constructed
in [Kot] and [Kal18a], respectively, and give applications to the theory of
endoscopy.

1 INTRODUCTION

The statement of the refined local and global Arthur-Langlands conjectures for
non-quasi-split reductive groups involves the cohomology of certain Galois
gerbes [Kall6a], where the notion of a Galois gerbe is that of [LR87]. In sum-
mary, every such group G is an inner form of its quasi-split form G*, but it was
observed by Vogan [Vog93] that this relationship does not suffice for the nor-
malization of various objects involved in the statement of the local Langlands
conjecture. The cohomology of a local gerbe is used to provide the necessary
additional data. The cohomology of a global gerbe is used to organize the local
data at all places coherently, so that the local conjecture can be used in global
applications.

The gerbes constructed in [Kot] can be used for this purpose. However, not all
local inner forms can be treated when G* does not have connected center, and
not all global inner forms can be treated when G* does not satisfy the Hasse
principle. We shall refer to the formulation of the local and global conjectures
involving the gerbes of [Kot] as the isocrystal version. The gerbes constructed in
[Kall6b] and [Kall8a] can be used without these technical hypotheses on G*,
but they are at the moment available only in characteristic zero. We shall refer
to the resulting local and global conjectures as the rigid version.

Assume first that the ground field F is a finite extension of Q, and that G* has
connected center. Then both the isocrystal and the rigid version of the refined
local Langlands conjecture are available for G. It was shown in [Kal18b] that
these two versions are equivalent. Moreover, it was shown that the validity of
the isocrystal version for all connected reductive groups with connected center
is equivalent to the validity of the rigid version for all connected reductive
groups without assumption on the center. These results were derived from a
comparison theorem for the cohomology of the two local gerbes.

The current paper provides a comparison theorem for the cohomology of the
two global gerbes. We give two applications to this comparison. First, when
the ground field F'is a finite extension of Q and G* has connected center and
satisfies the Hasse principle, so that both the isocrystal version and the rigid
version of the global multiplicity formula are available, it is natural to ask if
these two versions are equivalent. A formal argument, based on the canonicity
of global transfer factors, gives an affirmative answer, but sheds no light on
the relation between the normalized local pairings at each place of F'. Our
cohomological result allows for this finer comparison.
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Second, we generalize [Kall8a, Proposition 4.4.1], which states that the prod-
uct of local normalized transfer factors equal the canonical adelic transfer fac-
tor. In [Kall8a] this was proved under the assumption that there exists a pair
of related F-points in the group and its endoscopic group. While this assump-
tion was also made in [LS87], where transfer factors were originally defined, it
was later dropped in [KS99] and replaced with the weaker assumption on the
existence of an F-point in the endoscopic group that is related to an A-point
in the group. We use the results of the current paper to show that [Kall8a,
Proposition 4.4.1] is valid under this weaker hypothesis.

We hope that the comparison of the cohomology of the two global gerbes will
be useful beyond these applications, in light of Scholze’s recent conjecture
[Sch18, Conjecture 9.5] on the existence of a Weil cohomology theory for va-
rieties over [, valued in the category of representations of the global gerbe of
[Kot].

Before we outline the comparison theorem in the global case, let us review it in
the local case. Let I be a finite extension of @, and I the absolute Galois group
of F. The local gerbe of [Kot], which we shall denote by £'*° here, is bound by
the pro-torus T'° whose character module is the trivial I'-module Q. The local
gerbe of [Kal16b], which we shall denote by £ here, is bound by the pro-finite
algebraic group P8 whose character module is the group of smooth func-
tions I' — Q/Z, endowed with the obvious action of I'. The map X*(T*°) —
X*(P18) sending ¢ € Q to the constant function with value ¢ provides a ho-
momorphism P& — Tis° defined over F. One proves that the push-out of £8
along this homomorphism equals £°. The resulting map of gerbes £18 — £1%°
induces a map between their cohomology. For example, when 7" is an alge-
braic torus defined over F, we obtain a homomorphism of abelian groups
HY(&%°T) — H'(EM8,T). Both of these abelian groups have a description
in terms of linear algebra. In the first case, we have the functorial isomorphism
HY(E%°,T) — X,(T)r, where X, (T) is the co-character module of 7. In the

second case, we have the functorial isomorphism H*!(£18, T) — )i*)g()%@ [tor],

where I C Z[I'| is the augmentation ideal, and [tor] refers to the torsion sub-
group. Let E/F be any finite Galois extension splitting 7. Let N% denote the
renormalized norm map [E : F|71 > 0: X,.(T)®Q — X.(T)®Q. Then

the map X.(T)r — XI*)SF()%Q [tor] given by y — y — N%(y) makes the following

diagram commute

G’GFE/F

H'(£%,T) — X.(T)r

| |

H' (&8, T) — 2502 tor]

