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Abstract

The present work reports about the dynamics of a collection of oscillators, randomly oriented

and randomly distributed in 3D space, which are coupled by an interaction potential falling, with

the interparticle distance r, as −1/r3. This system schematically models a collection of identical

biomolecules, each one vibrating with a low frequency collective mode kept active by an external

energy supply; with collective mode is meant that a relevant fraction of the atoms of a single

molecule vibrate coherently, and predominantly, at the same frequency. The −1/r3 intermolecular

interaction potential is assumed to be of electrodynamic kind, generated by the oscillating molecular

dipole moments. The dipole moment of each molecule is assumed to oscillate at the same common

frequency proper to the collective vibrational mode. By changing the average distance among

the molecules, neat and substantial changes in the power spectrum of the time variation of a

collective observable are found (collective now refers to the ensemble of molecules in the system).

In a laboratory experiment the average intermolecular distance can be varied by simply changing

the concentration of the solvated molecules, moreover, since the mentioned collective observable

is proportional to the projection of the total dipole moment of the ensemble of biomolecules on

a coordinate plane, the outcomes of the present work indicate a possible experimental strategy of

spectroscopic kind to detect the activation of intermolecular electrodynamic interactions and to

assess their strength, and the possible biological relevance of these forces depends on their strength.
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I. INTRODUCTION

The present work is motivated by the search for an experimental strategy, alterna-

tive/complementary to an already proposed one, to ascertain whether electrodynamic inter-

actions between biomolecules can be activated. The already devised experimental approach

to this goal consists of studying how the diffusion behavior of biomolecules in solution could

change when their concentration is varied (that is, when the average intermolecular distance

is varied) as a consequence of the action of surmised electrodynamic intermolecular inter-

actions [1–3]. More precisely, the starting idea motivating the present work is to consider

watery solutions of biomolecules, prepared with an ionic strength sufficient to shield elec-

trostatic interactions down to a few Angstroms, and then to put each of these biomolecules

in collective vibration under some suitable external excitation. Elsewhere, we have reported

that by shining a laser light on a watery solution of proteins (with fluorochromes attached to

each protein to harvest the incoming laser light) a strong collective dipolar vibration of each

molecule can be excited and detected in a sub-Terahertz frequency range [4]. The strong

dipolar oscillations so excited can switch-on intermolecular electrodynamic interactions pos-

sibly acting at a large distance (even up to some thousands of Angstroms) [5]. Then, by

changing the concentration of these solutions, that is by changing the intermolecular inter-

action strength which is a function of the distance between the molecules, and by switching

on and off a laser light shining on the solution, we wonder whether some significative varia-

tion could be detected by means of spectroscopic techniques. In what follows we show that

this seems to be actually possible. The ultimate reason for searching these electrodynamic

interactions between biomolecules stems from the observation of the high efficiency that

biomolecules display when moving toward their specific targets and sites of action in living

cells. Biochemical players ”need to know” where to go and when, and are capable to reach

their cognate partners so quickly that it hardly seems to be the result of a random search

driven by thermal fluctuations (Brownian motion) alone. A longstanding proposal surmises

that in order to accelerate these encounters, selective forces acting at a long distance are

needed. This could be a mechanism of molecular recruitment at a distance of high relevance

to biology. Unfortunately, because of technological limitations, an experimental proof or

refutation of this possibility has been for a long time and is still sorely lacking. The present

day technological advances allow to cope with experimental challenges that were very hard

3



to tackle in the past. This is the case of modern methods in Fluorescence Fluctuation Spec-

troscopy [6, 7] that we invoked in our previous studies [1–3], and of Terahertz spectroscopy

for the present study. Hence, reconsidering the above mentioned topic is worth and timely.

The paper is organized as follows: in Section II the model is defined and discussed, while

in Sec. III we report the outcomes of the Molecular Dynamics simulations of the chosen

model and we comment on the observed phenomenology. Section IV is devoted to some

concluding remarks about the results presented throughout the present paper.