We now come to the global case treated in this paper. Let F' be a finite extension
of Q. The global gerbe of [Kot], which we shall denote by £ here, is bound
by a pro-torus T'°, while the global gerbe of [Kal18a], which we shall denote
by £U8 here, is bound by a pro-finite algebraic group PU5. The description
of the character modules is more technical and we will not discuss it in the
introduction. Unlike in the local case, we do not know of a natural map pris —
T, In fact, there is good reason to believe that one cannot expect a natural
map like that to exist. The comparison of the cohomology of the two gerbes
£° and &M% proceeds via an intermediary. We define a new pro-torus T™
and natural maps T — T™d < Pris. We prove that the classes in H?(T, T*°)
and H?(T, P"8) of the gerbes £*° and £% meet in H?(T", T™4). This leads to a



gerbe M4 bound by T™4 and equipped with homomorphisms £ — £mid ¢
EM8. We then prove that, for every algebraic torus T' defined over F, the two
diagrams

HY (™4 T) —— Homp (T™d, T') HY (&4 T) —— Homp(T™d, T)
HY(&%°,T) —— Homp (T, T) H'(E"8, T) —— Homp(P"8,T)

are Cartesian and the vertical arrows in the left diagram are surjective.

An analogous discussion holds locally at each place v of F: There are maps
of gerbes £i%° — gmid &8 over F, that are compatible with the analogous
global maps via localization maps &£ — £* X F,. The Cartesian square relat-

ing £1% to £Md shows that there is a functorial isomorphism from H*'(EMd, T)
to the group {(\, p)|A € Xo(T)r, 1 € Xo(T) @ Q, N5(\) = N¥(u)}.

Recalling the comparison map &£,8 — £° constructed in [Kal18b] and re-
viewed above, we now obtain the following triangle

gmid (1.1)

(c/'irjig (c/'li}so

This triangle does not commute. In order to relate the global comparison re-
sults of this paper, which concern (via the localization maps) the two diagonal
arrows, to the local comparison results of [Kall8b], which concern the bottom
horizontal arrow, we need to understand the failure of commutativity.

We construct a canonical splitting M4 — £5° of the map £° — &mid and
show that composing this splitting with £,® — M9 equals the bottom hori-

zontal map in (1.1), i.e. the comparison map £5% — £i5° of [Kal18b]. The non-
commutativity of the above triangle is then encoded in the difference between

the left diagonal map £, — £™4 and the composition
: 4 "
g5 _ gmid _, giso _, gmid,

We show that the difference between the two homomorphisms H!(£mid, T) —

H' (3%, T) induced by these two maps £, — ™ is given on the linear alge-

braic side by the map that sends (), u) to pp — N%(u) € %@}@)@ [tor].

These cohomological results allow us to compare the two isocrystal and rigid
versions of the multiplicity conjecture for discrete automorphic representa-
tions. More precisely, let G* be a quasi-split connected reductive group de-
fined over I’ and let G be an inner form of G*. Assuming the existence of
the global Langlands group L, as well as the validity of the rigid version of
the refined local Langlands correspondence, we constructed in [Kal18a, §4.5] a
pairing between the group S, associated to a discrete generic global parameter
¢ : Lr — G and the adelic L-packet I, (G). This pairing is an ingredient in
the conjectural multiplicity formula [Kot84b, (12.3)]. Its construction uses the
cohomology of £8, but the result is independent of the cohomology classes
used.



Assuming that G* has connected center and satisfies the Hasse principle, an-
other such pairing can be constructed if one assumes the isocrystal version of
the refined local Langlands correspondence and uses the cohomology of £°.
This construction does not yet appear in the literature. It is fairly analogous to
that in [Kal18a, §4.5] and we give the details in Section 4.6.

As an application of our cohomological results, we show that the two construc-
tions — using £"8 and £, respectively — produce the same pairing between S,,
and II,(G). More precisely, given an inner twist ¢ : G* — G we fix a co-
cycle zmMid ¢ Z(gmid G*) that lifts the cocycle o — ¢ ~'o(¢)) and use it to
produce cocycles 2% € Z1(£%° G*) and 2™ € Z!(£™d G*). The two global
pairings are constructed as products of local pairings, each normalized by the
localization z1%° and z,®, respectively. At each place v, the local pairings do
depend on the choice of 2™, but the resulting global pairings do not. Even
though conjectural, the local pairings are related by an explicit non-conjectural
factor that is a result of the normalized character identities the pairings are re-
quired to satisfy. This follows from the local comparison results of [Kal18b].
However, due to the non-commutativity of (1.1) the local comparison map
H(&%* G*) — H'(£,%,G*) does not map [21*°] to [2,%]. Thus the local com-
parison results of [Kal18b] need to be supplemented with the quantification
of the non-commutativity of (1.1) discussed above. Combining these results,
we obtain an explicit factor relating the two local pairings at a given place v.
The global comparison results of this paper imply that the product over all v
of these factors equals 1 and therefore the two global pairings are equal.