II. THE MODEL

A. Model for the biomolecule

As already stated in the Introduction, the present work aims at understanding whether

through spectroscopic experiments, presumably in the Terahertz frequency domain, an ex-

perimental confirmation or refutation can be obtained of the theoretical prediction [5] of

the possibility of activating electrodynamic forces between biomolecules, vibrating out-of-

thermal equilibrium, in watery solution. In what follows, we consider a simple model for

an ensemble of biomolecules randomly oriented and randomly distributed in 3D space, cou-

pled through an interaction potential decreasing as −1/r3 as a function of the interparticle

distance r. Each biomolecule is modelled as an oscillating electric dipole composed of two

material points, each of them with a mass m and the same absolute value Ze of the electric

charge but with opposite sign. The positions of the positive and negative charged particles

of the i-th biomolecule are respectively r+,i and r−,i. The position of the center of mass of

the i-th biomolecule is indicated by Ri while the direction of each dipole is

r̂i =
r+,i − r−,i

‖r+,i − r−,i‖
; (1)

both have been considered to be fixed, so that the charged particle of each biomolecule are

constrained to oscillate along their joining line, i.e. dRi/dt = 0 and dr̂i/dt = 0. These

constraints seem to be quite strong with respect to a realistic biological molecular system

where particles both diffuse and rotate due to the collisions with the surrounding water

molecules. These assumptions are motivated by the fact that the characteristic time scales

of the inner oscillation of biomolecules are much shorter compared with the time scales

associated with the diffusion of the centers of mass of the biomolecules at their rotational
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diffusion (See Supplementary Information, Sec. I, for a more detailed discussion). It follows

that the only dynamical variables are the mutual distances ri = (r+,i − r−,i) · r̂i between the

two centers of charge of each biomolecule.

The electric dipole moment is given by pi(t) = Zeri(t)r̂i. Despite its simplicity, this model

is suited to explore the presence of collective effects on the dynamics of coupled oscillating

dipoles with fixed distance and orientations representing a system of oscillating biomolecules

in mutual interaction through long-range quasi-static electrodynamic field generated by their

oscillatory electric dipole.

Mechanical properties of a biomolecule

The mechanical properties of each biomolecule are described by an effective potential

V (ri) = Veff (‖r+,i − r−,i‖) that is supposed to exist between material charged points. A

minimum of the effective potential is supposed to be attained for ri = ri0, i.e. dV/dri(ri0) = 0

and d2V/dr2i (ri0) < 0, so that the effective potential is assumed to be

Veff (ri) ≈
1

2
mω2

i (ri − ri0)
2 +

1

4
m
ω2
i

Λ2
(ri − ri0)

4, (2)

where the parameter Λ is the characteristic length of the oscillation amplitude for the emer-

gence of non-harmonic contributions. So the effective potential of (2) takes into account

both the harmonic and non-harmonic contributions in the oscillation of the electric dipole.

The non-harmonic contribution has been included for two main reasons: firstly, it accounts

for the exchange of energy of the main collective mode with other vibrational normal modes

of the biomolecule; secondly, it has been included in order to prevent instability of the os-

cillations when the electric dipoles, representing biomolecules, are strongly coupled among

them.

B. Mutual quasi-electrostatic interactions among biomolecules

The physical system that we are modelling is an ensemble of oscillating biomolecules in

watery solutions in presence of freely moving ions. Since this work aims at studying collective

phenomena originated by long-range electrodynamic interactions among biomolecules, we

neglect any electrostatic interaction. This assumption is well justified in presence of Debye
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screening which, inside living cells, has a length scale of a few Angstroms. It follows that,

for the range of average intermolecular distances which is of interest here (that is, ∼ 102 −

103Å), the contribution of electrostatic fields is negligible. To the contrary, electrodynamic

fields of sufficiently high frequency are not screened in water also in presence of freely

moving ions, as it follows both from theory and dielectric spectroscopic experiments for

ω > 2.5 × 102 MHz [8]. As mentioned before the expected frequency for the collective

oscillation of a biomolecule is around 0.1 − 1 THz, thus largely above the upper frequency

threshold for important screening effects on electrodynamic fields. Collective phenomena

are more probably expected in systems of resonant oscillators: for such a reason, a system of

N identical biomolecules (oscillators) has been considered. Moreover, resonance of electric

dipole oscillators, describing biomolecules, has been argued to be a necessary condition in

order to activate long range dipole-dipole (∼ R−3
ij ) electrodynamic interactions [3].

In our very simple model the force acting on each charge barycentre of the i-th electric dipole

due to the j-th dipole is given by

FCED(r±,i;Rj) = ZeECED(r±,i;Rj) . (3)

where ECED(r;Rj) is the value of the electric field in r generated by the j-th dipole whose

center is in Rj. According to the Classical Electrodynamics (CED), if we assume valid the

dipole approximation, i.e. ‖r−Rj‖ ≫ rj, the expression for the electric field takes the form

ECED(r;Rj) =

∫ +∞

0

dω
exp

[
iω
(
t±
√

ǫ(ω)‖r−Rj‖/c
)]

4πǫ(ω)‖r−Rj‖3

×

{
[3n̂j(r)(pj(ω) · n̂j(r))− pj(ω)]

(
1∓

iω
√
ǫ(ω)‖r−Rj‖

c

)
+

− [pj(ω)− n̂j(r)(pj(ω) · n̂j(r))]
ω2ǫ(ω)‖r−Rj‖

2

c2

}
.

(4)

where c is the speed of light, n̂j = r−Rj/(‖r−Rj‖) is direction joining the center of dipole

Rj to r, pj(ω) is the Fourier Transform of the electric dipole moment of the j-th biomolecule

in time domain and ǫ(ω) is the dielectric constant of the medium.

For the range of frequencies we explore (ω ∼ Ω ≈ 1 THz), the dielectric constant of an

electrolytic aqueous solution can assumed to be real Re (ǫ(ω)) ≫ Im (ǫ(ω)) and approxima-

tively constant ǫWS(Ω) ≈ 3. Moreover both the intermolecular average distance Rij ≈ 103Å

and the characteristic linear dimensions r0 ≈ 10Å are much smaller than the characteristic
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wavelength of the electromagnetic field λ = 2πc/(ǫω) ≃ 5×107Å. This allows to assume that

the electromagnetic field has the same value for both centers of charge of each biomolecule,

i.e. ECED(r+,i;Rj) = ECED(r−,i;Rj) = ECED(Ri;Rj), and that any retardation effect can

be neglected, i.e. Rij/λ ≪ 1. With these approximations the acceleration of the i-th dipole

is directed along r̂i and due to the interaction with the j-th dipole reads as

(
m
d2ri
dt2

)

CED

=

(
m
d2r+,i

dt2
−m

d2r−,i

dt2

)

CED

· r̂i = 2Ze
∑

j 6=i

ECED(Ri;Rj) · r̂i =

= 2(Ze)2
∑

j 6=i

[3(n̂ji · r̂i)(r̂j · n̂ji)− (r̂j · r̂i)]

4πǫWSR3
ij

rj(t) =
∑

j 6=i

mω2
ijζijrj(t),

(5)

where n̂ji =
Rj −Ri

Rij

is the direction joining the electric dipoles,

ω2
ij =

2Z2e2

4πǫWSmR3
ij

(6)

is a characteristic frequency describing the strength of the dipole-dipole interactions,

ζij = [3(n̂ji · r̂i)(r̂j · n̂ji)− (r̂j · r̂i)] (7)

is a geometrical factor depending of the orientation of the electric dipoles and rj(ω) is the

Fourier Transform of rj(t).

III. STUDY OF SYNCHRONIZATION IN PRESENCE OF THERMAL BATH

AND EXTERNAL SOURCE

A. Biological watery environment as thermal bath

This work is inspired by the request for observables in real biological systems at molec-

ular level that can detect the presence of long-range electrodynamics interactions among

biomolecules. As all biomolecules in real biological environment are in watery solution,

we have to take into account the presence of surrounding water molecules. Though recent

studies reveal that the water in biological system can have a highly non trivial behaviour

with respect to electrodynamic fields generated by the electric dipole of biomolecules [9–13],

in this article we will assume the surrounding water to play simply the role of a thermal

bath. As a consequence of this, the presence of water molecules can be schematized via the
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introduction of a stochastic noise (thermal fluctuations) and a viscous friction term (dissipa-

tion) in the equation of motion for oscillating electric dipoles. In particular friction viscous

forces are due to the aqueous surrounding medium considered as a homogeneous fluid with

viscosity ηw. We assume that the expression of the viscous force is given by Stokes’ Law

acting on each barycentre of electric charge (positive and negative)

Fvisc,i± = −γ
dri,±
dt

γi = 6πηWR (8)

where R is the hydrodynamic radius of a typical biomolecule (∼ 10Å).