Alongside this comparison result, we introduce in this paper a simplification
of the construction of the global gerbe £18. In [Kall8a] this construction in-
volved choosing a sequence (E;,.S;, S‘i), where E; is an exhaustive tower of
finite Galois extensions of I, S; is an exhaustive tower of finite sets of places
of F, and S; is a set of lifts of S; to places of E;. Each triple (E;, S;, Si) was
required to satisfy a list of four conditions [Kall8a, Conditions 3.3.1]. In this
paper we show that the resulting gerbe depends only on the set V' of lifts to F
of the places of F that is defined by V = Jim S;. That is, £ is independent of
the choices of E; and S;. Furthermore, we show that [Kal18a, Conditions 3.3.1]
for each triple (E;, S, S;) are equivalent to one simple condition on V, namely

Condition 3.3.1 stating that [ J,,.y I'; is dense in T".
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2 DEFINITION OF SOME LOCAL AND GLOBAL GALOIS MODULES

In this section we shall define some modules for the Galois group of a finite
Galois extension of a ground field F' that is either a number field or a local
field. Taking colimits over all finite extensions of F' we shall obtain modules
for the absolute Galois group of a number field or a local field. These will be the
character modules of T'°, T™d and P"8. We shall also discuss the transition
maps with respect to which we take these colimits — we call these inflation maps.
We shall also discuss localization maps, which relate the global Galois modules
to their local conterparts.

2.1 The local modules

Let F be a local field, E/F a finite Galois extension, N natural number. We
define the following I' ; p-modules:

1. M= 7.

2. ME; consists of maps f : I'g)p — Z satisfying > f(0) € Z.

3. ME%N consists of maps f : I'p/p — +Z/Z satisfying >~ _ f(c) = 0.
The module M¥° is the module X of [Kot, §5], while ME?N is the module
X*(uE/F,N) of [Ka116b, §31]

We define I' ;s p-equivariant maps

iso

iso ¢ mid s rig
Mg® — E,N—>ME,N (2.1)
via the formulas

fiso =37 mid (o), fi8(0) = —f™d(g)  mod Z.

o

Fact 2.1.1. The maps ¢*° and ¢"# are surjective. The kernel of ¢"8 is induced. O
Proof. Immediate. u

If N is divisible by [E : F], there is a canonical splitting of ¢*° defined by
Siso . Mgo N Mgn?l\]’ SiSO(fiSO) _ fmid7 fmid(d) _ [E . F]—lfiSO' (22)

The image of s*° is precisely (MEI%)F

2.2 Local inflation maps

We continue with the notation of §2.1. Let K/F be another finite Galois exten-
sion with £ C K, M a natural number divisible by N.

We define three maps, which we refer to as inflation maps:



1. Mi° — M¥°, given by multiplication by [K : E].
2. MES — MR, given by fmd-K(g) = fmid-E(g),

3. My — M, also given by f8:5 (o) = f1i&:7 (o),

These inflation maps fit into the commutative diagram

iso g

: CE,N ; CE,N i
iso ’ mid ’ g
Mg <—ME7N —>ME7N

]

iso _ mid 5 rig
MK iso MK; M rig MK7 M
CK,M CK,M

Using these inflation maps we can take in each case the colimit over all finite
Galois extensions £/ F and all natural numbers N and obtain the following:

Q if Fis non-Archimedean,
Mo .= @Mg" ={7Z ifF~C,

17 ifF=R
Q[T if F' is non-Archimedean,
M™M= lig MBS, = S Z[T) = Z if F~C,
{(f T =QY,crflo)eZy ifF=R
' Q/zZ[1) if F' is non-Archimedean,
M™ = lim M = {0 if '~ C,

{f:T = Q/Z| Y yer f(0) =0} ifF=R

Here R[I'] denotes the set of smooth functions " — R.
The local comparison maps splice together to maps

Miso i Mmid ﬁ Mrig,

the left being given by integrating over I' with respect to the normalized Haar
measure, and the right being induced by the negative of the natural projection
Q — Q/Z. The map ¢ has a canonical splitting s'*© whose image consists of
constant functions I' — Q in the non-Archimedean case (resp. I' — Z in the
complex case, resp. I' — 37 in the real case). In the non-Archimedean case
the composition c"8 o s'° equals the map X*(¢), where ¢ is the map defined in
[Kal18b, (3.13)], as we see by dualizing Lemma 3.1 loc. cit. In the Archimedean
case we take this equality as the definition of ¢.

2.3 A discussion of Mp%"

We now describe the I'p/p-module Mg‘)ii;v = Homg (M, Z) and record
some of its properties.



The obvious inclusions Z[['g,r] — MBS — N~'Z[l'g,p] fit into the exact
sequences

0= M¥4 - N7zl p] =5 N"'Z/Z - 0 23)
and '
0— Z[Cp/p] = MES — N 'Z/Z[Tg/plo — 0. (2.4)

We can identify Z[I' g/ | with its own dual via the pairing (z,y) — >__ x(0)y(0).
Then NZ[T i/ ] dualizes to N~ 'Z[l'g |, the inclusion Z[L' g/ p] — N~ 'Z[T g/ 5]
dualizes to the inclusion NZ[I',r] — Z[I" g, p]. For a finite Galois extension K
of F containing £, the inflation map Z[I' 5, p] — Z[I'kr] dualizes to the map
Z[Tk r] — Z[I' g/ ] given by summing over I' ) g-cosets.

The inclusions Z[l'g,p] — MES, — N 'Z['gp] dualize to the inclusions
NZ[g/r] — M}E“f?\;v — Z[I'g,r] and describe Mgfjf;v as the submodule of
Z['g,r] givenby NZ[' g/ | + Z, where Z = Z[I'g,p|" is the subgroup consist-
ing of constant functions. Note that Z[I" g z|" coincides with [Mg‘j'l,v]F

In terms of this description of M g“%,v the exact sequences dual to (2.3) and (2.4)
are described as follows. The dual of (2.3) is

0— NZ[Lp e = MESY — Z/NZ — 0, (2.5)

with the map MfEmg,v — Z/NZ given by the natural projection on Z and trivial
on NZ[I'g,p|. The dual of (2.4) is

Z/NZ[g/F]

0— MpyY = Z[0 g r] — ZINT

— 0, (2.6)

where now the last map is the natural projection.

The map **° : M}, — Z defined in (2.1) dualizes to the inclusion map Z =
[MPGVIT — MGV, If [E : F] divides N then its splitting s : Z — M2,
defined in (2.2) dualizes to Mg‘jf,v — Zgivenby y — [E: F]71Y"_y(o).

The inflation map MSE“‘}iV — M3, dualizes to the map sending y* € M E“]iwv C
ZI0 g rl toy® € ME'Y C ZIU g r] givenby yP (o) = S, y5 (7).

2.4 The global modules

Let F' be a number field, E/F finite Galois extension, S a (finite or infinite) set
of places of F, Sg a set of lifts of the places in S to places of E. We assume
that (S, S ) satisfies [Kal18a, Conditions 3.3.1]. We define the following I'; / -
modules:

1. Mg° := Z[Sg]o consists of finitely supported functions f : Sp — Z
satisfying > f(w) = 0.

2. M consists of finitely supported functions f : T'p/p X Sp = (5

satisfying >°, f(o,w) = 0,3, f(o,w) €Z, 0 'w ¢ Sp = f(o,w) = 0.

Z



3. M ;g.E consists of finitely supported functions f : 'y /p X Se = 77 F] Z]Z

satisfying >, f(o,w) = 0,3, f(o,w) =0, 0w ¢ Sp = f(o,w) = 0.

We shall write f° or f1%F in the first case if we want to be more precise, and
use the analogous notation in the other two cases.

The module ME"S was defined by Tate [Tat66], and later by Kottwitz in [Kot,
§6], where it was denoted by X3. The module M;gS-E was defined in [Kal18a],
where it was denoted by My, ¢ . - '

We define I' ;) p-equivariant maps

iso C° mid ¢ rig
MES<_ME,SE—>ME,SE (2.7)

by the formulas

fiso(w meld o,w) fi8(o,w) = —f™d (g, w) mod Z.
Proposition 2.4.1. The map c" is surjective. O

Proof. We can assume that S # (). Let f18 € Mggs. . For each 0 € T'g,p choose
WO E

w, € S such that o~ w, € Sg. Define f™4 as follows:

1. For (o, w) such that o~ w & Sg, f™d (0, w) = 0.
2. For (o,w) such that o7 'w € Sk but w # w,, choose an arbitrary lift

fmid(g,w) € Q of — f118(0, w) € Q/Z.
3. Finally for o € T p let f™4(0,w5) = = 2 cs, fu, ) S™ (0, w) € Q.

Then f™¢ € MM and c8(f™4) = fre. [
WO E

Fact 2.4.2. The kernel of ¢"'8 is an induced I' ; ,r-module. O

Proof. After making the change of variables ¢(o,w) = f(o,0w) we see that
this kernel is given by the set of functions ¢ : I'gy,p x Sp — Z satisfying

S, ¢o,w) = 0and w ¢ Sp = ¢(o,w) = 0, with Lp/r acting by left trans-
lation on the first factor. This I 5, -module is isomorphic to Ind {f}/ "7[S]p. W
For a Z[I' g/ p]-module Y denote I/ p(Y) = ZUGFE/F(U —1)(Y).

Lemma 2.4.3. Assume that for any ¢ € 'y, there exists w € Sg such that
ow = w. Forany Z[I' /r]-module Y we have Y[Sg]o = Y [SElo+1g/r(Y[SElo).
]

Proof. Let f : Sg — Y be such that ZwES f(w) = 0. For each w € Sg ~ Sg
choose 0., € I'g/p such that o, w € Sk and v, € Sp such that o0, = V.
Then f + > cs, g, (0w — 1) (f(w)dy — f(w)ds,, ) is supported on Sg. [ |



Proposition 2.4.4. Assume that for any o € '/ there exists w € S such that
ow = w. The morphism ¢ of Z[I' g |-modules splits. O

Proof. It is enough to show that for any I' ;) ,--module X that is a finitely gener-
ated free abelian group, the map Hom(X, MEEE)FE/F — Hom(X, Mg )'e/r
induced by ¢**° is surjective, for then we can take X = Mp°%  and lift the iden-
tity map. Writing ¥ = Homgz(X,Z) we have Hom(X, M%) = Y[SE]gE/F.
Let fi* € Y[Sg]y™". By Lemma 2.4.3 we can write fi = [E : F|~' N,/ p(f)
where [ € Y[Sg]o. Define

18 ) = {[E P o (f(o~ w)) if a—lw_e S
0 otherwise.
|

Corollary 2.4.5. Under the assumption of the proposition the map ¢*° is sur-
jective. d

2.5 Global inflation maps

We keep the notation of §2.4. Let K/ F be a finite Galois extension with F C K,
S” a set of places of F containing S, S a set of lifts of S’ to places of K such
that for each v € S with lift v € S, the image of © in S lies in Sg.