From eq.(8) it follows that the acceleration on the dipole length is given by

(
m
d2ri
dt2

)

FR

=

(
m

d2

dt2
(ri,+ − ri,−)

)

FR

· r̂i = (Fvisc,i+ − Fvisc,i−) · r̂i = −γ
dri
dt

. (9)

On the other hand the stochastic forces are due to the collision of water molecules and freely

moving ions on the biomolecules and they correspond to the realization of a thermal bath

at temperature T . In particular these forces, acting directly on the charge barycentres of

each biomolecules, can be described according to the following expression

Fstoch,i± = Ξ ξi,±(t) Ξ =
√
2kBTγ, (10)

where ξi(t) represents white noise whose characteristics along each Cartesian component

α, β = x, y, z are given by

〈
(ξ(t)i,±)α

〉
t
= 0

〈
(ξ(t)i,±)α (ξ(t

′)j,±)β

〉
t
= δ(t− t′)δijδαβ (δ++ + δ−− − δ+− − δ−+)

(11)

The minus sign in the correlation term is due to the constrain we impose for thermal noise

ξi,+(t) = −ξi−(t) . (12)

Such a condition does not take place in general for a real physical system but it has been

implemented to provide a consistent realization of a stochastic systems such that the center

of mass of each molecule is fixed. With this prescription the stochastic force along the dipole

direction is given by

(
m
d2ri
dt2

)

ST

= (Fstoch,i+(t)− Fstoch,i−(t)) · r̂i = 2ξi,+(t) · r̂i = 2Ξξi(t) . (13)
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B. External forcing to produce out-of-thermal equilibrium conditions

In [3] it has been shown that long-range interactions among biomolecules can be present

if the system of oscillating dipoles is maintained in out-of-thermal equilibrium. To achieve

this goal a forcing term FNE,i(t) has been included in the equations of motion for the

electric dipoles in order to ensure an external injection of energy. The explicit form of

the force FNE,i(t) depends on the specific process that is chosen to inject energy into the

system. In particular, a possible mechanism that has been used recently in THz spectroscopy

experiments to detect collective giant oscillations in biomolecules, is the injection of energy

in vibrational modes through the vibrational decay of the excited fluorochromes attached to

each biomolecules [14]. This process can be represented choosing the following explicit form

for the forcing term

FNE,i(t) = ANE,iωpul fpul(t;ωpul, φi) (14)

where fpul is a pulse-like function of the form

fpul(t;ωpul, φi) =
1

2π

npul∑

i=1

an [1 + cos (ωpult+ φi)]
npul an =

2n(n!)2

(2n)!
. (15)

The coefficients in the former equation have been chosen such that the integral of the function

fpul over a period Tpul = 2πω−1
pul respects the following normalization

∫ 2π
ωpul

0

fpul(t;ωpul, φi)dt =
1

ωpul

. (16)

With this choice it is clear that ANE,i corresponds to the momentum transferred by the

fluorochrome to the protein in a time 2πω−1
pul. The energy losses in vibrational decay can

be estimated to be of the order ∆Epul = h∆νfluor where ∆νfluor is the difference among

frequencies of absorbed and emitted light by the fluorochrome and h is the Planck constant;

consequently, if mfluor is the mass of the fluorochrome, the momentum transferred to the

biomolecule can be approximated by

∆(miṙi) ≈
√

2h∆νmfluor = ANE,i = ANE. (17)
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C. Equation of motion for the system of oscillating interacting dipoles

The equations of motion that describe the dynamics of the system with mutually oscil-

lating dipoles are

m
d2ri
dt2

=−mω2
0 (ri − ri0)−m

ω2
0

Λ
(ri − ri0)

3 +
∑

j 6=i

mω2
ijζijrj+

− γ
dri
dt

+ 2Ξξi(t) + FNE,i(t) ∀i = 1, ..., N

(18)

where all the biomolecules are assumed to be identical so that they all have the same

characteristic frequencies ωi = ω0 and Λi = Λ.

In order to simplify the discussion we rescale the system according to

m = µm̃, t =
τ

ω0

, ri = λxi,
dri
dt

= λω0

dxi

dτ
(19)

that substituted in eq.(18) give the following system of stochastic differential equations of

first order




dxi

dτ
= vi

dvi
dτ

= − (xi − xi0)−
(xi − xi0)

3

Λ̃2
− Ωfrict,i

dxi

dτ
+

N∑

j 6=i

Ω2
ijζijxj + Ψ̃iξ̃i(t)+

+ΩpulANE fpul(τ ; Ωpul, φi) ∀i = 1, ..., N

(20)

where

Λ̃ =
Λ

λ
, Ω2

ij =
ω2
ij

ω2
0

, R̃ =
R

λ
, η̃W =

ηWλ

µω0

, Ωfrict,i =
6πR̃η̃W

m̃i

, Ebath =
kBT

µλ2ω2
0

,

ξ̃i = ω
−1/2
0 ξi, Ψ̃i =

(
48πEbathR̃η̃W

m̃2
i

)1/2

, Ωpul =
ωpul

ω0

, Epul =
h∆νfluorr
µω2

0λ
2
,

m̃fluor =
mfluor

µ
, ANE =

(
Epulm̃fluor

m̃2
i

)1/2

.

(21)

D. Choice of numerical parameters in eq.(24)

The numerical values of parameters that appear in eq. (24) have been estimated for a

realistic biological system. In particular the characteristic fundamental scales for the system

have been fixed as following: i) the typical mass scale of a biomolecule µ = 1.66×10−24Kg =

1KDa; ii) the characteristic length scale of a biomolecule λ = 10−9m; iii) the characteristic
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frequency of the collective oscillations for a biomolecule ω0 = 1012s−1 . Moreover, since we

would test the eventual emergence of self-organized synchronization, we consider a set of

identical molecules in order to maximise the probability of observing it; therefore we assume

R̃i = 1, m̃i = 10 and xi0 = ri,eq/λ ≃ 5 for all i = 1, . . . N according to characteristic

dimension and masses of biomolecules.

The parameter that fixes the characteristic length for the emergence of non linear phenomena

has been settled to be Λ̃ ≃ 0.85. The temperature of the system has been settled at

T = 300K and consequently for our choices Ebath = 2.5 × 10−3, while water viscosity is

ηW ≃ 8.54 × 10−4 Pa · s and η̃W = 0.514 yielding Ωfrict,i = Ωfrict = 0.97. With our choice of

free parameters of the system, the strength of thermal noise results Ψ̃ ≃ 4.4 × 10−2. The

frequencies associated to the electrodynamic interactions Ω2
ij can be expressed in terms of

adimensionalized units

Ω2
ij =

1

ω2
0

2e2

4πǫWSµλ3

Z2

m̃R̃3
ij

=
1

ω2
0

2e2

4πǫWSµλ3

Z2

m̃R̃3
ij

(22)

where R̃ij is the mutual distance between the centers of the dipoles i and j expressed in

unit of λ and m̃ is the mass of a molecule expressed in adimensionalized units. In the

performed simulations the position of each dipole representing a biomolecule is assigned in

a cube box of side l = N1/3〈d̃〉, i.e. the components of the vector position of the center

of each dipole have coordinates R̃i = lxRi
= l(xRi

, yRi
, zRi

), with xRi
, yRi

, zRi
∈ [0, 1],

where N is the total number of dipoles and 〈d̃〉 is the average intermolecular distance in λ

units. As a reference case in our simulations the parameters have been chosen to be m̃ = 10,

Zi = 1000, while the average intermolecular distance 〈d̃〉 = λ〈d̃〉 = 1.6×103Å = 1.6×10−7m.

The reason for choosing such a large value of Z is justified under the hypothesis that the

surrounding water molecules participate to the effective dipole of each biomolecule and

enhance it[3, 9]. Therefore for the considered choice of parameters Ω2
ij ∼ 2.3×10−3. Finally,

in order to consider different cases with stronger interactions (corresponding to shorter

average intermolecular distances, for instance) the coupling term is multiplied by a factor

K > 0 with respect to the reference case just discussed, i.e.

Ω2
ij =

1

ω2
0

2e2

4πǫWSµλ3

Z2

m̃N〈d̃〉3
∣∣xRi

− xRj

∣∣ = KΩ2
ij

∣∣∣∣
〈d̃〉=1.6×102

= KΩ2
ij,ref (23)
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and by introducing eq. (23) in eqs. (20) we obtain





dxi

dτ
= vi

dvi
dτ

= − (xi − xi0)−
(xi − xi0)

3

Λ̃2
− Ωfrict,i

dxi

dτ
+

N∑

j 6=i

KΩ2
ij,refζijxj + Ψ̃iξ̃i(t)+

+ΩpulANE fpul(τ ; Ωpul, φi) ∀i = 1, ..., N

(24)

This paper is intended as a first feasibility study for the detection of long-range electro-

magnetic interactions amongs biomolecules in watery solutions via a spectroscopic observ-

able. In laboratory conditions the only parameter concerning molecule space configuration

and orientation that one can easily control, is the biomolecules concentration, i.e. the inter-

molecular average distance. Therefore we investigate the emergence of collective behavior

between biomolecules by varying the average distance among dipoles. On the other hand,

in this work we do not investigate the role played by spatial correlation of the position and

orientation of the dipoles in the appearance of a spectroscopic signature of the long-range

electrodynamic dipole-dipole interactions. The study of dependence of spectroscopic observ-

ables on spatial correlations could be very interesting in this framework but we postpone to

future work this investigation.