We define three inflation maps. First assume S = 5’.

1. Z[SElo — Z[S)]o by foK (u) = [K, : Ey]f*>F(w), where w € S is the
unique place under u € Sk.
mid mid mid, K _ rmid,E . -1 &
2. M = MK,S'K by f (oyu) = f (0, w) provided ¢~ 'u € Sk,

and fridK (5 4) = 0 otherwise.

3. MEgsE — ME by 85 (0,u) = 87 (0,w) provided 0 ~'u € S, and
18K (g, 1) = 0 otherwise.

We now drop the assumption S = 5" and extend all maps defined above from
Sk to S% by zero outside of Sk.

These maps are well-defined and fit in the following commutative diagram

iso g

. CEg. s : CE.,s
iso ' mid '
ME)S -~ ME)S

T

B E,Sp
Miso )ymid Mrig )
K,S E K% a) K,
The commutativity of the right square is immediate. The commutativity of the
left square follows from the condition that if (o, w) is in the support of f¥ then

o lw e SE

10



2.6 Localization maps

Continue with the notation of §2.4. Fix w € Sg. For each of the three global
modules we define localization maps loc,, : f +— f, as follows:

1. loc, : M° — Mg°, defined by f,, := f(w).
2. locy, : Mg“gE — MEL%[E:F], defined by f., (o) := f(o, w).

3. loc, : My, — ME |, defined by f,(0) := f(0,w).

These maps fit into the following commutative diagram

Migog <—— M™4 T8

E,SE E7SE
Miso Mmid Mrig
E, = Eu,|E:F] = Mg, [B:F]

The commutativity of the right square is immediate, while that of the left is
implied by the support condition and the assumption w € Sg.

Fact 2.6.1. The localization maps are compatible with the local and global in-
flation maps, i.e. in the setting of §2.5, for 7 € {iso, mid, rig} and w € S} N Sk,
the following diagram commutes.

? ?
ME'SE MK,S}(
M? l ? l
Eu,[E:F) — 0 K, [K:F)
O
Proof. Immediate. |

3 COHOMOLOGY

3.1 Preliminary discussion

Let I be a local or global field of characteristic zero. Assume given an inverse
system (D,,)nen of diagonalizable groups defined over F, with surjective tran-
sition maps, and an inverse system of classes in H*(I", D,,). Let D = @1 D,,.
We endow D,,(F) with the discrete topology and D(F) = lim D, (F) with the
inverse limit topology. Then [Wei94, Theorem 3.5.8] gives the exact sequences

1— Rllgﬂo(r,pn) — HYT',D) — @Hl(r,Dn) —1

and

19: 1 2 . 2
1= R'lim H'(I, D,) = H*(T', D) — lim H*(T', D,,) — 1.

11



If R'lim H' (', D,,) vanishes, the inverse system of classes in [/*(T, D,,) gives
an element of H? (T, D).

Assume now that we have a class ¢ € H%(T', D) and let
l1-=D—=&—->T—1

be an extension belonging to the corresponding isomorphism class. Follow-
ing Kottwitz we define for any affine algebraic group G defined over F' the
set Zalg(é’ ,G) to be the set of those continuous 1-cocycles & — G(F) whose
restriction to D factors as the projection D — D,, for some n followed by an
algebraic homomorphism D,, — G. In general this homomorphism is only de-
fined over F, but its G(F)-conjugacy class is invariant under I'. Further, for
any central algebraic subgroup Z C G we define Z'(D — £,Z — G) to con-
sist of those elements of Zalg(E , G) whose restriction to D takes image in Z. In
that case the resulting homomorphism D — Z is defined over F. Finally, we
set ZL (E,G) = ZYD — &,Z(G) — G). We also define the corresponding
cohomology sets

HYD — &£,Z — G) C Hp(€,G) C HY,(E,G)

alg
to be the quotients by the action of G(F) by coboundaries, i.e. g sends z €
alg(é’ G)toe— g 'z(e)o.(g), where o, € T is the image of e € £.

A priori the set alg(é' () depends on the choice of the particular extension £

in its isomorphism class. Indeed, if £ is another extension in the same class,
then choosing an isomorphism of extensions i : £ — £ provides an isomor-
phism alg(é' G) — H allg(S’ , G) which depends only on the D-conjugacy class
of i. The D-conjugacy classes of isomorphisms £ — £ are parameterized by
HY(I',D). This group acts on alg(c‘f G)by a € ZY(I',D), z € Zalg(S,G),
(a-z)(e) = z(a(oe) - €), and replacing i by « - i composes the isomorphism

Hjio(€,G) — Hy, (€', G) with the action of .