The parameter Epul can be estimated assuming that the energy injection on each

biomolecule is due to the vibrational decay of a fluorescent dye. It is realistic [14] to consider

a difference between the absorbed and emitted frequency of the order of ∆νfluor ≃ 5×1013s−1

and m̃fluor ≃ 0.6, thus yielding ANE ≃ 1.4× 10−2.

The characteristic frequency for the energy transfer Ωpul is one of the most delicate

parameters to be settled. This term accounts for the continuous injection of energy into

the system, however the release must be done without perturbing too much the oscillating

behavior, therefore we can assume that Ωi ≫ Ωpul ≃ 10−2.

IV. NUMERICAL RESULTS

The reported analyses have been done using a single system size (N=50) and random

initial conditions both for positions and velocities. However, similar results have been ob-

tained for N=100, 200 (not shown). In order to investigate the emergence of a collective
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behavior due to the interactions among the molecules we consider the variable

P (t) =

√√√√
N∑

i=1

{[(xi(t)− xi0) sin βi cosφi]2 + [(xi(t)− xi0) sin βi sinφi]2 + [(xi(t)− xi0) cos βi]2}

(25)

which represents the ensemble average of the projection of the dipole position in the cartesian

coordinates systemX, Y, Z. The biomolecule in our model is identified via the intermolecular

mutual distance between the two centers of charges measured along the radial x direction

and we need to express this variable in cartesian coordinates. In other words, each term

under the square root represents the component of the dipole position along one of the

directions X, Y, Z, thanks to the respective projection angle βi of each molecule’s radius to

the Z-axis and φi of the projection of xi in the XY plane to the X-axis. These angles are

generated together with the initial conditions and do not vary in time.

Due to the fact that the system is not deterministic and a white noise source is present

into the differential equations, we have developed a method similar to the second-order

Runge-Kutta one for solving numerically ordinary differential equations. In particular we

have implemented the Heun method [15] in the Runge-Kutta algorithm as suggested in [16],

and we have used an integration time step 0.002 to perform the simulations. In addition to

this, in order to compare the results for different coupling constant values and for different

strengths of the thermal noise, we implemented a low-pass filter to analyse the power spectra.

This filter relies on the differentiation properties of the Fourier transform; in particular,

since the Fourier transform of a generic function f is related to the Fourier transform of its

derivative via the relationship F [f ′(ν)] = 2πiνf̂(ν), it is possible to filter the low-frequency

components of the spectrum just using the Fourier transform of the derivative. The low-

frequency components that we want to filter out are related to the injected white noise that

are not interesting for the scope of this work, i.e. finding a mark of emergent collective

behavior.

Therefore we calculated the power spectrum of dP/dt to investigate the role played by the

interactions among the dipoles to enhance a collective motion. In the following we present

two set of parameters: a first one corresponding to the values discussed in Sec. III D and

a second one, where we arbitrarily increase the thermal noise to investigate the robustness

of the system and the emergent collective effects. The first set of parameters has been

used to find the results shown in Figs. 1,2. While non-coupled dipoles show a peak at
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frequency ≈ 0.280± 0.006 (Fig. 1 (a)), as soon as a small coupling is present in the system,

the interactions among the dipoles get stabilized and a peak at lower frequency emerges

already for K = 0.25 (Fig. 1 (b)). However the eigenmodes emerging for small coupling

are destroyed for bigger coupling, where the non-linearity due to the non-elastic term in

eq. 24 prevents this self-organized behavior at small frequencies (Fig. 1 (e)). The peak at

small frequency emerges again for K ≥ 19 (Fig. 1 (f)), but the intensity shown is smaller

than before. On the other hand the main peak moves to higher frequencies for increasing

coupling, but the intensity is more and more depressed (Fig. 1 (g), (h)).

A summary is presented in Fig. 2, where the peak intensity and the corresponding

frequency values are given as a function of the coupling; while the secondary peak emerging

at low frequency value for K ≥ 19 remains almost stable and constant, the primary peak,

already visible for small coupling (K = 0.25) changes its form and shifts towards higher

frequency values.

The results for the second set of parameters are given in the Figs. 3, 4. While in

absence of interactions (K=0), the system shows a single pronounced peak at frequency

≈ 0.488 ± 0.006, once the interactions are active (K > 0), another peak arises at smaller

frequency ≈ 0.263 ± 0.013. By increasing the value of K we observe an increase of the

peak at lower frequency, to which corresponds a decreasing of the peak at higher frequency:

a collective motion is enhanced due to interaction, while the motion corresponding to the

non-connected situation is depressed (see Fig. 3, panels (a)-(h) and Fig. 4(a)). On the

other hand the position of the peak (i.e. the corresponding frequency value) does not

change significantly if we increase the coupling constant (see Fig. 4(b)); the more evident

increasing ratio for K > 20 is related to the fact that power spectra become richer and

richer for higher coupling and secondary peaks arise. One of these secondary peaks (the

main one) emerging at bigger coupling constant is also reported in Fig. 4 (panels (a),

(b)), and it is termed “Third Peak”. Finally, if we analyse in more details the behavior

of the first peak, related to the emergent collective motion, as a function of the coupling

constant, it is possible to identify two different scales, once the figure is plotted in log-

log scale (Fig. 4(c)). In particular, the different scales present for low coupling constant

(K < 5) and for sufficiently strong coupling (K > 10) denote a transition between two

different dynamical behaviors: the cross-over between two different regimes, from the one

dominated by individual asynchronous behavior, to the one dominated by collective motion,
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Figure 1: Investigation of the emergence of a collective behavior as a characteristic peak in the

power spectrum. Panels (a)-(h): Power spectrum of dP/dt for different values of the coupling con-

stant K and for thermal noise strength Ψ̃i = 0.044. The black curve represents, in each panel, the

power spectrum of the system without coupling (K=0). The other curves shown are, respectively,

for K = 0.1 (a); K = 0.25 (b); K = 1 (c), K = 5 (d); K = 10 (e); K = 19 (f); K = 21 (g); K = 31

(h). The parameters values used for these simulations are: Ωi = 0.01, xi0 = 5, Ωfrict,i = 0.97 (for

every i = 1, . . . , N), Ωpul = 0.1, ANE = 0.011, N = 50.
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Figure 2: Dependence of the system’s characteristic frequencies on the coupling constant. Panels

(a), (b): Peak height (a) and frequency value (b) of the first two main peaks that characterize the

dynamics of the system. Red diamonds identify the primary peak, black dots the secondary one.

Parameters as in Fig. 1.

with strongly interacting oscillators, is thus compatible with these two different scales.

If we now investigate the response of the system under the effect of the thermal noise

strength, we obtain a stochastic resonance effect [17]: the signal at low frequency (≈ 0.28±

0.09) can be boosted by adding white noise to the signal, which contains a wide spectrum

of frequencies. The frequencies in the white noise spectrum corresponding to the original

signal’s frequencies resonate with each other, thus amplifying the original signal (i.e. the

signal at low frequency) while not amplifying the rest of the white noise. Furthermore the

signal-to-noise ratio is increased, while the added white noise is filtered out thanks to the

band-pass filter that we have implemented calculating the power spectrum of dP/dt. In

particular the low frequency peak, that corresponds in our case to the collective motion,

is more visible for thermal noise strength Ψ̃ = 0.03, to which corresponds a maximum in

the peak high (see Fig.5 panels (a),(b)). This peak is depressed for higher temperature and

less likely to be revealed. On the other hand the peak at high frequency (≈ 0.56 ± 0.22),

corresponding to the dynamics of isolated dipoles, can be also boosted by adding white

noise into the system, but it does not decrease as significantly as the former one for higher

temperatures, thus meaning that the single dipoles in this model are able to react to big

level of noise, even though this is physically not plausible, since we would expect that dipoles
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Figure 3: Investigation of the emergence of a collective behavior as a characteristic peak in the

power spectrum. Panels (a)-(h): Power spectrum of dP/dt for different values of the coupling

constant K and for thermal noise strength Ψ̃i = 0.46. The black curve represents, in each panel, the

power spectrum of the system without coupling (K=0). The other curves shown are, respectively,

for K = 1 (a); K = 2 (b); K = 5 (c), K = 10 (d); K = 21 (e); K = 31 (f); K = 41 (g); K = 50