It is thus clear that when H'(T', D) = 1 the set H,, (€, G) is independent of the
choice of extension £ in its isomorphism class. In fact, the weaker condition
@1 H(T, D,,) = 1 turns out to be sufficient. Indeed, by assumption for any z €

Z 3, (€, G) the restriction 2| p factors through the projection D — D,, for some n
and therefore z(a(e) - €) = z,(an(€)) - z(e), where z,, : D,, — G composed with

D — D, equals z|p, and a,, € H'(T', D,,) is the image of a.

Assume now that D), is another inverse system of diagonalizable groups de-
fined over F with surjective transition maps and that we are given homomor-
phisms D;, — D,, compatible with the transition maps. These splice to a ho-
momorphism D’ — D, where D’ = lim D. Assume that we are given a class
¢ € H*(T, D’) and let & be the corresponding extension. If ¢’ maps to £ under
the homomorphism D’ — D then there exists a homomorphism of extensions
& — &. This homomorphism induces a map H} (£',G) — Hl (£,G). As

alg alg
above, this map is well-defined if lim H YT, D,) =

We have thus seen that the vanishing of R’ Jim H YT, D,,) for i = 0,1 has desir-
able consequences. A sufficient condition for the vanishing of both of these is
the following: For any n there exists m > n such that the map H(TI', D,,,) —
HY(T, D,,) is zero.

12



Fact3.1.1. We have the inflation-restriction exact sequence of pointed sets (abelian
groups if G is abelian)

11— H(,G) - HY(D - £,Z — G) — Homp (D, Z) — H*T,G),

where H?(T', G) is considered only when G is abelian and in this case the last
arrow is ¢ — ¢ o &. O
Fact 3.1.2. For any torus 7" with co-character module ¥ we have the isomor-
phism

(Y ® X*(D))" — Homgz(Homgz(Y,Z), X*(D)) — Homp (D, T), (3.1)

where the second map is obvious and the first sends y ® a to f,g. defined by
fywa(#) = ¢(y) - a. O

Fact 3.1.3. Let £’ — & be a morphism of extensions of I' as considered above.
For any algebraic group G and any central algebraic subgroup Z the square

HYD — &,Z - G) ——=Hompg(D, 2)

| |

HYD' — &',7Z - G) ——=Homp(D', Z)

is Cartesian. O

Proof. This follows directly from the fact that £ is generated by D and the image
of & which have intersection the image of D’. |

3.2 Definition of T, T™d and P8 in the local case

Let F' be a local field of characteristic zero, F/F a finite Galois extension, N a
natural number.

Let Ti and TR, be the tori with character modules M and Mg, Let PE?N
be the finite multiplicative group with character module M®. The torus T
is simply G,,. The finite multiplicative group PE?N was defined in [Kall6b,
§3.1], where it was denoted by ug, r .

Let T*® and T™ be the pro-tori obtained as inverse limits of the systems T’y
and Trﬁﬁv respectively, where the transition maps are induced by the inflation

maps defined in §2.2. Let P8 be the pro-finite multiplicative group obtained as
the inverse limit of PE?N in the same manner. The pro-torus T'° was denoted
by D in [Kot85, §3], while the group P"'8 was denoted by u in [Kall6b, §3.1].

3.3 Definition of T's°, ']I“;/‘id, and P‘r-/ig in the global case

Let F be a global field, E/F a finite Galois extension, S a finite set of places of
S, Sg C Sk a set of lifts for the elements of S. Let Ti%(,’s and T%‘i‘éE be the tori

over F with character modules Mi%, and M™d . et P™8. be the finite mul-
E,S E,Sg E,Sg

tiplicative group with character module MggS-E. In [Kal18a] this was denoted
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by Pp ¢, (p.r- Note that in [Kall8a] Py, ¢ was used to denote T&H.N Py oo N
where Pp ¢, p.p is the finite multiplicative group denoted by P, % in the
present paper. Since for comparison with ?™4 we usually impose that this in-

teger N equal [E : F] in the present paper, we hope that this will not cause
confusion.

We now choose as in [Kal18a, §3.3, p. 306] an exhaustive tower (E;);>¢ of finite
Galois extensions of F', exhaustive tower of finite sets of places of F, S;
S;. g, a choice of lifts of S; to places of E; so that Si-i—l - (Sl) B4, and each
(E;/F,S;,S;) satisfies [Kal18a, Conditions 3.3.1]. Let V' be the set of places of
F defined as the inverse limit of the sets S;. It is natural to ask if it is possible
to formulate a condition on V that is equivalent to the fact that it arises as
an inverse limit of a sequence (E;, S;, Si) all of whose terms satisfy [Kall8a,
Conditions 3.3.1]. This is indeed possible. For v € V denote by v € V its
unique lift, and by I';, the stabilizer of © in I’, i.e. the decomposition subgroup
at v.

Condition 3.3.1. |J,c 'y is dense in I'. O

Lemma 3.3.2. Let (E;);>0 be an exhaustive tower of finite Galois extensions of
F as in [Kal18a, §3.3, p. 306].

1. Let (S;)i>0 be an exhaustive tower of finite sets of places of F, S; C
Si g, a choice of lifts of S; to places of E; so that Si-i—l - (S'i)Ei+1 and
each (E;/F, S;, S’i) satisfies [Kal18a, Conditions 3.3.1]. Let V be the set of
places of I defined as the inverse limit of the sets S;. Then Condition
3.3.1 holds for V.