(h). The parameters values used for these simulations are: Ωi = 1, xi0 = 5, Ωfrict,i = 0.105 (for

every i = 1, . . . , N), Ωpul = 0.1, ANE = 1.4, N = 50.
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Figure 4: Dependence of the system’s characteristic frequencies on the coupling constant. Panels

(a), (b): Peak height (a) and frequency value (b) of the first three main peaks that characterize the

dynamics of the system. Panel (c): Fitting of the dependence of the peak height on the coupling

constant. Fitting values are A = 6188, 4± 0.5, b = 0.75± 0.03. For all the panels the black dotted

curve represents the first peak, the red diamonds curve represents the second peak and the square

green curve represents the third peak. Parameters as in Fig. 3.

will break up for high temperatures.

V. DISCUSSION

Let us now comment about the physical meaning, and about the prospective relevance, of

the results described in the previous Sections. As repeatedly stated, the present study was

motivated by the need of finding an experimental strategy - complementary to the diffusion-

based one already discussed in [1–3] - to detect the possible presence of electrodynamic

attractive forces between biomolecules. Such a possibility emerges in the following frame-

work. By pumping energy in the biomolecules of a watery solution, that is by keeping these

molecules warmer than the solvent (out-of-thermal equilibrium), when the input energy rate

exceeds a threshold value, then all, or almost all, the excess energy (that is, energy input

minus energy losses due to dissipation) is channeled into the vibrational mode of the lowest

frequency. In other words, the shape of the entire molecule is periodically deformed result-

ing in a “breathing” movement [14]. In doing so the biomolecules behave as microscopic

antennas that absorb the electromagnetic radiation tuned at their “breathing” (collective)
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Figure 5: Response of the system under the effect of the thermal noise strength. Panel (a): Power

spectrum of dP/dt for different values of the thermal noise strength and for coupling constant

K=5. Panels (b), (c): Peak height (b) and frequency value (c) of the first two main peaks that

characterize the dynamics of the system. Parameters as in Fig. 3. The values of the different

thermal noise strengths reported in the caption of panel (a) and the axix label in panel (c) must

be intended as Ψ̃: the ˜ has been suppressed in the figure for the sake of simplicity.

oscillation frequency. But antennas at the same time absorb and re-emit electromagnetic

radiation, thus, according to a theoretical prediction, these antennas (biomolecules) can at-

tractively interact at a large distance through their oscillating near-fields, and through the

emitted electromagnetic radiation, provided that these oscillations are resonant, that is, take

place at the same frequency [14]. The still open question is whether these electrodynamic

interactions can be strong enough to be experimentally detectable, and thus of some prospec-

tive biological relevance. In the model of a watery solution of biomolecules that we have

tackled, each individual molecule is assumed to be driven to an out-of-equilibrium collective

vibrational mode which, in turn, excites an attractive electrodynamic force field associated

with a −1/r3 potential, where r is the intermolecular distance. By setting the parameters

of the model to physically realistic values, we have numerically investigated the effect of

varying the strength of the mutual dipole-dipole electrodynamic interaction (controlled by

the parameter K). The new phenomenon observed, reported in the preceding Section, is

the appearance of a collective behaviour (that is involving all the molecules of the system)

which is identified through K-dependent spectral features of a suitable observable. In prac-
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tice, this means that by means of spectroscopic measurements at different concentrations

of the solvated biomolecules we could detect the presence of electrodynamic intermolecular

interactions. Varying the concentration C of the solution entails the variation of the average

intermolecular distance 〈d〉 according to the relation 〈d〉 = C−1/3. And varying C would

be a practical way of experimentally changing the parameter K of the model. The variable

P (t), defined in Eq.(25), represents the ensemble average of the projection of the dipole posi-

tions in the cartesian coordinates system. This is a spectroscopically measurable observable.

Moreover, being related with the overall dipole moment of the solution, it can directly probe

the emergence of a collective behaviour of the solvated molecules, collective behaviour which

can only be driven by the presence of intermolecular interactions. A spectroscopic approach

would thus entail a dichotomic, clear-cut, answer: if nothing would change in the absorption

spectrum of the solutions at different concentrations, this would indicate that the solvated

molecules do not interact at a distance, to the contrary, concentration dependent spectral

features would mean that the solvated molecules interact at a distance. In conclusion, the

results reported in the present work outline a very promising experimental strategy - comple-

mentary to the diffusion-based one - to ascertain whether biomolecules can interact through

long-range electrodynamic forces.
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