2. If V satisfies Condition 3.3.1 we can choose a finite increasing sequence
(S;)i>0 of subsets of V such that letting S; be the intersection of (.S;)g,
with the image of V in VE,, the tower (F;, S;, Si)izo satisfies [Kall8a,
Conditions 3.3.1].

O

Proof. 1f (E;/F, S, S;) satisfies [Kall8a, Conditions 3.3.1] then for any ¢ the im-
age of U,y I's in T,/ contains U, c 5, I's, /7, = ', r by the third point of
[Kal18a, Conditions 3.3.1]. Since I' /5, is a basis of neighbourhoods of 1in T',

this means that J, . I'; is dense in I".

The proof of the converse is similar: since all I'g, , are finite any sufficiently
large S; works. [ |

In particular, this shows that sets V' that satisfy Condition 3.3.1 do exist. This
condition is however not automatic. Furthermore, two sets V and V' that both
satisfy Condition 3.3.1 need not be conjugate under I". We illustrate both of
these points in the following example.

Example 3.3.3. Take F' = Q and let E/ F be the extension generated by all roots
of the polynomial P = X* — X2 +1. Then '/ ~ S3 and E/F is ramified only
at 23,in fact A := Z[1/23][X]/(P) is finite étale over Z[1/23]: P/ = 3X? —2X =
(3X—2)X, X is obviously invertible in Aand (9X?—3X—2)(3X—2) = 27P—23.
Modulo 23 we have P(—1/3) = 0 and P'(—1/3) # 0 and so P has a root in
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Q23. In particular all decomposition subgroups of ', are Abelian. Fix an

isomorphism I'g,r ~ S3. One can choose V such that every decomposition
group is either trivial, or generated by (12), or generated by (123), and thus
(23) does not belong to any decomposition group.

Using the same extension F, we can give an example of two sets V and V'
both satisfying Condition 3.3.1 but which are not in the same I'-orbit. Namely,
choose two places v1,v2 of F' such that the decomposition groups in I'/p
both have order two. Then we can choose Vi and V}, such that T' By, /Fy, =
I'g, Ry = I'g,,/F,, butl’ Euy /Fuy # ', /F,,, so that even after conjugating by
I'z/r we cannot have T’ By, /Fy, =T By /o, for i = 1, 2 simultaneously. O

For the rest of the paper we fix V' satisfying Condition 3.3.1.

Let T*° be the pro-torus over F’ obtained as the inverse limits of Tji’s over
all pairs (E, S) as above. In the other two cases the result depends on V.
For each finite Galois extension E/F and each finite set of places S of F' we
let Sg = {0|g|v € S}. Consider the pro-torus T3 = lim S']I‘m‘d and the

pro-finite group scheme P B lim s PEgS Note that M mid — X+ (Tmid) =

ling s M m‘d is identified w1th the I'-module of functions gb I'x V — Q con-
tinuous in the first variable and with finite support in the second variable such
that forany o € T, ) .\, ¢(0,v) = 0 and for any Archimedean place v € V,
> rer, ¢(o7,v) € Z. This identification is obtained by mapping f € M} to
¢ defined by ¢(o,v) = f(o,0v). This description is similar to [Kall8a, Lemma
3.4.1].

The set of lifts V being fixed, for v € V we simply denote I', = T';. Denote
F, = l_ng E, where we take the limit over all finite extensions of F in F. This

is an algebraic closure of F), strictly smaller than the completion of F for o is
v is non-Archimedean. It is easy to check that the localization maps defined in
Section 2.6 induce localization maps at infinite level

T — (T%9) 5, and P — (PF)p,

where T (resp. T™d, P;'®) denotes the pro-torus (resp. pro-torus, pro-finite
groupe scheme) over F, defined in Section 3.2 for the local field F;, together
with its algebraic closure F,, and a subscript F,, denotes base change from F to
F,. We will denote these three localization maps by loc,,.

3.4 The maps Tis® — Tmid . prig

The maps 8 and ¢*° defined in the local case in §2.1 and in the global case
in §2.4 splice together to define Cartier dual maps ciso : T — T™id and Crig

rig mid
P> — TP
Let F' be a local or global field.

Proposition 3.4.1. Let T be an algebraic torus defined over F.

1. The map ciso : T — T2 is injective. The homomorphism Hom (T, T') —
Hom (T°, T) is surjective.
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2. The map cyig : P‘r./ig — T is injective. The homomorphism Homp (T, T') —

rig . . .
Hom F(PV ,T) is surjective.
O

Proof. In the local case the injectivity claims follow from Fact 2.1.1, while in the
global case they follow from Corollary 2.4.5 and Proposition 2.4.1.

We prove the surjectivity of Homp(T3¢, T) — Homp(T*°,T). In the local
case, it follows immediately from the existence of the splitting (2.2). In the
global case, PropositiorT 2.4.4 implies that Hom g (TIE%E.’ T) — Homp (’]I“g‘? . T)
is surjective for any £, Sg. The surjectivity of Hom (']I‘“’F/“d, T) — Homp(T™°, T)
follows by taking the colimit over E, Sp.

We prove the surjectivity of Hom g (T2, T) — Homp (P‘r./ig, T). Consider first
the global case. Let X = X*(T'). We claim that every Z[I'l-homomorphism
f:X = M;gS-E lifts to a homomorphism f:X = Mg‘igE. Since X is Z-free
we can choose a lift f : X — MgigE that is a homomorphism of Z-modules,

but not necessarily I'-equivariant. Then o f = o(f) is a 1-cocycle of T in
Homy (X, Ker(c ng _)). By Fact 2.4.2 and [Ser79, Chap. IX,§3,Prop] this is an
induced I'- module, so o +— f—o(f)is a coboundary, implying that there exists
a ['-equivariant lift f of f. This completes the proof in the global case. The

proof in the local case is the same, but now based on Fact 2.1.1 in place of Fact
24.2. [ ]

Proposition 3.4.2. In the global case, the map cio : T — T splits. O

Proof. We seek a compatible family of splittings of ciso : T — TETVE As we

saw in the proof of Proposition 2.4.4, giving such a splitting is equlvalent to
giving, for any torus 7" defined over F' and split by Ej, a splitting s; of

Y ® Mg;f‘v )= Hom(T;{;fv ,T) — Hom(T™°, T') = (Y[Vg,]o)",

where Y = X, (T), which is functorial in T

It is convenient to let E_; = F. For k > 0 and v € V choose Ry, C 'z, |
representing I'g, /g, /T'E, /B, ,,- Forw € Vi, ~ Vi, such that wg, , €
Vi,_,, let 7(k,w) € Ry, be the element such that r(k,w)'w € Vg, and
choose #(k,w) € V such that the image of r(k,w) in ', /i, , belongs to the
decomposition subgroup for o(k,w)p,. For i > k > 0 denote Vi, = {w €
VE, S VEk} For f € Y[Viykfl] let

mn(f) =+ D (rlkw) = D(f(w)dw = F(w)8s0w), )

weVi k—1\Vik

It is clear that 7; 4 (f) is supported on V; ; and that m; ,(f) — f € I(Y[V&,]o)-
Define m; := m;;0m;i—10-- om0 : Y [Vg] = Y[Vg].

As in [Kot, §8.3] we denote p : Y[Sg,] — Y[Sg,,,] for the inflation map and
J: Y[SEJ+1] - Y[SEJ:I defined bYJ( )(w ) Zu|w f( ) ie. ]( u) = 6'U«Ei‘ They
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are both I', | /p-equivariant and satisfy j o p = [E;11 : E;]. It is easy to check

that for f € Y[Viy1 x—1] we have

mik(G(f)) ifk <i

J(mip1k(f)) = {j(f) Fh—itl

and thus j o ;41 = m; o j. Now m;1p(f) is supported on Vi and satisfies

Jmipap(f) = [Eit1 : Ei]mi(f), and so for w € Vg,,, we have

Tiv1p(f)(w) = [Eiy1 : Ei]mi(f)(we,).- (3.2)

Now we can resume the proof of Proposition 2.4.4 with f = mi(f) for f €
(Y[Vi,]0)b), defining s;(f) € (Y ® Mg}_dVE_ ¥ by

i+1

E;: Fl 'o(m(f) (e~ w if o~ lw € Vg,
oy = [ 1B om0 ) Vs
0 otherwise
foro € Ty, /pand w € Vp,. Now (3.2) implies that s; 1 (p(f)) € (Y®Mgﬁi o )t
i+1,VE;
is the inflation of s,(f) € (Y @ M™d._ )T, [ |

E;i Vi,

Remark 3.4.3. Composing such a splitting T2¢ — T with cyig, we obtain a

map P‘r-/ig — Ti°, Unfortunately, this splitting is not canonical, since we had to

choose sets of representatives Ry ,. Therefore we cannot use it to compare 9iso
and 7" directly, as in the local case, which is why ?™¢ was introduced. O

3.5 Review of the Tate-Nakayama isomorphism

Let E/F be a Galois extension of local fields of characteristic zero, T an alge-
braic torus defined over F' and split over E, Y = X, (T'). We have the Tate-
Nakayama isomorphism H(I'g/p,Y) — ﬁ”Q(FE/F,T(E)) defined by cup
product against the fundamental class in H?(T'g,r, E*). Combining with the
inflation H'(T'g/p, T(E)) — H'(I', T) we obtain the isomorphism H 'Tg/p,Y) —
HY(I',T) and the inclusion H%(T'g/p,Y) — H2(T, T).

Given a finite multiplicative group Z defined over F' and split over F, we
let A = X*(Z) and AY = Hom(A, Q/Z), and then have the injective map
H ' (Tg/p,AY) - H*(T, Z) denoted by O, in [Kal18a, §3.2].

If1 - Z — T — T — 1is an exact sequence of diagonalizable groups defined

over F' and split over £, where Z is finite and 7" and 7 are tori, then these maps
fit in the following commutative diagram, which is the local analog of Lemma
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[Kall8a, Lemma 3